
International  Journal  of

Environmental Research

and Public Health

Article

Icariin Treatment Enhanced the Skeletal Response to
Exercise in Estrogen-Deficient Rats

Renqing Zhao 1,2,* , Wenqian Bu 1 and Yingfeng Chen 1

1 College of Physical Education, Yangzhou University, 88 Daxue South Rd, Yangzhou 225009, Jiangsu, China;
bwq1208@163.com (W.B.); cyf_yzu@163.com (Y.C.)

2 College of Physical Education and Health Sciences, Zhejiang Normal University, 688 Yingbin Avenue,
Jinhua 321004, Zhejiang, China

* Correspondence: renqing.zhao@yzu.edu.cn; Tel.: +865-148-797-2015

Received: 22 August 2019; Accepted: 2 October 2019; Published: 8 October 2019
����������
�������

Abstract: Estrogen deficiency frequently leads to a fall in estrogen receptor-α (ERα) numbers and then
reduces the skeletal response to mechanical strain. It, however, is still unclear whether phytoestrogen
administration will enhance the effects of exercise on the estrogen-deficient bone loss. This study
aimed to determine the effect of Icariin treatment on the response of osteogenic formation to exercise
in ovariectomized (OVX) rats. Thirty-two 3-month old female Sprague–Dawley rats were randomly
allocated into four groups: (1) Sham-operated (SO); (2) OVX; (3) OVX plus exercise (EX); and (4) OVX
plus exercise and Icariin (EI). After 8-week interventions, the rats were killed and samples were
collected for bone morphometry, reverse transcription-polymerase chain reaction (RT-PCR), and
Western blot analyses. EI interventions showed a greater improvement for the OVX-induced bone
loss and the elevated serum tartrate-resistant acid phosphatase (TRAP) and alkaline phosphatase
(ALP) compared with EX only. Both EX and EI interventions bettered the OVX-related reduction
of BV/TV and trabecular number and thickness, and decreased the enlargement of trabecular bone
separation (Tb. Sp); the improvement for BV/TV and Tb. Sp was greater in EI group. Furthermore,
EX and EI treatment significantly increased the number of ALP+ cells and mineralized nodule areas
compared with OVX group; the change was higher in EI group. Additionally, in comparison to OVX
rats, the protein and mRNA expression of β-catenin, phosphorylated-Akt (p-Akt) or Akt, ERα, and
Runt-related transcription factor 2 (Runx2) in osteoblasts were elevated in EX and EI intervention rats,
with greater change observed in EI group. The upregulated β-catenin and Akt mRNA levels in EX
and EI groups was depressed by ICI182780 treatment, and the difference in β-catenin and Akt mRNA
levels between EX and EI groups was no longer significant. Conclusively, the combination of Icariin
and exercise significantly prevent OVX-induced bone loss and increase osteoblast differentiation and
the ability of mineralization compared with exercise alone; the changes might be regulated partly by
ERα/Akt/β-catenin pathway.
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1. Introduction

Osteoporosis is a common aged-related skeletal disorder characterized by compromised bone
strength predisposing the older adults to high risk of fracture [1,2]. Osteoporosis-related medical
care causes a heavy burden both on society and families [3,4]. To find effective therapeutic strategies
becomes one emergent clinical research task [5,6]. Compelling evidence has confirmed that exercise
generates beneficial effects on loading sites in osteoporotic individuals [7–9]; it has been recognized as
an effective way to prevent age-related bone loss and a promising strategy for fracture reduction [10–14].
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However, the exercise-associated benefits for bone mass are frequently weakened in some situations,
for example, women with menopause.

Skeletal system continuously adapts its mineral materials and microstructure to daily mechanical
loading to maintain a fine balance between bone absorption and formation. This physiological adaption
is mainly controlled by estrogen receptor-α (ERα) signaling pathways [15]. Decreased estrogen
concentrations in postmenopausal women frequently down-regulate the number and function of ERα
and subsequently impair skeletal response to mechanical loading [16,17]. Therefore, upregulation
of ERα expression is expected to increase the response of osteogenic formation to mechanical strain;
this approach might improve the effect of exercise on the prevention of bone loss in postmenopausal
women. However, the question has not been addressed clearly yet. Additionally, traditional hormone
replacement therapy (HRT) is regarded to have beneficial effects on the number and function of
ERα [16], but it is also suspected to link with severe side effects [18,19]. Therefore, alternative
pharmacological therapy that can generate estrogen-like activity but has no the adverse effects seen in
HRT is urgently needed.

Icariin, a maker flavonoid glycoside, is extracted from Herba Epimedii, which is used to treat
skeletal diseases in traditional Chinese medicine for thousands of years [20,21]. Recent evidence has
demonstrated that Icariin has the potential of estrogenic effects and shows improvement for bone loss
in ovariectomized (OVX) mice [22,23]. Several studies suggested Icariin inhibited bone loss mainly by
increasing osteoblastic differentiation [24–26]. Previous study [27] reported that the combination of
Soy Isoflavone and exercise resulted in more BMD gains than exercise alone, but it remains unclear
whether Icariin would upregulate skeletal response to exercise and the regulation mechanism is
still unknown. Lau and colleagues [28] reported that mechanical strain increased bone formation
mainly by upregulating ERα expression and then promoting Akt/β-catenin signaling pathways, which
subsequently enhanced osteoblastic proliferation and differentiation. We hypothesized that Icariin
treatment might potentially increase ERα expression and then promotes Akt/β-catenin signaling
pathways, all of which subsequently enhance osteogenic formation in response to mechanical strain.
Given the clinical importance of this issue, to elucidate it will provide a novel and effective approach
for preventing postmenopausal bone loss. Therefore, our study aimed to examine the effects of the
combination of Icariin and exercise on bone loss and the capacity of osteogenic formation in OVX rat.
The changes in the expression of ERα, Akt, β-catenin, and Runt-related transcription factor 2 (Runx2)
in osteoblasts were also determined.

2. Materials and Methods

2.1. Animals and Intervention Protocols

Thirty-two 3-month old female Sprague–Dawley (SD) rats (purchased from Kaixue Bio-Technique
Co., Ltd., Shanghai, China) were housed under the temperature of 23 ± 2 °C and with a 12-h light-dark
cycle. Food and drinking water were supplied ad libitum. One week after arrival, the rats were
sham-operated (SO) or OVX according to experimental protocols, and randomly assigned to 4 groups
in parallel (8 rats in each group): (1) SO group; (2) OVX group; (3) exercise (EX) group: OVX rats with
exercise intervention for 8 weeks; (4) exercise and Icariin (El) group: OVX rats received exercise and
Icariin interventions for 8 weeks. The experimental protocols were reviewed and approved by the
Ethics Committee of Zhejiang Normal University (ethical code number KYZKYY14483).

Two weeks after operation, exercise rats received one week of adaptive training with a protocol of
daily 20-min treadmill running and the speed gradually increasing from 12 meters/min to 16 meters/min
(0% grade). After adaptive training, exercise rats were trained regularly for five days per week, with
each training section about 60 min at a speed of 18 meters/min and a grade of 5%. After 3 weeks of
operation, EI rats were also fed daily with 50 mg/kg Icariin by gavage (purchased from GuideChem
co., Ltd., Hangzhou, China) besides regular exercise training. At the end of interventions, all rats were
killed within 24 h. Blood samples were collected after anesthetized (10% chloral hydrate, 3 mL/kg body
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weight). Serum was separated by centrifugation at 1500g for 20 min at 4 ◦C and then kept at −20 °C.
Femora, tibia, and lumbar vertebra were dissected and stored in a freezer at −80 ◦C until analysis.

2.2. Bone Density and Morphometry Analyses

The fifth lumbar vertebrae were used for bone mineral density (BMD) analysis. BMD was
measured by dual energy X-ray absorptiometry (DEXA) (Lunar Prodigy, GE Inc., Madison, WI, USA)
using the manufacturer provided high-resolution software for small animals. The left femur was fixed
in 4% paraformaldehyde and embedded in methyl methacrylate plastic after serial dehydration with a
graded ethanol series to xylene. Five-µm sections were made, and HE staining was carried out by
staining with haematoxylin for 3 min followed by 2 min of staining with eosin. Morphometry was
determined by measuring the bone volume (BV/TV), trabecular thickness (Tb. Th), trabecular number
(Tb. N), trabecular spacing (Tb. Sp), and analyzed by OsteoMeasure software (Osteometrics, Atlanta,
GA, USA) under electron microscope (DM400, Leica, Solms, German).

2.3. Bone Mesenchymal Stem Cell Culture

Bone mesenchymal stem cells (BMSCs) were collected as previously described [29]. Briefly, under
aseptic conditions, BMSCs were flushed from bone marrow with α-minimal essential medium (α-MEM)
(Invitrogen, Carlsbad, CA, USA). Then the cells were re-suspended and cell culture medium was
replaced every 3 days. For osteogenic differentiation, the culture medium was replaced with osteogenic
medium (α-MEM supplemented with 15% fetal calf serum plus 1% penicillin/streptomycin, 100 nM
dexamethasone, 50 µg/mL ascorbate-2-phosphate and 10 mM β-glycerol phosphate). The medium
was changed every 3 days. For ERα blocking test, the culture system on day 7 was treated with either
placebo or 200 nM ICI182780 (GlpBio, co., Ltd., Montclair, NJ, USA) to block ERα pathways.

2.4. Alkaline Phosphatase Staining and Alizarin Red Staining

At day 7 of osteogenic differentiation culture, the cells were washed in phosphate-buffered saline
(PBS), fixed in 10% paraformaldehyde for 10 min at room temperature, and rinsed in distilled water.
The alkaline phosphatase (ALP) staining mixture was added for 30 min at room temperature in the
dark. The cells were rinsed in distilled water and PBS to reduce non-specific staining. At day 14 of
culture, cells were washed with phosphate buffered saline, fixed with 70% ethanol for 1 h, washed
3 times with distilled water, and stained with 40 nM Alizarin red (Sigma-Aldrich Corp., St. Louis, MO,
USA) for 10 min. Then the staining of calcium mineral deposits was quantified.

2.5. Serum E2, ALP and Tartrate-Resistant Acid Phosphatase Analyses

The serum concentrations of E2, ALP and tartrate-resistant acid phosphatase (TRAP) were
determined with ELISA kits (R&D Systems, Inc., Minneapolis, MN, USA), according to the instructions
in the manufacturer’s protocol.

2.6. Western Blot Analysis

On the 7th day of osteogenic differentiation culture, cells were lysed using the RIPA lysis buffer
containing 50 mM Tris–HCl, pH 8.0, 150 mM NaCl, 1% NP-40, 0.5% sodium chloride, 0.1% sodium
dodecyl sulfate (Sigma-Aldrich Corp., St. Louis, MO, USA). Extracts were fractionated by SDS-PAGE
and transferred to a Trans-Blot Nitrocellulose membrane (BioRad, Hercules, CA, USA). After blocking
with 5% nonfat dry milk in Tris-buffered saline (TBS), we incubated the membranes overnight at 4 ◦C
with antibody to β-catenin, ERα, p-Akt, or Runx2. For loading control, we used antibodies to β-actin.
The secondary antibody was diluted to 1:1000 and incubated with the membrane for 2 h at room
temperature. After the last washing step, 5-Bromo-4-chloro-3-indolyl phosphate-nitro blue tetrazolium
(NBT-BCIP) (Zymed, Laboratory Inc., San Francisco, CA, USA) detection was carried out following the
manufacturer’s instructions.
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2.7. RT-PCR Analysis

After 7 days of osteogenic differentiation culture, cells were collected to extract total RNA using
Trizol reagent (Gibco-BRL, Rockville, MD, USA) and isolated as specified by the manufacturer. The
RNA was DNAse-treated (DNase I-RNase-Free, Ambion) to remove any contaminating DNA; 200 ng
of total RNA was reverse-transcribed with oligo dT primers using the High Capacity cDNA RT Kit
(Applied Biosystems, Foster City, CA, USA) in a 20-µL cDNA reaction, as specified by the manufacturer.
For quantitative PCR, the template cDNA was added to a 20 µl reaction with SYBR Green PCR Master
Mix (Applied Biosystems, Foster City, CA, USA) and 0.2 µM of primer. The amplification was carried
out using an ABI Prism 7000 for 40 cycles under the following conditions: an initial denaturation of
95 ◦C for 10 min, plus 40 cycles of 95 ◦C for 15s, then 60 ◦C for 1 min. The fold changes were calculated
relative to β-actin using the ∆∆ Ct method for Akt, ERα, β-catenin, and Runx2 mRNA analysis. The
following primer sets were used: Akt: forward, 5′-GCAGCACGTGTACGAGAAGA-3′; reverse,
5′-GGTGTCAGTCTCCGACGTG′; ERα: forward, 5′-GCCATCAAGAAGATCAGCC-3′; reverse,
5′-CGTAGCCACATACTCCGTCA-3′; β-catenin: forward, 5′-TCAGGAAAGCAAGCTCATCATTC-3′;
reverse, 5′-ACGATGGCCGGCTTGTT-3′; Runx2, forward, 5′-GCCGGGAATGATGAGAACTA-3′;
reverse, 5′-GGTGAAACTCTTGCCTCGTC-3′; β-actin: forward, 5′-GTACGCCAACACAGTGCTG-3′;
reverse, 5′-CGTCATACTCCTGCTTGCTG-3′.

2.8. StatisticalAnalysis

Statistical analysis was performed using STATA software (Version 15, StataCorp LP, College Station,
TX, USA). Statistical significance in weight, BMD, serum estrogen, ALP and TRAP, and the percentage
of protein and gene expression was determined by analysis of variance (ANOVA); differences between
means were evaluated using Student’s t-test. A level of p < 0.05 was accepted as significant.

3. Results

3.1. General Characteristics

Table 1 showed that the baseline weight of rats was not significantly different between the four
groups. After 8-week intervention, greater weight gains were found in OVX, EX, and EI groups,
with the largest increment in OVX group. OVX induced a significant bone loss, but EX and EI
interventions markedly alleviated bone wasting, with more BMD increment found in EI group. OVX
potently elevated the serum levels of ALP and TRAP and decreased E2 concentrations. Both EX and EI
interventions decreased serum biomarkers and elevated E2 concentrations, and the beneficial changes
in E2, ALP, and TRAP were greater for EI treatment compared with EX intervention only (Table 1).

Table 1. Physical and serum parameters of rats between different treatment groups.

Variables SO OVX EX EI

Weight pre (g) 210.70 ± 14.95 212.46 ± 14.60 211.01 ± 9.21 209.25 ± 14.69

Weight post (g) 288.36 ± 15.51 323.65 ± 16.09 * 307.48 ± 12.94 *# 302.67 ± 13.72 *#

BMD spine (g/cm2) 0.175 ± 0.01 0.155 ± 0.011 * 0.162 ± 0.01 *# 0.171 ± 0.01 #†

Serum E2 (pg/mL) 23.61 ± 2.27 12.94 ± 2.95 * 17.33 ± 1.81 *# 20.50 ± 1.98 *#†

Serum ALP (IU/dl) 9.67 ± 2.82 15.69 ± 3.69 * 12.52 ± 2.75 *# 9.39 ± 2.12 #†

Serum TRAP (IU/dl) 39.23 ± 6.21 69.12 ± 8.61 * 51.25 ± 7.83 *# 40.53 ± 6.39 #†

Note: SO: Sham-operated; OVX: ovariectomized; EX: exercise; EI: exercise and Icariin; BMD: bone mineral density;
ALP: alkaline phosphatase; TRAP: Tartrate-resistant acid phosphatase; 1. Comparison of the groups of OVX, EX,
and EI with SO group: * <0.05. 2. Comparison of EX and EI groups with OVX group: # <0.05. 3. Comparison
between EX with EI group: † <0.05.



Int. J. Environ. Res. Public Health 2019, 16, 3779 5 of 10

3.2. Bone Tissue Characteristic Analysis

OVX significantly decreased BV/TV, Tb.N and Tb.Th, and increased Tb. Sp (Table 2). Both EX and
EI interventions improved these adverse changes; EI generated greater BV/TV gains and decreased
more Tb.Sp compared with EX only (Table 2).

Table 2. Changes in morphological structure of bone.

Variables SO OVX EX EI

BV/TV (%) 59.2 ± 8.5 32.6 ± 6.3 * 45.2 ± 7.2 *# 55.5 ± 7.6 #†

Tb.Th (mm) 83.1 ± 13.5 63.5 ± 7.3 * 78.3 ± 12.1 # 80.9 ± 11.1 #

Tb.N (N/mm2) 13.2 ± 2.1 7.3 ± 1.9 * 10.1 ± 2.5 *# 12.8 ± 2.9 #

Tb.Sp (mm) 103.3 ± 19.5 149.2 ± 27.3 * 128.5 ± 21.8 # 106.8 ± 23.6 #†

Note: SO: Sham-operated; OVX: ovariectomized; EX: exercise; EI: exercise and Icariin; BV/TV: trabecular bone
volume; Tb.N: trabecular number; Tb.Th: trabecular thickness; Tb.Sp: trabecular separation; 1. Comparison of the
groups of OVX, EX, and EI with SO group: * <0.05. 2. Comparison of EX and EI groups with OVX group: # <0.05. 3.
Comparison between EX with EI group: † <0.05.

3.3. Osteogenic Differentiation and Deposition

OVX induced a reduction of ALP+ cell numbers and mineralized nodule areas compared with the
SO group (Figure 1). EX and EI interventions significantly promoted the osteoblastic differentiation
and osteogenic deposition; the beneficial changes were greater for EI interventions than EX alone
(Figure 1).
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Figure 1. ALP+ cell number and mineralized nodule area. SO: Sham-operated; OVX: ovariectomized;
EX: exercise; EI: exercise and Icariin. 1. Comparison of the groups of OVX, EX, and EI with sham group:
* <0.05. 2. Comparison of EX and EI groups with OVX group: # <0.05. 3. Comparison between EX
with EI group: † <0.05.

3.4. Western Blot and PCR Analyses

Both protein and mRNA expression of ERα, p-Akt (Akt) or Akt, β-catenin, and Runx2 were
reduced by OVX, and EX and EI interventions significantly elevated the decreased levels. The protein
and mRNA levels of ERα, β-catenin, and p-Akt (Akt) or Akt were higher in EI than EX groups (Figures 2
and 3). To examine whether Icariin enhanced the skeletal response to exercise through promoting
ERα expression, we pre-treated the osteoblastic cultures with ICI182780. The EX- and EI- induced
increment of β-catenin and Akt mRNA levels was significantly decreased by ICI182780 treatment
(Figure 4), and β-catenin and Akt mRNA levels were no longer different between EI and EX groups
unlike that treated with placebo (Figure 4).
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Figure 3. The percentage of ERα, Akt, β-catenin, and Runx2 mRNA in osteoblast culture. SO:
Sham-operated; OVX: ovariectomized; EX: exercise; EI: exercise and Icariin. 1. Comparison of the
groups of OVX, EX, and EI with SO group: * <0.05. 2. Comparison of EX and EI groups with OVX
group: # <0.05. 3. Comparison between EX with EI group: † <0.05.
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Figure 4. The effects of ICI182780 treatment on the mRNA expression of Akt and β-catenin. SO:
Sham-operated; OVX: ovariectomized; EX: exercise; EI: exercise and Icariin. 1. Comparison of the
groups of OVX, EX, and EI with SO group: * <0.05. 2. Comparison of EX and EI groups with OVX
group: # <0.05. 3. Comparison between EX with EI group: † <0.05. 4. Comparison between placebo
and ICI182780 treatment: § <0.05.

4. Discussion

Our study found that both exercise and exercise combined with Icariin were effective in preventing
estrogen-deficient bone loss, and significantly promoted osteoblast formation and the ability of
mineralization in OVX rats. Greater changes were frequently found in the combination of exercise with
Icariin. Icariin elevated the skeletal response to exercise partly through upregulating ERα expression
because higher mRNA expression of β-catenin and Akt found in EI interventions were attenuated by
anti-ERα agents.

Exercise for the prevention of osteoporosis has been explored previously [30]. But questions
remained about the regulating mechanism of this favorable effects. Our findings indicated that
exercise prevented bone loss mainly by promoting osteogenic formation and mineralization, and
ERα/Akt/β-catenin signaling pathway might partly contribute to this benefit change. Previous ex vivo
evidence demonstrated that mechanical strain induced osteogenic generation mainly by increasing
ERα expression in osteoblasts [31]. Upregulated ERα expression helps β-catenin translocate into nuclei
where β-catenin is combined with T cell factor (TCF) and lymphoid enhancer factor (LEF) to activate
TCF/LEF responsive target genes [31]. The ERα-induced activation and increment of β-catenin is
partly regulated by Akt phosphorylation [28]. Our study provided in vivo evidence to ascertain this
regulation pathway in exercise-intervention OVX rats because both phosphorylated-Akt (p-Akt) and
β-catenin were elevated by exercise and regulated by anti-ERα agent.

Use of Chinese herbs to improve skeletal response to exercise is a novel approach to the treatment
of osteoporosis. Eight-week interventions of Icariin and exercise resulted in greater improvement of
osteoporotic status compared with exercise alone. Wu et al. [27] reported that combined interventions
of food supplementations (Soy Isoflavone) and exercise resulted in more BMD gains than exercise alone.
However, the regulation mechanism was not clear. Our study suggested that more BMD gains found
in Icariin and exercise interventions were linked with higher capacity of osteoblastic differentiation
and mineralization. Furthermore, the beneficial changes might partly be regulated by elevated ERα
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expression. Icariin is a potential agent for increasing ERα signalings [24], in agreement with which
our results found that the higher ERα expression was seen in the combined interventions of irisin
and exercise than exercise only. As reported in previous study [28], ERα plays an essential role in
modulating the effects of mechanical strain on bone formation. As a result, the increment of ERα
subsequently caused higher levels of Akt and β-catenin, which then augment the proliferation and
differentiation of osteoblasts. Interestingly, this regulating axis was affected by ICI18278. When treated
with ICI182780, the mRNA levels of β-catenin and Akt significantly decreased and the difference
between EI and EX groups was not obvious. It is suggested that Icariin elevated skeletal response to
exercise partly thorough upregulating ERα expression and then triggering Akt/β-catenin pathways.

Recently, Chinese herbs showed advantages in counteracting some diseases. A successful
case was seen in the treatment of Plasmodium falciparum malaria in which Artemisinin-based
combination therapies are the first-line therapy strategy [32]. Given the obvious adverse effects of
HRT, Icariin might be a promising alternative therapy strategy for the prevention of osteoporosis in
postmenopausal women.

5. Conclusions

Our study has determined the combined benefits of exercise and Icariin for improving
OVX-induced bone loss by up-regulating osteoblastic formation, but there remain some questions
undetermined, for example, whether the combined interventions would affect osteoclast differentiation
is still unclear. To elucidate this question will better our understandings about the mechanism
regulating the effects of Icariin on skeletal response to exercise.
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