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Evaluating indicators 

Quasi Akaike Information Criterion (QAIC): QAIC is modified version of AIC to deal with the 

over-dispersed Poisson model, which can be used to assess the model fit of the quasi-Poisson 

regression model. It considers both the statistical fitness of the model and the number of parameters 

fitted. Besides, Peng et al. discussed the performance of model selection criteria such as AIC, BIC and 

PACF in time series studies of air pollutants and death, and proved AIC to be a better choice[1]. 

The sum of partial autocorrelation coefficients (Sum of PACF): The sum of PACF is the sum 

of the absolute value of the partial autocorrelation function (PACF) of the residuals (we set 14 days 

as the maximum lag in this analysis). The overall sum of PACF was used to compare the 

autocorrelation of residuals between different model choices. A smaller number means the residuals 

are less autocorrelated. 

Section 1Choices of the degree of freedom for exposure and lag in cross-basis function 

In the cb functions at the basic model, we set a 14d maximum lag and use natural cubic splines 

function both for exposure and lag. We varied the df of exposure from 2 to 6 and df of lag from 2 to 

4 in order to select the best df combination with the smallest QAIC. Here are the results.  

Table S1. The df of exposure and lag determined in the cb function. 

Variables df(var) df(lag) 

Air pressure 4 4 

Temperature 4 4 

Relative Humidity 6 4 

Rainfall 2 2 

Wind speed 2 3 

Sunshine duration 4 2 

SO2 4 2 

NO2 2 2 

CO 2 2 

O3 4 2 

PM10 3 2 

PM2.5 2 2 

Section2 Controlling for long-term trends and seasonality 

The time-series distribution curves of daily HFMD cases, meteorological factors and air 

pollutants show long-term trends and seasonality. The seasonal and long-term patterns in both the 

exposure and outcome data can dominate crude associations, making the short-term associations of 

interest hard to detect. By explicitly controlling for long-term patterns, the effects of exposure 

variable(s) of interest and the short-term variation around these long-term patterns can be explored. 

Previous literatures suggested that we could use the following methods to control for the long-term 

trends and seasonality [2]: 

Option1: Spline function of time 

It can model long-term patterns smoothly and capture seasonal patterns in a way that is allowed 

to vary from one year to the next. However, a controversial issue is determining how much 

smoothness, measured with degrees of freedom (df) of spline function[1]. Too few will fail to capture 

the main long-term patterns closely, whereas too many will result in a very ‘wobbly’ function which 

may compete with the variable of interest to explain the short-term variation of interest, widening 

confidence intervals of relative risk estimates. 

In our studies, we varied the df of time splines from 2 to 13 df per year to explore its impact. We 

evaluated the results of different dfs based on QAIC and the sum of PACF. The results were displayed 

in table S1 and Figure S1. From the curves we found that when the df equaled 8 per year, both the 

QAIC and sum of PACF declined dramatically and remained at a relatively stable level. The results 
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agreed with the previous literature [3]. Therefore, we set the df of time splines as 8 per year in our 

final model. 

option2: Time stratified case-crossover design  

We compared another method, the time-stratified case crossover design, to control for the 

unmeasured time-varying confounding. Compared with the method of spline function of time, this 

method was not suitable based on the results of the higher QAIC and sum of PACF. 

Table S2. The QAIC and sum of PACF for different methods. 

Index 

Df of time splines Cross-

over 

Desig

n 

2 3 4 5 6 7 8 9 10 11 12 13 

QAIC 
14040

7 

10995

1 

9273

0 

5154

7 

5114

4 

4583

4 

3994

4 

3963

5 

3829

6 

3716

8 

3598

2 

3484

2 
70585 

PAC

F 
1.95 1.79 2.16 2.92 2.87 1.79 1.60 1.64 1.62 1.56 1.47 1.42 2.27 

 

Figure S1. QAIC and sum of PACF for different df of time splines. 

Section3 Controlling for autocorrelations caused by disease transmission 

When the absolute magnitudes of the PACF plot for the first two lag days were both less than 

0.1, the basic model was regarded as adequate; if this criterion was not met, autoregression terms for 

lag up to 7 days were introduced to improve the model. After our exploration, we found that model 

with autoregression terms for lag up to 2 days was adequate (showed in table 2 and Figure S2).  

Table S3. The magnitude of the PACF plot for the first two lag days in different models. 

Models Lag=1 Lag=2 

model without autoregressive terms 0.575 0.225 

model with lag1 autoregressive term -0.123 0.092 

model with lag1 and lag2 autoregressive term -0.019 -0.079 



Int. J. Environ. Res. Public Health 2019, 16, x 4 of 8 

 

 

Figure S2. The ACF and PACF plot of residuals after removing long-term trends and seasonality (by 

the time splines with 8 df per year). 

Section 4 Results of univariate models 

In the univariate analysis, the overall cumulative effects of temperature, relative humidity, 

rainfall and sunshine duration were significant (Figure S3). The effect of temperature showed an 

obviously inverted V-shape and the cumulative RR value reached maximum 1.33 (95%CI: 1.24，1.42) 

at 28.7°C. However, the cumulative effect of air pressure and wind speed appeared to be non-

significant on HFMD incidence.  
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Figure S3. The estimated overall cumulative association between meteorological variables and HFMD 

occurrence over 14 days with their distributions, using a natural cubic spline DLNM in uni-

meteorological variable models. The red lines are the cumulative relative risks (medians as 

references), and the gray regions are 95% CIs. Shenzhen 2009-2017. 

Section 5 Results of multivariate models  

Table S4. Spearman’s correlation coefficients between meteorological variables and air pollutants in 

Shenzhen, China, 2009–2017. 

Variables 
Air 

pressure 

Tempe

rature 

Relative 

Humidit

y 

Rainfall Wind 
Sunshi

ne 
SO2 NO2 CO O3 PM10 

Temperature -0.85**           

Relative 

Humidity 
-0.42** 0.19**          

Rainfall -0.32** 0.09** 0.60**         

Wind 0.07** -0.13** -0.16** -0.05**        

Sunshine -0.13** 0.42** -0.46** -0.46** -0.01       

SO2 0.24** -0.15** -0.50** -0.38** -0.07** 0.25**      

NO2 0.30** -0.36** -0.14** -0.11** -0.25** -0.11** 0.61**     

CO 0.28** -0.34** -0.18** -0.06** 0.07** -0.17** 0.33** 
0.42*

* 
   

O3(2009-2016) 0.19** -0.08** -0.52** -0.36** 0.08** 0.22** 0.30** 
0.09*

* 

0.07*

* 
  

PM10 0.47** -0.39** -0.53** -0.42** -0.08** 0.07** 0.66** 
0.63*

* 

0.38*

* 

0.57*

* 
 

PM2.5(2013-2017) 0.56** -0.51** -0.50** -0.41** -0.07** -0.02 0.57** 
0.59*

* 

0.54*

* 

0.33*

* 

0.96*

* 

**P<0.01. 

Table S5. QAIC of multi-meteorological factor models 

Models QAIC 

AT+RH+SS+RF 31173  

AT+RH+SS 31171  

AT+RH+RF 31177  

AT+SS+RF 31725  

RH+SS+RF 31466  

AT+RH 31169 

AT+RF 31829 

AT+SS 31712 

RH+RF 31579  

RH+SS 31451  

RF+SS 32385 

RF 32407  

RH 31591  

SS 32397  

AT 31897  

Abbreviations: AT, air temperature; RH, relative humidity; RF, rainfall; SS, sunshine duration. 

We developed multivariate models to control the influence of other meteorological factors. The 

first thing was to choose the appropriate function for the meteorological covariate. Considering the 

non-linear and lagged effect of meteorological factors reported in previous literature, here are some 

choices. 
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In consideration of the non-linearity: 

1. Natural cubic spline (ns) of the current value, which was commonly used in previous studies. 

But this method didn’t consider about the lag effect of these meteorological variables, which may be 

non-ignorable according to our previous results. So we considered the following other methods;  

In consideration of the lag effect: 

2. The single lag value calculated by the function Lag in R package tsModel. But this method can 

only consider the single lag day effect at one time; 

3. Moving Average, equaling mean of values of lag0 to maximum lag day, calculated by the 

function runMean in R package tsModel;  

4. Exponential Moving Average, equaling exponentially-weighted mean of values of lag0 to 

maximum lag day, calculated by the function EMA in R package TTR; 

Considering both the non-linearity and lag effect: 

5. Combining the above functions, natural cubic spline of Moving Average/ Exponential Moving 

Average; 

6. Generating a cross-basis matrix (cb) for the two dimensions of exposure and lags, calculated 

by the function crossbasis in package dlnm. The cross-basis matrix can distinguish effects of different 

lag days through user-specified functions and model the relationship of lag and response more 

elaborately.  

We compared the above functions and evaluated the results based on QAIC, taking relative 

humidity and sunshine duration as examples. Temperature was included in each model for its main 

influence on HFMD supported from previous knowledge and literature. Both for relative humidity 

and sunshine duration, QAIC was the smallest when the cross-basis matrix of the variable was 

applied (Table S4). Therefore, we chose the cross-basis function for meteorological covariate finally.   

Table S6. Compare of the different functions of covariates. 

Relative humidity as covariate Sunshine duration as covariate 

Model QAIC Model QAIC 

only cb(temperature) 31897  only cb(temperature) 31897  

+ns(rh,df=3) 31908  +ns(sun,df=3) 31794  

+Lag(rh,7) 31711  +Lag(sun,7) 31847  

+MA(rh,14) 31428  + MA (sun,14) 31743  

+EMA(rh,14) 31554  +EMA(sun,14) 31837  

+ns(MA (rh,14),df=3) 31431  +ns(MA (sun,14),df=3) 31757  

+ns(EMA(rh,14),df=3) 31563  +ns(EMA(sun,14),df=3) 31853  

+cb.rh (both ns) 31169  +cb.sun (both ns) 31712  

Note: Rh= relative humidity;sun= sunshine duration;ns= Natural cubic spline function; MA= Moving 

Average; EMA= Exponential Moving Average. 
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Section 6 Sensitivity analysis 

 

 

 

Figure S4. Results of sensitivity analyses by changing the df for controlling long-term trends and 

seasonality from 7 to 9 and changing the maximum lag days to 21 days, showing the estimated overall 

cumulative effects over maxlag days (except for NO2 over lag0). 



Int. J. Environ. Res. Public Health 2019, 16, x 8 of 8 

 

 

Figure 5. Lag-response curves with a max lag of 30 for P5, P95 of air temperature and relative 

humidity on HFMD occurrence. The red points are the relative risks (medians as references), and the 

black bars are 95% CIs. Shenzhen 2009-2017. 
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