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Abstract: With the rapid expansion of impervious surfaces, urban waterlogging has become a
typical “urban disease” in China, seriously hindering the sustainable development of cities. Therefore,
reducing the impact of impervious surfaces on surface runoff is an effective approach to alleviate urban
waterlogging. Presently, the development mode of many cities in China has shifted from an increase
in urban scale to the improvement of urban quality through urban renewal, which is the current and
future development path for most cities. Optimizing the design of impervious surfaces in urban
renewal planning to reduce its impact on surface runoff is an important way to prevent and control
urban waterlogging. The aim of this research is to construct an optimization model of impervious
surface space layout under the framework of a geographic simulation technology-integrated ant colony
optimization (ACO) and Soil Conservation Service curve number (SCS-CN) model (ACO-SCS) in a
case study of Guangzhou in China. Urban runoff plots in the study area are divided according to the
area of the urban planning unit. With the goal of minimizing the runoff coefficient, the optimal space
layout of the impervious surfaces is obtained, which provides a technical method and reference for
urban waterlogging prevention and control through urban renewal planning. The results reveal that
the optimization of impervious surface space layout through ACO-SCS achieves a satisfactory effect
with an average optimization rate of 9.52%, and a maximum optimization rate of 33.16%. The research
also shows that the initial impervious surface layout is the key influencing factor in ACO-SCS. In the
urban renewal planning stage, the space layout of the impervious surfaces with a high–low–high
density discontinuous connection can be constructed by transforming medium-density impervious
surfaces into low-density impervious surfaces to achieve the flat and long-type agglomeration of
the low-density and high-density impervious surfaces, which can effectively reduce the influence
of urban development on surface runoff. There is spatial heterogeneity of the optimal results in
different urban runoff plots. Therefore, the policy of urban renewal planning for urban waterlogging
prevention and control should be different. The optimized results of impervious surface space layout
provide useful reference information for urban renewal planning.

Keywords: urban rainstorm waterlogging; impervious surfaces; optimization of spatial layout; ant
colony optimization; Soil Conservation Service curve number model; Guangzhou

1. Introduction

With the rapid development of urbanization, urban rainstorm waterlogging has become a typical
“urban disease” in both developed and developing countries [1–5], and China serves as a prime
example. According to the statistical results for 350 cities in China, 62% of these cities have suffered
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from urban rainstorm waterlogging especially in major cities such as Beijing, Shanghai, Nanjing,
Tianjin, and Guangzhou [6–11]. Urban rainstorm waterlogging results in large losses to the social
economy and to residential property, accordingly hindering the sustainable development of a city [12].
Eliminating urban rainstorm waterlogging risk has become an urgent mission for local governments,
rainwater management agencies, and urban planning initiatives in such cities [13–15].

Many studies have indicated that waterlogging has a higher flood peak and shorter lag time in
urban areas than in rural areas [16–18], which mainly resulted from the expansion of urban impervious
surfaces [15,19–21] because rainwater infiltration on impervious surfaces is much lower than on
pervious surfaces [22,23]. Drake et al. found that impervious pavement increases surface runoff by
43% [24]. When impervious surfaces account for more than 10%, the frequency of urban waterlogging
will be greatly increased [25]. The increase in impervious surfaces will reduce the ability of rainwater
infiltration [26], thereby increasing the surface runoff and peak flow, and eventually accelerating the
occurrence of urban rainstorm waterlogging. However, impervious surfaces not only affect urban
rainstorm waterlogging through the area, but also influence surface runoff through their spatial
distribution [27–29]. Poff et al. found that different urban land use distributions have important
effects on surface runoff [30]. Zheng et al. established four different urban spatial layouts in Ancaster,
Ontario, Canada, and found that the influence of different urban spatial layouts on surface runoff was
significantly different [31]. Mejia et al. used the annealing algorithm to simulate the expansion mode of
impervious surfaces in different cities. The results show that the spatial layout of uniform expansion of
low-density impervious surfaces has the least impact on urban rainstorm waterlogging [32]. Therefore,
it was proven that impervious surfaces with the same areas make a great difference on surface runoff

due to the variance in their spatial layout.
In summary, impervious surfaces through area and spatial layout simultaneously hinder the

infiltration of rainwater, thus aggravating urban rainstorm waterlogging. Therefore, reducing the
impact of impervious surfaces on surface runoff has become an important way to alleviate urban
waterlogging. Currently, the mainstream practices in developed countries mainly include low-impact
development (LID), best management practices, and green infrastructure [25]. These methods aim
to reduce the impact of impervious surfaces on surface runoff by building permeable parking lots,
semi-pervious roads, and highly pervious surfaces. Chinese scholars put forward the concept of
a “sponge city”, aiming to reasonably construct a more pervious surface by means of ecological
landscape science [33]. This shows that, at present, reducing the area of impervious surfaces is the
main way to reduce its aggravated effect on waterlogging in various countries. However, due to the
current development of cities, the large-scale reduction in urban impervious surfaces will seriously
undermine the current urban structure [34–37]. Therefore, under the premise of protecting urban
structures, reducing the influence of impervious surfaces on runoff from the perspective of spatial
layout optimization is the key to the prevention and control of rainstorm waterlogging.

From Reform and Opening in 1978, China has experienced a rapid urbanization process [38].
At present, urban development has shifted from a simple scale increase to the improvement of stock
quality, that is, the stage of urban renewal [39–42]. How to solve “urban diseases” such as rainstorm
waterlogging by means of renewal planning is a new challenge in the field of urban renewal planning.
Urban renewal is a planned reconstruction activity in the new development stage of the world’s
major cities [43]. Therefore, under the premise of protecting the urban structure with the help of the
urban renewal “embroidery”, how to reduce the impact of impervious surfaces on surface runoff

from the perspective of spatial layout optimization, aiming to provide decision-making references for
urban renewal planning for urban waterlogging prevention, will be the key breakthrough direction of
this research.

Due to the successful application of urban land use optimization in economic geography, ecological
geography, and social geography [44–49], reducing the negative impact of impervious surfaces on
urban surface runoff from the perspective of spatial optimization is of great significance. The intelligent
optimization algorithm realizes the explicit expression of spatial layout optimization of land use
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by virtue of the system dynamics mechanism based on a “bottom-up” perspective, from the micro
mechanism to the macro expression. Relying on its fast and efficient spatial search ability, it has been
applied in the research of spatial layout optimization of urban land use. Safarzadeh and Koosha solved
the problem of multirow facility layout using a genetic algorithm [50]. Xu et al. used the Conversion
of Land Use and its Effects at Small region extent to predict the land use layout of Guangzhou, China,
for ecological service functions [51]. Jabir et al. used a heuristic ant colony algorithm to solve the
multivehicle path scheduling for economy and emissions cost [52]. Ant colony optimization (ACO),
as a typical representative of intelligent optimization algorithms, was first applied by Colorni et al. to
solve the traveling salesman problem [53]. ACO has excellent search ability and efficient convergence
ability, as well as efficient parallel computing ability and flexible scalability. In recent years, ACO
has been widely used in the study of spatial layout optimization of urban land use [54–56]. This
method avoids the complexity of rule design in the traditional behavior modeling process and helps to
improve the efficiency of model construction and the accuracy of model simulation. Therefore, ACO
was selected in this study for the optimization of impervious surface space layout.

Since surface runoff is the most intuitive expression of its influence on urban rainstorm
waterlogging [8,57,58], the surface runoff coefficient is selected as the evaluation target of the
optimization effect. Currently, surface runoff models are mainly calculated by the Streamflow
Synthesis and Reservoir Regulation model, the Stanford model, the Tank model, the Sacramento model,
the Storm Water Management Model, and the Soil and Water Assessment Tool [59–64]. However,
due to the highly complex runoff generation process, which is dynamic and nonlinear and affected
by many factors, these models require more input parameters and the modeling process is relatively
complex. Soil Conservation Service curve number (SCS-CN) is a relatively mature model of surface
runoff proposed by the US Natural Resources Conservation Service [65]. Characterized by simplicity,
predictability, and stability due to its simplification of environmental factors affecting runoff generation,
it is an effective tool for evaluating runoff in metropolitan areas without observed data and has been
applied to different targets [66,67]. Yao et al. used SCS-CN to explore rainfall-runoff risk variance in
different functional areas of Beijing, China [57]. Ansari et al. studied the spatiotemporal impact of
urbanization on surface runoff by means of SCS-CN [68]. Kayet et al. coupled the Revised Universal Soil
Loss Equation and SCS-CN to explore the relationship between rainfall and soil loss [69]. Considering
the stability application of SCS-CN in various fields and its effective simulation of surface runoff in
metropolitan areas, this model is selected as the surface runoff model for research.

In summary, the objective of this study is to construct an optimization model of impervious
surface space layout integrated ACO and SCS-CN (ACO-SCS) to simulate the optimal space layout
with the target of minimum surface runoff in a case study of Guangzhou. It will provide a reference to
urban renewal planning agencies for urban waterlogging prevention and control.

The questions the study intends to answer are as follows:

(1) Can the optimization of impervious surface space layout reduce surface runoff? How can it
be achieved?

(2) Does ACO-SCS based on geographic simulation technology realize the optimization of impervious
surface space layout? What is the effect of optimization?

(3) How does the optimization result serve urban renewal planning for urban rainstorm
waterlogging prevention?

2. Materials and Methods

The integrated framework of this research is shown in Figure 1. Firstly, data preprocessing was
carried out to obtain impervious surfaces, slope, urban runoff plot, and initial CN value. Secondly,
the ACO-SCS coupling model is built to design the probability function, heuristic function, adaptive
function and pheromone concentration update function in the ACO. Then, the optimal combination
of parameters is constructed, and the optimal impervious surface is obtained by running the model.
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Finally, the landscape pattern index analysis and correlation analysis are carried out according to the
optimization results.
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2.1. Study Area

This research takes the central city of Guangzhou, China, as the study area. Guangzhou is
the political, economic, scientific, educational, and cultural center of Guangdong province and an
international business center (Figure 2). According to statistics, the gross domestic product (GDP)
of Guangzhou reached 2.3 trillion yuan in 2018, fourth only to Shanghai, Beijing, and Shenzhen.
Guangzhou is located between longitude 112◦57′ and 114◦3′ E and latitude 22◦6′ and 23◦56′ N. It is at
the junction of the Xijiang, Beijiang, and Dongjiang Rivers, near the South China Sea. It has a maritime
subtropical monsoon climate with high annual precipitation and heavy rain. Since the Reform and
Opening more than 30 years ago, with the continuous expansion of the urban area of Guangzhou,
urban rainstorm waterlogging disasters have occurred multiple times, causing large losses. According
to statistics, from the 1980s to approximately 2010, the number of waterlogging events increased from
7 to 113 in 30 years, increasing nearly 16 times [70]. The affected area spread from the Yuexiu District
in the central area to the rural-urban continuum, such as Tianhe, Haizhu, and Baiyun. Just in 2010,
there were four serious urban rainstorm waterlogging events. In addition to climatic factors, important
causes include the imperfect design of the urban pipe network and the unreasonable transformation of
the terrain by urbanization [8,71,72]. Therefore, the frequent occurrence of rainstorm waterlogging in
Guangzhou has a close relationship with urbanization [15,29].
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2.2. Data and Preprocessing

Research shows that impervious surface expansion in Guangzhou slowed down in 2010 [73].
From 2000 to 2012, Guangzhou suffered the most severe urban rainstorm waterlogging [29]. It can be
considered that 2010 is the key node for the impact of impervious surface expansion on urban rainstorm
waterlogging. Therefore, this study collected remote sensing image data of Landsat7 Enhanced
Thematic Mapper Plus with 30 m resolution in Guangzhou in October 2010. After radiometric
calibration and atmospheric correction in the Environment for Visualizing Images) 5.0, the linear
spectral mixture analysis was used to extract the impervious surfaces. The high-resolution image
in 2010 was used to achieve sampling and classification verification. The final accuracy evaluation
result of impervious surface extraction, with standard deviation 3.3%, mean absolute rrror 0.20, and
root-mean-square rrror 0.26, meets the research requirements.

Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation
Model (ASTER GDEM) terrain data with 30 m resolution were used to extract the slope used to correct
the CN value. In this study, soil data and land use data were used to extract the CN values in the
SCS-CN. Soil data are global soil classification standard data with 1 km resolution based on the World
Geodetic System-1984 (WGS84) and it is freely available for download from the China WestDC. Land
use data are compiled from the second national land survey in Guangzhou with 1:2000 scale. This study
used the urban catchment area divided by Li et al. as the optimization unit [74]. However, there were
some topology errors in the initial urban catchment area, including long edge, gap, noncoincidence of
boundary, and too small of a catchment area. After the above topology errors were corrected, the study
area was divided into 154 urban runoff plots with the area ranging from 2.1 km2 to 101.5 km2.

Universal Transverse Mercator projection and WGS84 geodetic coordinates system were used in
the study. All data details are shown in Table 1.
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Table 1. Metadata information.

Data Format Time Source

1:4 Million administrative divisions Esri shapefile 2005 National Geomatics Center of China

Landsat remote-sensing image Img 28-10-2010 United States Geological Survey

High-resolution remote sensing image Jpeg 2010 Google Earth satellite imagery

ASTER GDEM Img 2009 Land Processes Distributed Active
Archive Center

Global soil classification standard data Grid 2009 WestDC China

Land use data Esri shapefile 2010 The second national land survey in
Guangzhou

Urban runoff plots Esri shapefile 2009 Study results of Li et al. [74]

2.3. Optimization Model of Impervious Surface Space Layout

2.3.1. SCS-CN

The hydrological model is a highly abstract simplification of the hydrological system [65,75].
SCS-CN has a low demand for parameters and can be applied to basins with limited data for accurately
calculating the actual runoff of basins with different data. In view of the above advantages, SCS-CN
is adopted as the objective function of the optimization model for calculating the surface runoff in
this study. Simultaneously, comparing the optimized runoff coefficients calculated by this model,
the optimization rate of ACO-SCS can be calculated. The SCS-CN model is derived from the water
balance equation [76,77]. The model function is as follows: Q =

(P−0.2S)2

P+0.8S , P > 0.2S
Q = 0, P ≤ 0.2

(1)

where Q is the surface runoff volume (mm), P represents the rainfall volume (mm), and S denotes the
potential maximum soil-water capacity, whose function is as follows:

S =
25400

CN
− 254 (2)

where CN is the runoff curve coefficient. The CN is an important parameter for surface runoff simulation
of SCS-CN because it is related to many attributes of land, including land use, soil type, and antecedent
soil moisture [78]. The CN value is determined by the attached table (Tr-55) in the National Engineering
Handbook, Section 4 under certain Antecedent Moisture Conditions (AMC II) [79]. The initial CN
can be obtained by combining the land use data, soil data, and hydrological soil grouping data of
Guangzhou. Land use data are difficult to characterize the surface pervious differences. Impervious
surfaces in urbanization have a great impact on surface runoff [80], which is a method to characterize
surface permeability. So the calculation of CN needs to take into account the effects of impervious
surfaces [77,81]. The formula of the modified CN is as follows.

CNII = CN + pimp × (98−CN) (3)

where CNII represents the modified CN under the AMC II conditions and pimp is the density of
impervious surfaces. Slope also has a significant effect on surface runoff. If the influence of the slope is
ignored, the runoff calculation result will not be accurate for the main urban area of Guangzhou in the
hilly area. Therefore, the slope correction method for CN proposed by Williams et al. was used in this
study [82]. The modified formula is as follows:

CNIIS =
CNIII −CNII

3
× [1− 2exp(−13.86slp)] + CNII (4)



Int. J. Environ. Res. Public Health 2019, 16, 3613 7 of 28

CNIII = CNII × exp[0.00673× (100−CNII)] (5)

where CNIIS represents the modified value of CNII, CNII, and CNIII are CN under the AMC II and
AMC III, respectively, and slp is considered as the average slope.

2.3.2. Ant Colony Optimization

ACO has the characteristics of a distributed, non-centered control, and distributed individual
indirect communication, and is easy to couple with other algorithm models. Due to its excellent ability
to solve complex problems in a single individual collaboration, it is widely used to solve optimization
problems [83]. Therefore, ACO was used in this study for the optimization of impervious surface space
layout with the goal of minimizing the runoff coefficient. The optimization object is the density type
of impervious surfaces. To make the optimization results clearer, this study subdivided impervious
surfaces into 10 categories with a threshold of 0.1 by referring to Weng et al.’s classification method
of impervious surface density: 0–0.2 is classified as extremely low density, 0.2–0.4 is medium-low
density, 0.4–0.6 is medium density, 0.6–0.8 is medium-high density, and 0.8–1 is classified as extremely
high density [84,85]. The impervious surface density type is encoded with an integer vector of 1–10
(Table 2). An ant represents an optimized layout. The length of each ant is the total number of grid cells.
Each position represents a grid cell. A unit value of 1–10 indicates the type of impervious surfaces to
be placed.

Table 2. Classification of the density type of impervious surfaces.

Impervious Surface Density 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8 0.8–0.9 0.9–1

Type Encoding 1 2 3 4 5 6 7 8 9 10

The Type of Impervious Surfaces extremely low
density

medium-low
density medium density medium-high

density
extremely high

density

Probability Function

Ants seek the best food path by judging the difference in pheromone concentration at each road
node. In ACO, the probability function calculates each node selection probability by combining the
pheromone concentration. The probability function is used to measure the ant pheromone of each
unit to calculate the probability of each unit selecting an impervious surface type. Since the iterative
process requires computing grid cells one by one, the calculation time is relatively long. To simplify
the calculation, the product is selected to replace the power exponent by referring to Lu et al.’s practice
as follows [86].

Pk
i j =

a × τi j,k + β × δi j,k∑
s=Alloweds

(
a × τi j,s + β × δi j,s

) k = 1, 2, 3, . . . , 10 (6)

where Alloweds denotes the various impervious surface types that a grid cell can convert, a is a heuristic
factor, β is an expecting factor, and δi j,k is a heuristic function. The value of β is usually set as the
difference of 1 and α. The function τi j,k represents the pheromone concentration between the current
impervious surface types and the impervious surface types k to be converted to.

Heuristic Function

Each ant represents a solution vector for an impervious surface space layout. To avoid falling
into the local optimal or global traversal and resulting from excessive dependence on the pheromone
concentration, ants must accumulate certain selection experience to improve the accuracy of selection
in each component when the impervious surface type is selected. The experience is acquired by setting
the heuristic function. In this study, the heuristic function represents the suitability of transforming
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impervious surface type k1 into impervious surface type k2. The difference in the runoff coefficient
between two impervious surface types was used as the suitability. The formula is as follows:

δi j,k =
Qk1 −Qk2

P
(7)

where Qk1 and Qk2 stand for the runoff volume of impervious surface type k1 and impervious surface
type k2, respectively, in the grid cell (i, j), and P is rainfall intensity.

The Generation of Ant Colony

If Pk
i j, the impervious surface type k in grid cell (i, j) with the highest probability, is the same

as the current type of impervious surfaces, the type of impervious surfaces in grid cell (i, j) is still k.
Otherwise, it is configured according to the principle of a random turnplate. Each impervious surface
type k is configured to reduce the number of containers corresponding to the impervious surface type k
by one. ACO-SCS repeats the above process until all grids are configured with impervious surface
types. According to such a principle, the impervious surface space layout represented by all ants is
configured. The specific process is shown in Figure 3. The number of impervious surface types is N.
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Suitability Evaluation of Ants

To compare the suitability of each ant, it must be measured by a unified evaluation index. In this
study, the runoff coefficient of the impervious surface space layout represented by each ant was
calculated as the suitability index. The formula is as follows:

Rn =

∑r
i
∑c

j Qi j,k

num ∗ P
n = 1, 2, 3, . . . , ant_size (8)

where Rn indicates the runoff coefficient of the Nth ant, Qi j,k is the runoff volume of impervious surface
type k in the grid cell (i, j) by the means of SCS-CN, and num represents the total number of grid cells. If
it is in the first iteration, the current optimal solution is the initial spatial layout of impervious surfaces.
If not, the minimum runoff coefficient of each generation is compared with the current optimal solution,
and impervious surfaces with a smaller runoff coefficient are the optimal solution for this iteration.
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Update Operation of Pheromone Concentration

Pheromone concentration is an important indicator for ants to determine their pathways.
The higher the pheromone concentration, the higher the probability of the ant choosing the path.
The ants also leave pheromones after they pass, increasing pheromone concentration. The pheromone
concentration of the path chosen by fewer ants will gradually evaporate, and the optimal path will be
selected according to this principle. Since the probability of each impervious surface type of each grid
cell is required to be recorded, the pheromone concentration matrix is correspondingly set to a 10 *10
*num three-dimensional (3D) matrix. The formula is as follows:

Taut = Taut−1 × (1− rho) + ∆delta (9)

where Taut represents the current pheromone concentration, Taut−1 denotes the pheromone
concentration of the last generation, t is the number of iterations, rho is the volatilization factor
of pheromone concentration, and ∆delta indicates the change of the pheromone concentration on each
path in this iteration. In this study, the difference in the runoff coefficient between two impervious
surface space layouts is used as the increment of each conversion path. Given that the pheromone
concentration matrix is set to be a 10 *10 *num 3D matrix, ∆delta is also set to be a 10 *10 *num 3D
matrix as follows:

∆delta
(
kbest, kl,t, index

)
l
=

[
∆delta

(
kbest, kl,t, index

)
l−1

+
(
1−Ql

P

)]
× σ

l = 1, 2, . . . , 10; index = 1, 2, . . . num
(10)

where index means the location of the grid cell and l indicates the rank of ants after sorting according
to the runoff coefficient. Only the top ten ants with the smallest runoff coefficients were selected to
update the pheromone concentration. kbest represents the impervious surface type configured by the
optimal solution at the raster cell index, kl,t indicates the impervious surface type of the Lth ant at the
grid cell index, ∆delta

(
kbest, kl,t, index

)
l

is considered as the increment of pheromone concentration at
the grid cell index after the update operation of the Lth ant when the impervious surface type kbest is
converted to kl,t, and σ is a constant.

Parameter Settings

In the optimization model, some parameters need to be given in advance, including the pheromone
volatilization factor, rho, the number of ant colonies, n, the heuristic factor, α, the expecting factor, β,
and the constant coefficient, σ. By using a test area, the different values of each parameter are set
separately. The number of ant colonies is 10–100, the heuristic factor is 0.1–0.95, the expecting factor is
the difference between 1 and the heuristic factor, the volatilization factor is 0.1–0.9, and the constant
coefficient is 17 values between 0.001–0.8. These data are permutated and combined. To avoid the
contingency of the algorithm, ten experiments were carried out for each parameter combination, and
the average optimization rate and the average iteration number of each parameter group were recorded
when the optimal result was achieved. Finally, 153,010 repeated tests were performed.

The optimal parameter combination was determined by observing the relationship between each
parameter setting and the optimization rate and iteration number. The setting of the volatilization factor
is the most important parameter of ACO. When the volatilization factor is too small, the pheromone
volatilizes slowly, resulting in a small difference in the pheromone concentration of the different paths,
and making it difficult for ants to approach the optimal path. It takes many trials to obtain the best
result by traversing. In contrast, if the volatilization factor is too large, the algorithm will easily fall into
local optimization. Figure 4a shows the relationship between the volatilization factor, optimization
rate, and iteration number. The volatilization factor has a great influence on the optimization rate and
iteration number. When the volatilization factor is 0.1, the optimization rate is the highest, but the
number of iterations also reaches the largest. When the volatilization factor is 0.9, the optimization
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rate and iteration number show an opposite trend, and both are small values. Therefore, when setting
the volatilization factor, ACO usually tends to select the median value. Considering the optimization
rate and iteration number obtained by the experiment, when the volatilization factor is set as 0.4,
the optimization rate is close to the optimal value, and the iteration number is the lowest. Therefore,
the volatilization factor is set as 0.4 in this study.
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Figure 4b shows the influence of the number of ants on the optimization rate and the iteration
number. When the number of ants is 10, both the optimization rate and the number of iterations
are the minimum values, falling into the local optimum. When the number of ants is more than
70, the optimization rate tends to be stable. The number of ants is positively correlated with the
optimization rate. However, the optimization rate tends to be maximized when the number of ants is
sufficiently large. In addition, its influence on the iteration number is small. Therefore, the number of
ants in this study was set as 70.

Figure 4c shows the expecting factor, and Figure 4d shows the constant coefficient. The effect of the
expecting factor and the constant coefficient on the optimization rate and the iteration number shows
the same trend. The optimization rate increases with the increasing expecting factor and constant
coefficient. When the expecting factor is 0.9, the optimization rate reaches the maximum value and
then tends to be stable. Therefore, the expecting factor is selected as 0.9. When the constant coefficient
is 0.2, the optimization rate reaches the highest value. The number of iterations decreases as the
constant coefficient increases. However, considering that the constant coefficient is the coefficient of
the increment of pheromone concentration, if the constant coefficient is too large, it will easily lead
to the rapid increase in pheromone concentration in the corresponding path, and the algorithm will
fall into local optimization. Therefore, the constant coefficient was set as 0.2 in this study. To sum up,
the pheromone volatilization factor, rho, the number of ants, n, the expecting factor, β, the heuristic
factor, α and the constant coefficient, σ were set as 0.4, 70, 0.9, 0.1, and 0.2, respectively.

Integration of Ant Colony Optimization and Soil Conservation Service Curve Number Model

This study integrates SCS-CN and ACO to optimize the impervious surface space layout.
The spatial layout of impervious surfaces is taken as their common parameter, and SCS-CN is set to
the objective function of ACO to evaluate the optimization results. The coupling programming of the
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model and the algorithm is realized by the MATLAB 2014a software (MathWorks, Natick, MA, USA).
The main process is as Figure 5:

(1) Set the initial parameters of the algorithm, including the heuristic factor, the expecting
factor, the initial pheromone, the volatilization factor, the number of iterations, and the
constant coefficient.

(2) Configuration process of impervious surfaces: The heuristic function and the probability function
are calculated according to the pheromone. The runoff plot is used as an optimization unit. Each
grid cell of each ant was configured with an impervious surface type in turn. Prohibited regions
and the number of impervious surface types constrain the optimization regions and areas.

(3) Suitability evaluation of the ants: Impervious surfaces with completed spatial configuration are
input as a parameter into SCS-CN to calculate the surface runoff (i.e., the suitability of the ant).
The top ten ants with the best suitability were selected. Compared with the optimum impervious
surface space layout of the previous iteration, the optimum impervious surface space is selected.

(4) Update operation of pheromone concentration: The increment and volatility of pheromones
were calculated according to the top ten ants with the current optimum suitability, and then the
pheromone concentration was updated.

(5) Condition for stopping the algorithm: If the current iteration number reaches the maximum
iteration number, the algorithm ends. The current optimal space layout of impervious surfaces is
the final result. Instead, repeat step 2 until the maximum number of iterations is reached. When
iteration stops, runoff coefficients before and after optimization are calculated by the SCS-CN
model, and the optimization rate is obtained by comparison.

(6) Adjustment of the area of impervious surface: First, the increment of the runoff coefficient of
each grid element after iteration is calculated and sorted. Second, the impervious surface type
corresponding to the grid cell with the largest increment of runoff coefficient remains unchanged.
The adjusted impervious surface area is calculated and compared to the initial impervious area.
If the result is not lower than the limited area, the adjusted impervious surfaces repeat the above
operation until the area is closest to the standard.

In the process of optimization, some specific areas are limited, taking into account factors such as
ecological environmental protection and urban planning and development. These areas mainly include
large water bodies (i.e., lakes and rivers), roads (urban arterial roads, highways, and expressways),
and large green spaces (parks and woodlands). As shown in Figure 6a, these areas are used as masks
to erase the study area.

The urban runoff plot was divided by combing the urban watershed division technique with
the detail control planning area index, which realized the combination of hydrological and ecological
units with traditional planning units. Such a combination makes the urban runoff plot more natural
and ecologically significant and simultaneously considers the urban-rural planning significance [29].
Therefore, the runoff plot is taken as the optimization unit in this study (Figure 6b), which meets
the requirements of the urban planning unit. Optimization was only carried out in the runoff plot
to reduce the update difference before and after optimization. The city is an important area of life
and production. Considering that urban renewal cannot lower the quality of living and production,
the area of construction land cannot be significantly reduced. Therefore, before spatial optimization,
the number of impervious surface types in the runoff plot was first counted and then extracted one by
one in the process of space allocation to ensure that the impervious surface area meets the constraint
conditions after optimization.
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2.4. Landscape Pattern Index

The landscape pattern index is a simple quantitative index that can highly concentrate landscape
pattern information and reflect its structural composition and spatial configuration. This index can
be used to conduct quantitative research on the composition, spatial configuration, and dynamic
change of landscapes [87,88]. Since the landscape pattern index is an effective tool for quantifying the
structure and pattern of thematic maps and helps explain the urban spatial structure, it has gradually
been applied to urban environmental research. Therefore, to compare the spatial layout differences
of impervious surfaces before and after optimization, the landscape pattern index under the scale of
patch class was used to study its changes. The specific landscape pattern index is shown in Table 3.

Table 3. Landscape pattern index.

Landscape Pattern Index Unit Value Range

Measure of area
Percent of landscape (PLAND) % 0–100

Number of patches (NP) pcs >0
Patch density (PD) pcs/100 hm2 >0

Measure of shape
Mean shape index (SHAPE_MN) no ≥1

Mean related circumscribing circle (CIRCLE_MN) no 0–1
Mean contiguity index (CONTIG_MN) no 0–1

Measure of aggregation
Aggregation index (AI) % 0–100
Splitting index (SPLIT) no ≥1

Patch cohesion index (COHESION) no ≥0

3. Results

3.1. Comparison of Impervious Surface Changes after Optimization

ACO-SCS aims to minimize the runoff coefficient and is used to optimize the impervious surface
space layout of the research area. As shown in Figure 7, the number of iterations is set to 2000 times.
In the initial stage, the average optimization rate increased rapidly but gradually slowed as the number
of iterations increased and finally reached the highest value at approximately 1400 times. This indicates
that the surface runoff coefficient is the minimum under the condition of the current impervious surface
space layout.
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The optimized impervious surface space layout is shown in Figure 8. Water bodies, green spaces,
and urban arterial roads are prohibited to be optimized. The water bodies are mainly the Pearl
River, reservoirs, and large ponds in the city, while the green spaces are mainly the northeast region,
such as Baiyun Mountain and Maofeng Mountain. Macroscopically, the impervious surface space
layout has not changed significantly. The high-density impervious surfaces are still preserved in the
central urban areas, such as Tianhe, Yuexiu, Liwan, and Haizhu, mainly because this study uses a
runoff plot as the optimization unit and the impervious surfaces in each runoff plot are optimized
independently. Additionally, the spatial distribution of impervious surfaces within the runoff plot
varies greatly before and after optimization. To observe the optimal results of the impervious surface
space layout from the scale of the runoff plot, three runoff plots with high optimization rates and global
distributions were selected for display from the perspective of the optimization efficiency and the
spatial balance of runoff plots. The effect is shown in Figure 9. In terms of spatial layout, extremely
low-density, medium-low density, and medium-high density impervious surfaces are more clustered,
while extremely high-density impervious surfaces are shown as long strips of agglomeration. Medium
density impervious surfaces become more fragmented.
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By counting the changes in the number of impervious surface types (Figure 10), the number of
impervious surface types of medium-low density and extremely low density was on the rise, while
the number of impervious surface types of medium and medium-high density was on the decline.
Specifically, impervious surface types 5, 6, and 7 decreased, while the extremely high density impervious
surfaces did not change significantly. In general, the average impervious surface density decreased
from 0.5765 to 0.5572, consistent with the 5% variation range of impervious surfaces. Under the annual
rainfall intensity, the average optimization efficiency can reach 9.52%. The highest optimization rate
was 33.16%, and the number of runoff plots with an optimization rate over 10% was 67, with a good
optimization effect. In terms of spatial distribution of optimization rate, the spatial heterogeneity of
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the optimized results was found from the demonstration of the optimized results in each runoff plot
(Figure 11). The model optimization effect achieves the best effect in the urban fringe with low urban
construction land density, while the optimization effect is not obvious in the urban core areas with
high construction land.
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3.2. Landscape Pattern Change

Under the scale of patch class, the landscape pattern index of impervious surfaces before and after
optimization was calculated from the three measures of area, shape, and aggregation (Figure 12). On the
measure of area, the percent of landscape (PLAND) was consistent with the change in impervious
surface types. The number of impervious surface types of medium-low density and extremely low
density was on the rise, while the number of impervious surface types of medium and medium-high
density was on the decline. Specifically, impervious surface types 5, 6, and 7 decreased, while the
extremely high density impervious surfaces did not change significantly. For the number of patches
(NP), extremely low and medium-low density impervious surface patch classes increased. Conversely,
medium, medium-high, and extremely highdensity impervious surface patch classes declined. As a
result, the change trend of patch density (PD) was consistent with that of the number of patches
(NP). However, the impervious surface type of the middle density after optimization is still the main
proportion, and the extremely low-density and extremely high density impervious surface proportion
are still the lowest.

In terms of the shape measure, impervious surface types of extremely low, medium-low,
medium-high, and extremely high density show an increasing trend for the mean shape index
(SHAPE_MN). This indicates that the shapes of these impervious surface types tend to be complicated.
The medium-density impervious surface type shows a downward trend. This indicates that the shape
of the impervious surface patch is becoming simpler. However, the types of impervious surface
patches 4 and 7 did not change significantly. For the mean related circumscribing circle (CIRCLE_MN),
the change trend is consistent with that of the mean shape index (SHAPE_MN). The impervious surface
patches with extremely low, medium-low, medium-high, and extremely high densities increased.
The mean contiguity index (CONTIG_MN) of these impervious surface types also generally increased.
This indicates that their inner adjacency degree and connectivity increased, but their shape became
flatter and longer. In contrast, the medium-density impervious surface type shows a decrease in both
indexes. This indicates that the connectedness of the impervious surface type decreases in a curved,
coiled but narrow-hollow form.
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In terms of the aggregation measure, impervious surface patch classes before and after optimization
are consistent in the splitting index (SPLIT), the aggregation index (AI), and the patch cohesion index
(COHESION). The impervious surface patches with extremely low, medium-low, medium-high,
and extremely high densities have reduced fragmentation and increased spatial connectivity and
aggregation. In addition, medium-density impervious surfaces show an opposite trend.

In general, the impervious surfaces of medium and medium-high density decreased in quantity
after the optimization. Extremely low and medium-low density impervious surfaces increased, and
the number of extremely high densities remained the same. The shape of the impervious surface types
of extremely low, medium-low, medium-high, and extremely high densities are more complex, but the
degree of fragmentation is reduced, and the space gathering is stronger. However, impervious surfaces
of medium density have an opposite trend. The shape was more curved and coiled, the phenomenon
of hollowing increased, the degree of fragmentation increased, and the spatial connectivity decreased.
Combining with the optimization results of runoff plot scale, it is found that the construction of a
high–low–high density discontinuous connection of impervious surfaces is helpful to reduce runoff.
The connection mode can be achieved by transforming the medium-density impervious surfaces
into low-density impervious surfaces in quantitative terms and constructing the agglomeration of
low-density impervious surfaces and the oblong agglomeration of high-density impervious surfaces in
the space layout.

4. Discussion

4.1. Evaluation of Optimization Model

At present, many scholars have proven that the practice of low-impact development technology
can effectively reduce surface runoff. Zhang et al. simulated surface runoff using three methods (green
roof, permeable surface, and rainwater bucket device) for low-impact development. The results showed
that the green roof reduced runoff by 1.7%–2.0%, the permeable surface by 0.6%–8.4%, and the rainwater
bucket device by 7.1%–36.8% [89]. Ahiablame et al. demonstrated that the optimization effects of
the three methods of green roof, permeable surface and the rainwater bucket device were 11%–39%,
5%–19%, and 3%–13%, respectively [90]. Mentens et al. reduced runoff by 2.7% by converting 10% of
impervious roofs to green roofs [91]. From the perspective of spatial layout optimization of impervious
surfaces, this research model reduces the impact of urban development on surface runoff. The results
show that the average optimization rate is 9.52% and the maximum optimization rate reaches 33.16%.
Compared with the existing research results, the optimal results of this study are generally close to
the simulation effect of low-impact development technology. The average optimization rate is better
than that of the green roof. Therefore, it can be considered that the integration of SCS-CN and ACO
supported by geographic simulation technology has a good optimization effect.

It is not advisable for some cities with stable development to reduce the impact of rapid urbanization
on urban waterlogging through large-scale urban reconstruction activities. This practice not only
changes the original urban landscape pattern, but also costs too much to bear [34–37]. Therefore,
this study aims to optimize the space layout of impervious surfaces and reduce the optimization
cost under the premise of protecting the existing impervious surface density as much as possible.
In addition, urban green space, water bodies, and urban arterial roads are important components of
urban landscape ecological patterns. By setting the above areas as forbidden patches, the damage to
urban ecological landscapes can be effectively reduced, and the operability of the model optimal results
can be increased. In urban development, urban planning activities are carried out in planning units.
To make the spatial optimization of impervious surfaces meet the requirements of urban planning as
much as possible, the optimization unit is divided strictly according to the standard area of the urban
planning unit. In summary, the optimal results of the model are good, and the results are operable and
pertinent, which can better provide a policy-making reference for urban renewal.
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4.2. The Influence of Various Factors on the Optimization of Impervious Surface Space Layout

4.2.1. The Influence of Input Factors on the Optimization of Impervious Surface Space Layout

In the running of the model, each input element will affect the final optimization result. Therefore,
to understand the key factors affecting the model, the influences of various input factors on the model
results are first studied. The input factors of the optimization model mainly include the mean of
the initial impervious surfaces, the mean of the CN value, and the mean of the slope in the study
area. To understand its influence on optimal results, a regression model was established for the input
factors and the optimization rate of 154 runoff plots, and the Pearson correlation coefficient (PCC) was
calculated. As shown in Figure 13, the optimization rate builds a linear regression model with the
initial impervious surface density, CN value, and slope. The slope of the regression model was −0.4532,
−0.0.0156, and −0.0087, and the variance was 0.67, 0.47, and 0.11, respectively. At the significance
level of 0.01, the PCC between the optimization rate and the initial impervious surface density is the
strongest at −0.819, followed by that of the CN value, and that of the slope is the weakest at 0.329.
The initial impervious surface density and CN value are negatively correlated with the optimization
rate, while the slope is positively correlated. The slope has the weakest influence on the optimization
rate. The reason is that except for the main mountains of the Baiyun Mountain and the Maofeng
Mountain in the northeast, which are the prohibited optimization areas, the rest of the urban areas
is hilly basins. Although there are differences in the slopes of the various runoff communities in
these areas, the fluctuations are not large. Only five runoff plots had mean slopes of more than 10.
Therefore, the correlation between the optimization rate and the slope is weak. The optimization rate
is negatively correlated with the CN value. In SCS-CN, the CN value is the only input parameter.
The CN value in the model is the CN value corrected by the impervious surfaces and slope, which is
closer to the actual value. Therefore, the higher the initial CN value is, the smaller the correction effect
of the impervious surfaces and slope will be. Therefore, no matter how the impervious surface space
layout changes, the correction effect on the CN value will be small, resulting in a low optimization
rate. In contrast, in the runoff plot with a low initial CN value, where the correction effect of the
impervious surfaces and slope is large, the change in the impervious surface space layout also has
a great influence on the corrected CN value. Thus, it improved the possibility of obtaining a better
optimization effect. For impervious surface density, when the average density of the impervious
surfaces is large, the impervious surface density of each unit is high. As a result, under the limitation of
impervious surface density change, the impervious surface density of each unit still maintains a high
value after the spatial layout optimization of the impervious surfaces. Thus, the spatial layout with
large differences cannot be generated, resulting in small differences in runoff coefficients before and
after optimization. In contrast, when the mean density of the impervious surfaces is low or medium,
there are more kinds of impervious surfaces to be selected, resulting in a spatial layout with great
difference. Therefore, this kind of impervious surface provides the possibility of reducing the runoff

coefficient and obtaining a better optimization effect. As shown in Figure 13a, although the average
density of the impervious surfaces is the same, it still produces a great difference in the optimization
effect. This may have something to do with the spatial layout of the initial which are the impervious
surfaces. Therefore, it is necessary to explore the relationship between the optimization rate and the
spatial layout of the initial impervious surfaces.
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4.2.2. The Influence of Initial Impervious Surface Space Layout on the Optimization Model

Relationship between Optimization Rate and Proportion of Impervious Surface Type

The above discussion has shown that there is a strong negative correlation between the model
optimization rate and the initial impervious surface density. To further understand the specific
relationship between the optimization rate and the impervious surface types, this study obtained the
relationship between the optimization rate and various types of impervious surfaces and conducted
linear regression modeling. The results are shown in Figure 14. From the perspective of slope,
the optimization rate is positively correlated with the proportion of impervious surface types 1–6
and negatively correlated with types 7–10. The slope cannot be directly compared for the significant
difference in regression variances being affected by the proportion of each type of initial impervious
surfaces, so the PCC is calculated. According to the results of PCC at the significance level of 0.01,
it can be divided into three levels. The first level is impervious surface type 6. PCC and regression
modeling have the lowest effect. This indicates that the relationship between the optimization rate and
impervious surface type 6 is the weakest. The second level includes impervious surface types 1, 2, 5, 7,
and 10. The PCC and regression modeling effect are at a medium level. The relationship between the
optimization rate and these impervious surface types is enhanced. The impervious surface types at
the third level are 3, 4, 8, and 9, which have the strongest correlation with the optimization rate and
the best regression modeling effect. This indicates that the impervious surface types 3, 4, 8, and 9
have the greatest influence on the optimization effect in terms of the proportion of impervious surface
types. Moreover, the optimization rate is positively correlated with impervious surface types 3 and
4, and negatively correlated with impervious surface types 8 and 9. It also exactly confirms that the
lower the average density of the impervious surfaces, the higher the optimization rate. Only when
impervious surface types 3 and 4 account for a relatively high level, is there a possibility that a more
widely different impervious surface space layout is produced. Therefore, the proportion of impervious
surface types 3, 4, 8, and 9 is a key factor in the optimization model.

Relationship Between Optimization Rate and Space Layout of the Initial Impervious Surfaces

In addition to the influence of the proportion of impervious surface types on the optimization rate,
the initial spatial layout of the impervious surfaces also has a great influence on the optimization rate.
From the scale of landscape, the most correlated and representative landscape pattern index among
the four measures of area, shape, aggregation, and diversity was selected for regression modeling, and
the results are shown in Figure 15.
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On the area measure, the area-weighted mean of the patch area was selected for regression
modeling with the optimization rate. The optimization rate was negatively correlated with the
area-weighted mean of the patch area. This indicates that the more patches there are on the initial
impervious surfaces, the greater the patch density will be, and the better the model optimization
effect will be. On the shape measure, the perimeter-area fractal dimension was selected for regression
modeling with the optimization rate. The optimization rate was positively correlated with the
perimeter-area fractal dimension. The results show that the more complex the initial patch shape is,
the better the model optimization effect will be. On the aggregation measure, the aggregation index
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was selected for regression modeling with the optimization rate. The optimization rate was negatively
correlated with the aggregation index. This indicates that the more fragmented the initial impervious
surfaces are, the higher the degree of fragmentation is, and the better the model optimization effect will
be. On the diversity measure, Shannon’s diversity index was selected for regression modeling with the
optimization rate. It was found that the optimization rate was positively correlated with Shannon’s
diversity index. This indicates that the richer the initial impervious surface types are, the greater the
difference will be, and the better the model optimization effect will be.

In other words, the initial impervious surface space layout has an important impact on the optimal
results of the model. The more diverse the type of the impervious surface space layout is, the more
complex the shape, the more discrete the patch, and the better the model application effect will be.
Therefore, for urban fringes with diverse types of impervious surfaces, complex shapes of impervious
surfaces and high dispersion, the effect of reducing surface runoff by optimizing the spatial layout of
the impervious surfaces is more significant.

4.3. Practical Significance of Optimal results

Presently, the development of Guangzhou has shifted from an increase in urban scale to the
improvement of urban quality. How to realize the efficient promotion of urban land inventory is
a major problem facing urban renewal. The improvement of land quality will be the key to urban
renewal for urban rainstorm waterlogging prevention and control. The optimal results provide an
important reference for urban renewal planning.

Combining the above analysis, to reduce the reconstruction cost of impervious surfaces on the
premise of protecting the existing impervious surfaces to the maximum extent in the actual situation,
the connection difference of the impervious surfaces should be increased, and the gradual-change
connection mode of the impervious surface density should be reduced. By means of high–low–high
density connection of impervious surfaces, surface runoff can be reduced. This optimization method
of impervious space layout is similar to the concept of LID landscape construction (Figure 16). This
practice of high–low impervious surfaces connection includes concave herbaceous fields beside the
road, sunken green space squares, and grid construction inside the campus [92–94]. The impervious
surface layout of high–low–high density discontinuous connection is constructed through the flat and
long aggregation of low-density and high-density impervious surfaces. This method helps to break the
connectivity of high-density impervious surfaces and to prevent the confluence of surface runoff on the
high-density impervious surfaces, thus reducing the impact of impervious surfaces on surface runoff.Int. J. Environ. Res. Public Health 2019, 16, x 23 of 28 
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Due to the spatial heterogeneity of optimization efficiency in urban suburbs and urban core areas,
when making the urban renewal planning decision for the prevention and control of urban rainstorms
and waterlogging, more pertinence should be considered. For areas such as Baiyun, Luogang, and
Tianhe North, LID in common urban planning, such as concave herbaceous fields, sunken green space
squares, and grid construction can be adopted. However, for areas such as the south of Tianhe, Liwan,
and the west of Haizhu, the underground pipe network, slope, river channel, urban infiltration surface,
and other factors should be considered in the policy-making process.
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5. Conclusions

Currently, urban rainstorm waterlogging has seriously affected urban sustainable development.
Optimizing the design of impervious surfaces in urban renewal planning to reduce its impact on surface
runoff is an important way to prevent and control urban waterlogging. Based on the geographical
simulation framework, this study integrated SCS-CN and ACO to optimize impervious surface space
layout to minimize surface runoff. It provides a decision-making basis for urban renewal planning for
urban rainstorm waterlogging prevention and control and follows the trend of urban development
mode from the scale expansion of incremental land to the quality improvement of inventory land.

The ACO-SCS model based on geographic simulation technology to optimize the spatial layout of
impervious surfaces can effectively reduce the aggravation of urban rainstorm waterlogging caused by
urbanization. The optimization effect of the model is good and stable, with an average optimization
rate of 9.52% and a maximum optimization rate of 33.16%. The model is affected by many factors.
In addition to the influence of the input parameters on the model, the initial spatial layout of the
impervious surfaces is the key influencing factor. The optimization model with impervious surfaces of
high proportion of medium-low density type, complicated shape, and high dispersion is more likely to
obtain better results.

The optimal results can provide a reference for urban renewal planning. The results show that the
spatial layout optimization method of “high–low–high” impervious surface connection can effectively
reduce the impact of urbanization on surface runoff by transforming the impervious surface type of
the medium density into that of the low density on the scale of urban runoff plots. However, there is
spatial heterogeneity in the optimal results, and the optimization effect of the urban fringe is better.
Therefore, urban renewal planning for urban rainstorm waterlogging prevention and control should be
different. For urban renewal planning in urban fringes, the optimal results can be referenced to a large
extent. The spatial layout of the impervious surfaces can be optimized to alleviate urban rainstorm
waterlogging. For urban renewal planning in urban core areas, more factors affecting waterlogging
should be considered comprehensively for decision-making and exploration.

This coupling parameter, depending on the input and output of data, can ensure the independence
between the model and algorithm and improve the stability of the program. However, due to the
characteristics of SCS-CN based on grid element calculation, the model needs to conduct an impervious
surface type configuration for each grid cell in the study area. This causes the model to run for
a long time. Therefore, the comparison and optimization of the coupling model will be the key
research direction in the future. Although impervious surfaces are the key factor in urban rainstorm
waterlogging, many research results show that the underground pipe network, river channels, slope,
and rainwater management methods all have important influences. Therefore, the comprehensive
consideration of these influencing factors in the optimization model will be an important breakthrough
in follow-up research to better serve the decision-making in urban renewal planning.
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