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Abstract: Quorum quenching-membrane bioreactors (QQ-MBRs) have been studied widely in recent
decades. However, limited information is known about the influence of QQ on the microbial
community. In this study, the indigenous QQ bacterium Bacillus cereus HG10 was immobilized
and used to control biofouling in a bioreactor. QQ beads caused extracellular polymeric substance
reduction and significantly hindered biofilm formation on a submerged membrane. Community
profiling of 16S rRNA gene amplicons revealed that QQ beads dramatically altered the bacterial
community structure in activated sludge but not in biofilm. Bacterial structure in the presence of QQ
beads showed a clear divergence from that of the control groups at phylum, class, order, family, and
genus taxonomic ranks. A significant enrichment of several bacterial genera, including Acinetobacter,
Aeromonas, Delftia, Bacillus, and Pseudomonas, and depletion of over 12 bacterial genera were observed.
These findings would contribute to a better understanding of why and how immobilized QQ bacteria
impair membrane biofouling in QQ-MBRs.
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1. Introduction

Membrane bioreactors (MBRs) have drawn substantial attention worldwide as wastewater
treatment technology. MBRs outcompete other technologies because of several advantages, including
smaller footprints, better effluent quality, and less sludge production. However, membrane biofouling,
a critical obstacle, hindered the widespread use of the technology and remains to be overcome [1–3].
Membrane biofouling leads to lower permeate flux, higher energy consumption and cost, and it
requires frequent membrane cleaning and replacement. To date, diverse anti-biofouling strategies
have been reported, including the modification of membrane materials, the optimization of operating
parameters, and the addition of chemicals [3–7]. Biofilm formation is known to be controlled and
regulated by bacterial cell-to-cell communication via signal molecules called quorum sensing (QS).
In recent years, quorum quenching (QQ, inhibition of cell-to-cell communication) has emerged as
an innovative approach for biofouling control in an MBR [6,8–10]. QQ alleviates biofilm formation
by degrading or modifying QS signal molecules. This is because QQ is a valuable, low cost, and
sustainable method, and it is a promising approach to hinder biofouling.
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While activated sludge in MBRs consists of diverse microbiota, biofilm formation on the membrane
is known to be regulated by QS [11,12]. Several microbial species in activated sludge have been reported
to produce different types of signal molecules, including N-acylhomoserine lactones (AHL/AI-1) [13–15],
autoinducer-2 (AI-2) [16,17].

Although there is broad interest to interrupt bacterial QS by QQ bacteria, limited attempts have
been made to disclose the mechanism and influence of QQ bacteria on the microbial community inside
bioreactors. Microbial community profiling by 16S ribosomal RNA (rRNA) gene analysis may offer
valuable information to determine the impact of QQ bacteria on the bacterial community structure
and unveil the relationship between QS and QQ bacteria. In this study, QQ beads were prepared
by immobilizing an indigenous QQ bacterium, Bacillus cereus HG10, isolated from activated sludge,
in sodium alginate beads. The QQ performance of the HG10 beads was then assessed in a batch
bioreactor. Furthermore, microbial community analysis in both activated sludge and biofilm formed
on the membrane in a batch bioreactor was conducted using high-throughput 16S rRNA barcoding
and sequencing.

2. Materials and Methods

2.1. Chemicals

Flat-sheet Durapore polyvinyl difluoride (PVDF) membrane (GVWP04700, 0.22 µm, 47 mm)
was purchased from Merck Millipore (USA). Sodium alginate was purchased from Sigma (USA).
Luria-Bertani (LB), agar, yeast extract and tryptone were purchased from HKM (China). Glutaraldehyde
and anhydrous ethanol were purchased from Xilong Science (China). SYTO9 dye was purchased
from Molecular Probes (USA). The PowerSoil®DNA Isolation Kit was purchased from MOBIO
(MoBio, Carlsbad, CA, USA). Agarose was purchased from Biowest (Spain). The 2x Premix
Taq DNA polymerase (Cat. #R004A) was purchased from TAKARA (Takara Bio, Terra Bella
Ave. Mountain View, CA, USA). Universal primers 27F (5’-AGAGTTTGATCCTGGCTCAG-3’) and
1492R (5’-GGCTACCTTGTTACGACTT-3’) were synthesized by the Beijing Genomics Institute (BGI,
Shenzhen).

2.2. Synthetic Wastewater

Each liter of synthetic wastewater (pH 7.0–7.5) constituted 1600 mg glucose, 56 mg yeast extract,
460 mg tryptone, 340 mg NH4Cl, 87 mg KH2PO4, 9.8 mg CaCl2, 128 mg MgSO4.7H2O, 9.44 mg
MnCl2.4H2O, 8 mg FeCl3.6H2O, and 1022 mg NaHCO3 [15]. Sterilized (121 ◦C, 15 min autoclave)
double distilled water was used to prepare the synthetic wastewater. The wastewater was prepared
fresh each day.

2.3. Bead Preparation

QQ bacteria were isolated and screened from activated sludge in a wastewater treatment plant
(Nanshan, Shenzhen) according to Ochiai et al. [18]. The AHL degrading capacity of the isolates was
measured as described by Zhao et al. [19]. Bacillus cereus HG10 (CCTCC AB 2018234, China Center
for Type Culture Collection), the strain with the highest AHL-degrading activity, was chosen as the
candidate for anti-biofouling and microbial community shift evaluation in this research.

Both vacant and HG10-entrapped beads were prepared as described by Kim et al. [10]. Briefly,
an overnight culture of HG10 was harvested, washed, and resuspended in ultrapure water to a
concentration of 100 mg dry weight bacteria per mL. Then, 1 mL of bacterial suspension and 9 mL of
4% (W/V) sodium alginate were vigorously mixed and added to 3% (W/V) CaCl2. The mixture was
incubated at 4 ◦C for 12 h to allow full crosslinking of the chemicals. Vacant beads were prepared
following the same procedure without the addition of bacteria. The characteristics of the beads were
then examined by scanning electron microscopy (SEM, ZEISS SUPRA®55).
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2.4. Operation of the Batch Bioreactor

A conical flask (150 mL) was chosen to simulate a batch bioreactor. Sixty conical flasks were
divided into three groups (QQ beads—QQ, vacant beads—VB, and no beads control—CT) and operated
in parallel. Forty-nine milliliters of synthetic wastewater and 1 mL of acclimated activated sludge
(Mixed liquor suspended solids, MLSS 10 g/L) together with a sheet of PVDF membrane were added
to each batch bioreactor. Activated sludge was mixed well with wastewater during the entire growth
period with shaking. Finally, 15 HG10 entrapping beads or vacant beads were added to the QQ and
VB groups, respectively. The bioreactors were then incubated with shaking at 30 ◦C, 70 r/min. A 48-h
adaption time was allowed for the adaption of entrapped QQ bacteria to the system. At each 24 h time
point, 25 mL of the synthetic wastewater in each batch bioreactor was replaced with freshly prepared
wastewater. The biofilm formation process and biofouling conditions of each membrane were observed
and recorded in all samples operated in parallel. Activated sludge and membrane samples were taken
and analyzed on 1, 8, and 20 days respectively.

2.5. Analytical Methods

American Public Health Association, APHA 5520 C closed reflux titrimetric method [20] was used
to measure chemical oxygen demand (COD) in the present study.

Extracellular polymeric substances (EPS) were extracted from the membrane by the heat extraction
method [10] on the eighth day. The polysaccharides in EPS were quantified using the Lowry method [21].
Proteins in the EPS were quantified by the phenol-sulfuric acid method [22].

2.6. SEM Observation of Biofouling

Structures of HG-10 entrapping and vacant beads were observed by scanning electron microscopy
(SEM, ZEISS SUPRA®55, Berlin, Germany). The beads were washed three times using deionized
water and then fixed with 2.5% (V/V) glutaraldehyde at 4 ◦C for 2 h. The fixative was then washed off.
The sample was then dehydrated using a graded series of ethanol (30%, 50%, 70%, 80%, 90%, and 95%)
for 15 min each and finalized with 100% ethanol for 20 min. Finally, the samples were freeze-dried,
and the cross sections of the beads were cut and sputtered with gold for 15 s. Then, the cross sections
of beads were visualized and characterized with 1000, 2000, and 6000×magnification

Meanwhile, biofilms on the membranes at the initial (first day) and relatively mature stage (eighth
day) were also observed using SEM. A piece (1 × 1 cm) of the membrane fiber was cut and observed by
SEM at 1000, 5000, and 10,000×magnification.

2.7. Sample and 16S Library Preparation

Three milliliters of water samples were collected on days 1, 11, and 20 from each group. Samples
were frozen at −80 ◦C immediately after collection. Meanwhile, biofilm samples were collected by
cutting a piece of each membrane sample (1× 1 cm). The membrane pieces were then ultrasound-treated
for 3–5 min with 3 mL of ddH2O. The microbe suspension was then taken and stored at −80 ◦C for 16S
rRNA gene sequencing. DNA extraction was performed using a MO BIO PowerSoil®DNA Isolation
Kit. DNA quality was monitored by 1% agarose gel electrophoresis.

The V3–V5 regions of 16S rRNA genes were amplified using primers 515F and 806R. PCR was
carried out in a BioRad S1000 (Bio-Rad Laboratory, Foster, CA, USA). PCR amplification was carried
out as follows: 94 ◦C for 5 min, followed by 30 cycles each of 94 ◦C for 30 s, 52 ◦C for 30 s, and 72 ◦C
for 30 s and a final extension at 72 ◦C for 10 min. Amplicons were generated (NEBNext®Ultra™
DNA Library Prep Kit for Illumina®, New England Biolabs, MA, USA), quality controlled (Qubit@
2.0 Fluorometer, Thermo Fisher Scientific, Waltham, MA, USA and Agilent Bioanalyzer 2100 system,
Agilent Technologies, Waldbron, Germany), then sequenced (IlluminaHiseq2500).
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All microorganisms or microbial communities mentioned in this research refer to the bacterial
community based on 16S rRNA sequencing. Raw sequence data were deposited in the NCBI Sequence
Read Archive database. The SRA accession number is SRP158107.

2.8. Computational Analysis

Paired-end raw reads quality filtering were performed to obtain high-quality reads according to
the Trimmomatic (V0.33) [23] quality controlled process. Paired-end clean reads were then merged
using FLASH (V1.2.11) [24] to obtain raw tags. Raw tags were then assigned to each sample based
on their unique barcode and primer using Mothur software (V1.35.1) [25] to get effective clean tags.
Sequences analysis was performed using USEARCH software (V10) [26] pipelines. Sequences with
≥97% similarity were assigned to the same operational taxonomic unit (OTU). A representative
sequence for each OTU was screened for further annotation. The resulting OTUs were used in all
subsequent analyses. During the clustering, USEARCH can remove the chimera sequence and singleton
OTU at the same time. The phylogenetic relationships of different OTUs were analyzed using KRONA
software [27]. Phylogenetic relationship construction was conducted using FastTree software [28] for
multiple sequence alignment and ggtree software for the visual display of the relative abundances
of each OTU and the species annotation information. Based on the relative abundance of species at
each classification level in OTU_table, vegan R package (V2.15.3) [29] was used to draw the histogram,
heat map, and ternary plots. All indices of α-diversity and β-diversity analysis were conducted with
QIIME (V1.9.1) [30] and displayed with R software (V2.15.3). α-diversity was analyzed through five
indices including Observed species, Chao1, Shannon, Simpson, and dominance. All of these indices
were calculated with QIIME (V1.9.1) and displayed with vegan R package (V2.15.3). Bray-curtis,
weighted and unweighted unifrac β-diversity indexes were calculated by QIIME software. Principal
Coordinate Analysis (PCoA) was performed to get principal coordinates and visualize from complex,
multidimensional data. PCoA plot was analyzed by qiime2 and ggplot2 package in vegan R package
(V2.15.3). Linear discriminant analysis effect size (LEfSe) analysis was used to find the biomarker of
each group to display the extent of differences between (among) groups and whether the differences
were significant. Cladogram plot was then built based on LEfSe analysis.

3. Results and Discussion

3.1. Characterization of Beads

The average size of beads was shown to be 3–4 mm (Figure 1). No obvious size difference was
observed between vacant and HG10 entrapping QQ beads. Successful entrapping of HG10 inside
beads was observed by SEM (data not shown).
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Figure 1. Morphology of both vacant beads (left) and HG10 beads (right) prepared from sodium alginate.

3.2. Impact of QQ Beads for Alleviating Biofouling on Filter Membranes

A flat-sheet membrane was submerged in each conical flask (i.e., a batch reactor) to simulate
biofilm formation and microbial community structure on the membrane surface in an MBR.

Extracellular polymeric substances (EPS) are considered key components for the structure of
biofilms. The amount of EPS (carbohydrates and proteins) in the biofilm on the eighth day were
measured (Figure 2). In the presence of HG10 beads, on the eighth day, the amount of total carbohydrates
and total proteins decreased by 34% and 50%, respectively, compared with those in the presence
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of vacant beads. Accordingly, total EPS levels dropped by 43% when HG10 beads were added.
EPS reduction came mainly from the overall decrease in protein. The production of EPS is regulated
by QS and helps biofilm formation. Bacillus cereus has been known for generating lactonase that can
degrade AHL signal molecules [31–33]. Indeed, the Bacillus cereus HG10 strain showed substantial
C6-HSL-degrading ability (data not shown). Thus, HG10 beads attenuated biofilm formation by
reducing EPS excretion.
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Figure 2. The amount of extracellular polymeric substances (EPS) on the surface of the polyvinyl
difluoride (PVDF) membrane on the eighth day. Error bars represent standard deviations (n = 3).

Biofilms on the membrane surface in the batch bioreactors with and without beads were visualized
on days 1 and 8 using scanning electron microscopy (SEM) (Figure 3). For the control (i.e., with no
beads) (CT) group and vacant beads (VB) groups, biofilms formed substantially on the membrane
surface on day 1 (Figure 3—CT1, VB1). In contrast, for the HG10 beads QQ (QQ) group, no biofilms
were observed on day 1 (Figure 3—QQ1), suggesting that the initial attachment of microbes on the
membrane surface was completely prevented. After another 7 days of continuous incubation, severe
biofouling was observed in both the VB (Figure 3—VB8) and CT (Figure 3—CT8) groups. However,
no obvious biofilms were observed for the QQ group (Figure 3—QQ8). Meanwhile, the COD in all
three groups remained similar during the entire process (Figure 4), indicating that the addition of
HG10 beads did not influence wastewater treatment efficiency but biofilm formation.
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Figure 3. HG10 beads hindered biofouling on PVDF membranes. Scanning electron microscopy (SEM)
images of PVDF membrane surfaces with quorum quenching (QQ) beads, vacant beads (VB), or the
control without beads (CT): Left column, after 1 day incubation; right column, after 8 day incubation
(magnification factor, 10,000×).
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Figure 4. Chemical oxygen demand (COD) during the continuous 21-day incubation. Quorum
quenching (QQ): in the presence of HG10 beads. VB: in the presence of vacant beads. CT: No beads
were added.

In summary, HG10-entrapped QQ beads effectively prevented or delayed the maturation of
biofilms, proving that the QQ bacteria have anti-biofouling abilities under the experimental conditions
in this study. Furthermore, HG10 QQ beads caused a reduction in EPS and thus inhibited biofilm
formation without interfering with wastewater treatment efficiency.

3.3. Sequencing of Activated Sludge and Biofilm Samples

After running the three bioreactor groups in parallel for 20 days, a total of 601,341 high-quality
sequencing reads were obtained from nine activated sludge and nine biofilm samples by 16S rRNA
gene amplification. Low-quality sequences were removed, and the remaining effective reads were
then clustered into 3613 operational taxonomic units (OTUs) at 97% sequence similarity. Rarefaction
curves indicated that the sequencing depth was sufficient to detect all the genera within each sample.
The results also indicated that the total number of sequences and OTUs in the QQ samples were less
than those in the paralleled control samples.

3.4. Effect of QQ Beads on the Microbial Community Structure of Activated Sludge and Biofilm

Although QQ beads have been demonstrated as an effective method to overcome biofouling
in MBRs, little is known about the influence of QQ beads on the bacterial community, composition,
and diversity. To investigate the effect of QQ beads on the microbial community structure of the
activated sludge and the biofilms, bacterial community profiling analysis was conducted before and
after the addition of QQ and vacant beads. In Figure 5, ternary plots are depicted for the top 10
OTUs categorized under the class level with the highest relative abundance (RA) in activated sludge
(Figure 5a) and biofilm (Figure 5b), respectively. Figure 6 shows RA plots depicted for the bacteria
grouped by class taxonomic level with taxa abundance over 1% in activated sludge (Figure 6a) and
biofilm (Figure 6b).
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Figure 5. Ternary plot depicting the top 10 operational taxonomic units (OTUs) categorized under
the class level with the highest relative abundance. (a) Activated sludge with quorum quenching
(QQ) beads (A-QQ), vacant beads (A-VB), and control (A-CT), (b) biofilms formed on the membrane
surface with QQ beads (B-QQ), vacant beads (B-VB), and control (B-CT). Grade represents the relative
abundance (RA) of each bacteria, and a bigger grade number indicates a larger RA.
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Figure 6. RA plot depicting bacteria grouped by the class taxonomic level with taxa abundance over 1%.
(a) Activated sludge with quorum quenching (QQ) beads (A-QQ), vacant beads (A-VB), and control
(A-CT), (b) biofilms formed on the membrane surface with QQ beads (B-QQ), vacant beads (B-VB), and
control (B-CT). Numbers 1, 11, and 20 represent the sampling time in days from each bioreactor.

As shown in Figures 5a and 6a, the microbial community structure in activated sludge with
QQ beads was greatly divergent from those in activated sludge with vacant or control beads.
In contrast, in the biofilms, no significant difference in the microbial community structure was
observed between the three groups (Figures 5b and 6b). Taxonomic assignments at the class level
for the top 10 OTUs with the highest relative abundance (RA) indicated that bacteria belonging to
the class Gammaproteobacteria dominated the microbial community in activated sludge with QQ
beads (A-QQ). Meanwhile, Gammaproteobacteria and Bacteroidia evenly dominated the microbial
community in activated sludge with vacant beads (A-VB) and no beads (A-CT) (Figure 6a). However,
the richness of Gammaproteobacteria in the A-QQ group was significantly higher than that of the
controlled groups. Besides, more Bacilli and Verrucomicrobiae were observed in A-QQ group than
A-VB and A-CT groups.

In addition, the composition and abundance of microbes changed with incubation time (1, 11, and
20 days) both in activated sludge (Figure 6a) and in biofilm (Figure 6b). The RA of Gammaproteobacteria
was 87% and 85% on the first and 11th days, respectively, in activated sludge with QQ beads (Figure 6a),
which were approximately 40% higher than those with vacant beads and no beads at the same time.
The RA of Bacilli increased with time of incubation in activated sludge with QQ beads from 1.8% (day
1) to 38% (day 20). However, it remained almost constant in the other two groups (with an average of
0.2%). In contrast, certain classes of bacteria, including Bacteroidia, Clostridia, Deltaproteobacteria,
and Campylobacteria, were diminished in activated sludge with QQ beads.

However, no similar fluctuations in the microbial community were observed among the biofilms in
all three groups (B-QQ, B-VB, and B-CT), as shown in Figures 5b and 6b. Although the total biofilm mass
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in biofilms with QQ beads was the least among the three groups, the microbial community structure in
the biofilm was similar. The dominant phyla in biofilms for all three groups were Proteobacteria and
Bacteroidetes, which is consistent with previous observations [34]. As expected, the microbial richness
was lower in the biofilm on the membrane surface than on the activated sludge at the same incubation
time in all three groups, but the microbial diversity in the biofilm increased over time, indicating that
QQ inhibited biofilm formation rather than killing microorganisms.

The heatmaps drawn at the family level further illustrated a dissimilar composition and abundance
of microbial structures between activated sludge with QQ beads and those in the other two groups
(Figure 7a). At the family taxonomic level, Aeromonadaceae, Burkholderiaceae, Rhizobiaceae,
Moraxellaceae, and Pseudomonadaceae were noticeably fortified with the addition of QQ beads.
Meanwhile, more than 20 bacterial taxa, including Desulfovibrionaceae and Nannocystaceae, were
reduced by the QQ beads. In contrast, in the biofilms, a similar pattern of microbial community
structure and richness was observed between the three groups (Figure 7b).
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Figure 7. Heatmaps of the relative abundance for the top 30 bacteria grouped at the family level.
(a) A-QQ, A-VB, and A-CT represent activated sludge with quorum quenching (QQ) beads, vacant
beads, and no beads, respectively. (b) B-QQ, B-VB, and B-CT represent biofilms on membranes with
QQ beads, vacant beads, and no beads, respectively. Numbers 1, 11, and 20 indicate the sampling
time in days from each bioreactor. The color bar indicates intensity of each family in corresponding
sample. Darker red indicated higher richness of certain family. Hierarchical cluster was shown on the
left. Sample cluster (shown on the top) was created based on their community structure similarity.

To evaluate the difference in species complexity in both activated sludge and biofilms of the three
groups, β-diversity (inter-sample diversity) was compared using Bray-Curtis distances. Principal
coordinate analysis (PCoA) was performed (Figure 8). This analysis further indicated a clear disparity
between activated sludge with QQ beads, vacant beads, and no beads (Figure 8a). No obvious
separation was observed between the biofilm samples (Figure 8b). In addition, α-diversity analysis
(intra-sample diversity) using the Shannon index revealed a decline of microbial community complexity
in the activated sludge with QQ beads (Table S1). α-Diversity analysis using the observed species and
Chao1 index revealed a decrease in microbial community richness in activated sludge with QQ beads.
Meanwhile, the analysis using the Simpson or dominance indices indicated a more even distribution of
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microbiota in activated sludge with QQ beads than that with no beads. LDA effect size (LEfSe) analysis
was also conducted to reveal the biomarker of each group at different levels. The phylogenetic tree
cladogram shows an overall biomarker species distribution and relative abundance of three parallel
samples in the phylogenetic tree (Figure 9).
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Figure 8. Principal coordinate analysis (PcoA) plot of Bray-Curtis distances. (a) The results demonstrated
an obvious separation between samples from quorum quenching (QQ) beads (A-QQ, triangle), vacant
beads (A-VB, square), and no beads (A-CT, circle); (b) Bray-Curtis distance metrics showed no obvious
divergence between biofilms from QQ beads (B-QQ, triangle), vacant beads (B-VB, square), and no
beads (B-CT, circle). Numbers 1, 11, and 20 indicate the sampling time in days.
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Figure 9. Plot of cladogram from linear discriminant analysis (LDA) effect size (LEfSe) analysis of
activated sludge depicting the taxonomic levels represented by rings (from inside to outside: phyla to
genera). Each circle is a member within each level. The size of each circle is proportional to RA. Taxa at
each level showed a significant difference in abundance. Red-QQ beads (A-QQ); green-vacant beads
(A-VB); blue-no beads control (A-CT).
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To further uncover the difference in dominant species between different groups, the OTU
representative sequence was analyzed with the relative abundance of the first 50 and annotated to the
level of genus for the activated sludge in three groups (A-QQ, A-VB, and A-CT) (Figure 10). At the
genus level, several bacteria with the highest count number stood out. QQ beads dramatically
improved the growth of Acinetobacter_OTU1, Aeromonas_OTU2, Delftia_OTU4, Bacillus_OTU5,
and Pseudomonas_OTU11 and hindered the growth of Macellibacteroides_OTU3, Niabella_OTU6
and OTU32, Christensenellaceae_R-7_group_OTU8, Ottowia_OTU75, Pseudomonas_OTU10,
Nannocystis_OTU17, Desulfovibrio_OTU25, Sedimentibacter_OTU15, Acetoanaerobium_OTU20, and
Blvii28_wastewater-sludge_group_OTU14/OTU26.
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Figure 10. Plot of the phylogenetic tree showing the OTUs with the RA of the top 50 to the taxa level
of genus in activated sludge with quorum quenching (QQ) beads (A-QQ), vacant beads (A-VB), and
no beads (A-CT). The numbers at the branches were confidence values. The name after each branch
indicates representative OTU annotations. The histogram to the left side represents the RA of each
genus, and different colors were used to distinguish different samples.
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It is noteworthy that OTU5 was successfully defined to the level of species as Bacillus cereus, which
is the same bacterial species that was embedded into the beads. The highest count of this species in
the control group (i.e., with no beads) was only 17, whereas in the QQ group (i.e., with QQ beads),
the number reached up to 1523 on the 11th day. The count of Delftia also increased dramatically with QQ
beads. Interestingly, several species of the Delftia genera have been reported as having AHL-degrading
activity and can inhibit QS. Singh et al. demonstrated that Delftia tsuruhatensis attenuates biofilm
formation of Pseudomonas aeruginosa [35]. Others have reported that Delftia sp. interferes with QS
by producing AHL acylase and can use AHL as the sole carbon source [36]. Delftia acidovorans
has been reported to inhibit QS by modifying C6- to C8-HSL [37]. Concurrently, we also isolated
Delftia tsuruhatensis strain NBRC 16741 and Bacillus cereus HG10 from the same activated sludge
sample. This strain also showed high AHL-degrading activity (data not shown). Aeromonas_OTU2
and Pseudomonas_OTU11 were also successfully defined to the species level as Aeromonas hydrophila
subsp. hydrophila and Pseudomonas plecoglossicida, respectively. However, limited reports have been
found about these two strains.

Among the genera that were downregulated, Blvii28_wastewater-sludge_group has been
commonly found in wastewater or wastewater treatment systems [38,39]. Researchers have indicated
that this genus functions in the initial attachment during the biofilm forming process. In addition,
the genus Pseudomonas_OTU10 was annotated to the level of species as Pseudomonas otitidis. This strain
has been reported to have biofilm forming ability and has been applied to degrade oil in biofilm-based
reactors [40].

Although several studies have reported the effectiveness of QQ in biofouling control, limited
information is available on the influence of QQ bacteria on microbial community composition, diversity,
and richness. Here, we demonstrated a significant influence of QQ beads on the microbial community
structure in activated sludge while reducing biofouling on the membrane surface. These results raised
the possibility that QQ bacteria, by interfering with cell-cell communication between biofilm-forming
bacteria, might trigger other native quorum-quenching bacteria to flourish in the community and
initiate quorum quenching in a synergistic manner. However, the detailed synergism or antagonism
relationship between those microbes and their detailed mechanisms are intriguing and remain to
be elucidated.

4. Conclusions

Immobilized indigenous Bacillus cereus effectively reduced biofouling on a membrane in a
bioreactor. Remarkably, the bacterial community profiling data revealed a broad impact of QQ beads
on the microbial distribution and abundance in activated sludge in a bioreactor. Clear separation of
bacterial structure was observed at all genera and phyla taxonomic ranks. Certain OTUs clustered to
the genus level, including Acinetobacter, Aeromonas, Delftia, Bacillus, and Pseudomonas, were strikingly
enriched by QQ beads in activated sludge. Meanwhile, more than 12 other OTUs in activated sludge
were depleted. Whereas biofilm formation on membranes with QQ beads was delayed, microbial
structure divergence in biofilms was not as dramatic as that observed in the activated sludge in the
bioreactor. Our results provide new insight into how QQ bacteria battle biofilm-forming microbes
while affecting the entire bacterial community. The mechanisms turned out to be more complex than
expected. Our observation implies the possibility that embedded QQ bacteria could trigger certain
native microbial taxa to flourish and inhibit biofouling in a synergistic manner by interfering with
bacterial communication. Thus, it might provide helpful information for future QQ-MBR design.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/19/3777/s1,
Table S1: α-Diversity index of activated sludge samples with QQ beads (A-QQ), vacant beads (A-VB), and control
(A-CT) and biofilm samples on filter membrane with QQ beads (B-QQ), vacant beads (B-VB), and control (B-CT)
on the first, 11th, and 20th day.
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