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Abstract: The problem of air pollution is a persistent issue for mankind and becoming increasingly 
serious in recent years, which has drawn worldwide attention. Establishing a scientific and effective 
air quality early-warning system is really significant and important. Regretfully, previous research 
didn’t thoroughly explore not only air pollutant prediction but also air quality evaluation, and 
relevant research work is still scarce, especially in China. Therefore, a novel air quality early-
warning system composed of prediction and evaluation was developed in this study. Firstly, the 
advanced data preprocessing technology Improved Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (ICEEMDAN) combined with the powerful swarm intelligence 
algorithm Whale Optimization Algorithm (WOA) and the efficient artificial neural network Extreme 
Learning Machine (ELM) formed the prediction model. Then the predictive results were further 
analyzed by the method of fuzzy comprehensive evaluation, which offered intuitive air quality 
information and corresponding measures. The proposed system was tested in the Jing-Jin-Ji region 
of China, a representative research area in the world, and the daily concentration data of six main 
air pollutants in Beijing, Tianjin, and Shijiazhuang for two years were used to validate the accuracy 
and efficiency. The results show that the prediction model is superior to other benchmark models 
in pollutant concentration prediction and the evaluation model is satisfactory in air quality level 
reporting compared with the actual status. Therefore, the proposed system is believed to play an 
important role in air pollution control and smart city construction all over the world in the future. 

Keywords: air pollutant concentration prediction; air quality evaluation; air pollution early-
warning handbook; Jing-Jin-Ji region; smart city construction 

 

1. Introduction 

Air is one of the most basic elements for human survival and good air quality is necessary for 
human health. Unfortunately, air pollution has become a global problem, which has aroused 
widespread concern from scholars, governments and the public. Some studies have found that 
exposure to air pollutants is associated with the occurrence of many diseases such as respiratory 
disease, cardiovascular disease and even cancer, contributing to as many as 4–9 million human deaths 
per year globally [1,2]. The situation in China is also grim. With the rapid development of 
industrialization and urbanization, more and more fossil fuels are being burned, which results in 
increasing emissions of sulphur, nitrogen and particulate matter, causing deteriorating air quality 
and frequent hazy weather. As the “Capital Economic Circle” and future world-class urban 
agglomeration, influenced by adverse geographical and meteorological conditions along with 
industrial structure, the Jing-Jin-Ji region has become one of the most heavily polluted areas, with 
frequent long duration, wide range and severe degree regional pollution events. To solve this serious 
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problem, researchers have done a lot of work, including air pollutant prediction and air quality 
evaluation. 

Numerous forecasting models have been proposed, mainly for pollutant concentration. 
According to their principles, these forecasting models can be divided into three categories: statistic 
forecasting models, numerical forecasting models and machine learning models. 

Statistic forecasting models have been widely used in air quality forecasting from the early days 
because of their simplicity and rapidity, and they still have value in application and research up to 
now. They can predict pollutant concentrations in the future only by studying the relationship 
between pollutant concentration and meteorological factors from past records without information 
about pollution sources. Common statistical models include the multiple linear regression model 
(MLR) [3], autoregressive integrated moving average model (ARIMA) [4], grey model (GM) and 
Markov model. For example, Elbayoumi et al. [5] used MLR to predict the annual indoor 
concentrations of PM2.5 and PM10 by analyzing the meteorological variables (wind speed, temperature 
and relative humidity) collected from 12 natural ventilation systems. Jian et al. [6] used ARIMA to 
study the effects of meteorological factors on the concentrations of ultrafine particles and PM10 in 
Hangzhou under heavy traffic conditions. A first-order variable grey differential equation model was 
proposed by Pai et al. [7] to predict the hourly PM concentration in Banqiao, Taiwan. A Hidden 
Markov Model (HMMS) was used to predict daily average PM2.5 concentrations [8]. Although these 
statistic forecasting models (linear method) have been widely used in PM concentration prediction 
(non-linear process), their accuracy is largely limited by their linear mapping ability. Most of the air 
pollutant time series in the real world are non-linear and irregular, so statistic forecasting model may 
not be suitable for these data. 

Since the 1990s, with the development of computer technology and the abundance of air 
pollution data, numerical forecasting models have been greatly developed and are currently in the 
third generation. Based on the idea of “One Atmosphere”, they realize two-way coupling between 
atmospheric dynamics and atmospheric chemistry which can simulate atmospheric physical and 
chemical processes on different scales and therefore predict the concentrations of different air 
pollutants [9]. Numerical forecasting model usually consist of meteorological modules, emission 
modules and chemical modules following this principle that weather or climate modules provide 
meteorological background fields which drive the chemical transport modules. At present, common 
numerical forecasting models include the U.S. Models-3 and WRF-Chem, Polyphemus from France 
as well as Nested Air Quality Prediction Modeling System (NAQPMS) from China [10–12]. Although 
numerical forecasting models are helpful to reveal the mechanism of pollution processes, their 
accuracy, especially in severe air pollution incidents, is greatly limited by some difficulties such as 
inaccurate atmospheric boundary layer simulation schemes, insufficient emission inventory of 
pollution sources and limited knowledge of atmospheric physical and chemical process. 
Furthermore, they require a lot of computing time. 

Machine learning belongs to the field of artificial intelligence. The arrival of the big data era has 
brought unprecedented opportunities for the development of machine learning. Machine learning 
has excellent performance in regression and classification problems, and it is usually recognized as 
one of the most powerful tools in pollutant prediction for its high robustness and fault tolerance. 
Therefore, there are increasingly studies on pollutant concentration prediction with machine learning 
models. For example, support vector machine (SVM) [13] and artificial neural network (ANN) [14] 
are commonly selected. Paschalidou et.al [15] used a radial basis function (RBF) and multilayer 
perceptron (MLP) to predict hourly concentrations of PM2.5 in Cyprus. Wu et al. [16] acquired 
predictions of PM10 concentrations using a general regression neural network (GRNN). 

Pollutant concentration data are too abstract for the public to understand, and people are eager 
for simplified and intuitive information to quickly understand the state of ambient air, which means 
air quality evaluation is indispensable. When it comes to methods of air quality evaluation, the most 
commonly used method is the air quality index (AQI) originally proposed by the US Environmental 
Protection Agency (EPA). AQI is widely used worldwide, while the standards vary among countries. 
China’s standard comes from “Technical Regulation on Air Quality Index (on trial) (HJ 633-2012)” 
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issued by the Ministry of Environmental Protection. It considers a variety of pollutants including 
PM2.5, PM10, NO2, SO2, CO, O3. However, as with all environmental quality evaluations, there are 
ambiguities in air quality evaluation due to the vagueness of evaluation factors, criteria and objects, 
etc., which makes it difficult to justify the use of sharp boundaries in classification schemes, so the air 
quality index method has some limitations, for example, a slight increase or decrease of pollutant 
data near a boundary value will change the evaluation level. Such fuzziness has led many researchers 
to seek advanced evaluation methods [17], for instance, fuzzy mathematics. Fuzzy mathematics is 
proved to be a useful tool for air quality evaluation [18,19], and many air quality indicators based on 
fuzziness [20–23] are proposed. 

Individual prediction or evaluation is not enough to help us cope with air pollution, so an 
integrated and complete system is expected to play a greater value. Some early-warning systems 
including prediction and evaluation have been gradually proposed. The problem of air pollution in 
China has attracted increasing attention, but there are relatively few in-depth and targeted studies in 
air quality early warning based on artificial intelligence. Consideration of pollutants which affect air 
quality should be as comprehensive as possible, but some studies only focus on single pollutant, 
mainly PM. Although the selection of experimental sites is of importance, some scholars don’t give 
sufficient reasons such as purpose and significance for their choices. The selection of algorithms and 
pollutant concentration limits in air quality evaluation also remain to be discussed. Therefore, 
developing an accurate and robust air quality early-warning system has become an urgent need of 
society. It is hoped to provide not only air quality information comprehensively and objectively, but 
also necessary preventive measures for citizens to avoid hazards, and even help relevant departments 
to better control air pollution and minimize negative impacts. 

Based on the above analyses, this paper proposes a novel air quality early-warning system 
composed of prediction and evaluation. The prediction part took advantage of advanced improved 
complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and combined 
whale optimization algorithm (WOA) with extreme learning machine (ELM). The three methods 
have been proved to be effective in air pollutant forecasting [24–26]. Fuzzy comprehensive evaluation 
(FCE) based on fuzzy mathematics was conducted subsequently. 

Generally speaking, the contributions of this paper are as follows: 

• A complete air quality early-warning system was established and achieved good results in the 
Jing-Jin-Ji region where air pollution problems are of great concern. 

• A novel hybrid prediction model ICEEMDAN-WOA-ELM was proposed for the main air 
pollutants in Beijing, Tianjin and Shijiazhuang. ICEEMDAN and WOA are confirmed to greatly 
improve the prediction ability of ELM through comparison. 

• The predictive results can be transformed into corresponding air quality levels by fuzzy 
comprehensive evaluation, which means citizens without professional knowledge of 
atmospheric science can easily understand the current air quality and get scientific advices to 
avoid air pollution. 

• The air quality early-warning system is feasible and practical in air pollution treatment, which 
can not only protect the public from air pollution but also offer services for government decision-
making on environmental protection. 

The rest of this paper is organized as follows: Section 2 briefly introduces the methodologies 
adopted in this paper. Empirical research is given in Section 3, along with the description of 
experiment sites, data, evaluation criteria and so forth. Section 4 gives the conclusions. 
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2. Methodology 

2.1. The Proposed Air Quality Early-Warning System 

In this section, the air quality early-warning system whose core is the hybrid ICEEMDAN-WOA-
ELM-FCE model is introduced in detail. The flow diagram consisted of four steps, presented in Figure 
1. 

 

Figure 1. Flow diagram of the proposed system. 

• Step 1: Pollutant concentration data are usually chaotic time series, requiring denoising 
technology to eliminate the influences of outliers and improve the prediction accuracy. 
ICEEMDAN is used to process the original data into several IMFs from high frequency to low 
frequency, which contain different characteristics of the original data. 

• Step 2: The ELM optimized by WOA is applied to build a predictor for each IMF. The WOA 
algorithm is used to obtain the best parameters of ELM to establish a forecasting model which 
is not only fast but also accurate. All the predictive results of IMFs are synthesized and the final 
predictive result is obtained. The optimized ELM model is used to forecast the concentrations of 
six major air pollutants in Beijing, Tianjin and Shijiazhuang, which will be the key information 
for the evaluation model. 

• Step 3: Fuzzy comprehensive evaluation can convert the predictive results into air quality levels 
scientifically and objectively, providing crucial information for further research and analysis.  

• Step 4: The air quality information can be applied to guide people’s daily lives. Different colors 
are assigned to different levels, so air quality information can be easily understood. In addition, 
brief but practical guidance corresponding to levels can be offered to the public against air 
pollution. Scientific and precise results also serve the government decision-making on 
environmental protection. Generally, the proposed air quality early-warning system will play a 
key role in future air pollution prevention. 
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In this section, all individual methods belonging to the air quality early-warning system are 
described in detail, including ICEEMDAN, WOA, ELM and FCE. 

2.2. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) 

The empirical mode decomposition (EMD) [27] is a widely used method to analyze non-linear 
and non-stationary data. Compared with the traditional decomposition algorithm, Fourier transform 
or wavelet transform which are more applicable to stationary and linear data, EMD is adaptive and 
highly efficient. Original data can be expressed as a sum of intrinsic mode functions (IMFs) and a 
final monotonic trend by EMD, but oscillations may be produced with different scales in one mode 
or with same scale in different modes which called “mode mixing”. The ensemble empirical mode 
decomposition (EEMD) [28] is proposed to address this problem by adding Gaussian white noise to 
the original signal, but the added noise can’t be completely neutralized and different noisy copies of 
the signal may produce different number of modes. The complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) [29] provides accurate reconstruction of the original 
signal, better spectral separation of the mode and computational efficiency, achieving huge 
improvements on EEMD. Furtherly, the ICEEMDAN [30] improves some aspects of CEEMDAN 
involving residual noise, “spurious mode” and so forth, becoming the latest decomposition method 
of EMD family. In this study, considering the non-stationary and non-linear characteristics of 
pollutant concentration, ICEEEMDAN was used as a data preprocessing method to better dig out the 
rules behind the pollutant data and serve the prediction later. The main steps of ICCEMDAN are 
summarized as follows: 

(1) Calculate local means of 𝐼 realizations 𝑥(௜) = 𝑥 + 𝛽଴𝐸ଵ(𝑤(௜)) by EMD to get the first residue 𝑟ଵ = 〈𝑀(𝑥(௜))〉, where 𝑤(௜)(𝑖 = 1, … , 𝐼) is a realization of white Gaussian noise with zero mean unit 
variance, 𝐸௞(. ) is the operator that produces the 𝑘 th mode obtained by EMD and 𝑀(. )  is the 
operator that generates the local mean of the applied signal. 

(2) Calculate the first mode 𝑑ଵේ = 𝑥 − 𝑟ଵ at the first stage (𝑘 = 1). 
(3) Calculate the second residue as the average of local means of the realizations 𝑟ଵ + 𝛽ଵ𝐸ଶ(𝑤(௜)) 
and define the second mode: 𝑑ଶ෪ = 𝑟ଵ − 𝑟ଶ = 𝑟ଵ − 〈𝑀(𝑟ଵ + 𝛽ଵ𝐸ଶ(𝑤(௜)))〉. 
(4) For 𝑘 = 3, … 𝐾 calculate the 𝑘th residue 𝑟௞ = 〈𝑀(𝑟௞ିଵ + 𝛽௞ିଵ𝐸௞(𝑤(௜)))〉. 
(5) Calculate the 𝑘th mode 𝑑௞෪ = 𝑟௞ାଵ − 𝑟௞. 
(6) Return to step 4 for next 𝑘. 

2.3. Whale Optimization Algorithm (WOA) 

Inspired by the bubble-net hunting strategy which corresponds to the social behavior of 
humpback whales, a nature-inspired meta-heuristic optimization algorithm called WOA [31] was 
proposed in 2016. Tested with 29 mathematical benchmark functions and six structural engineering 
problems in exploration, exploitation, local optima avoidance and convergence behavior, WOA was 
proved to be highly competitive compared to the state-of-art meta-heuristic algorithms as well as 
conventional methods. The mathematical model of WOA is illustrated as follows [31]. 

2.3.1. Encircling Prey 

Humpback whales can identify and encircle the location of their prey. After defining the best 
search agent, other search agents will try to move to the best location. This behavior is expressed by the 
following mathematical formulas: 𝐷ሬሬ⃗ = ห𝐶. 𝑋∗ሬሬሬሬ⃗ (𝑡) − 𝑋⃗(𝑡)ห (1)𝑋⃗(𝑡 + 1) = 𝑋∗ሬሬሬሬ⃗ (𝑡) − 𝐴 ∙ 𝐷ሬሬ⃗  (2)

where 𝑡 is the current iteration, 𝑋∗ሬሬሬሬ⃗  is the best position, 𝑋⃗ denotes the position vector, ∙ is an element-
by element multiplication, and 𝐴  and 𝐶  are coefficient vectors which can be calculated by the 
following equations: 
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𝐴 = 2𝑎⃗ ∙ 𝑟 − 𝑎⃗ (3)𝐶 = 2 ∙ 𝑟 (4)

where 𝑟 is a random vector between 0 and 1, and 𝑎⃗ is linearly reduced from 2 to 0 in the iteration 
process. 

2.3.2. Bubble-Net Attacking Method (Exploitation Phase) 

Humpback whales usually attack their prey using the bubble-net strategy and two approaches are 
designed: 

(1) Shrinking encircling mechanism. 
This behavior is realized by reducing the value of 𝑎⃗ in Equation (3). Setting random 𝐴 values in 

[−1,1], the new position can be obtained between the original position and the current position of the 
best agent. 

(2) Spiral updating position 
A spiral equation is established between whales and prey to simulate the helix-shaped 

movements of humpback whales: 𝑋⃗(𝑡 + 1) = 𝐷ᇱሬሬሬሬ⃗ ∙ 𝑒௕௟ ∙ cos(2𝜋𝑙) + 𝑋∗ሬሬሬሬ⃗ (𝑡) (5)

where 𝐷ᇱሬሬሬሬ⃗ = ห𝑋∗ሬሬሬሬ⃗ (𝑡) − 𝑋⃗(𝑡)ห is the distance between the 𝑖th whale and the best position obtained so 
far, 𝑏 is a constant to define the logarithmic spiral, 𝑙 is a random number between -1 and 1, and ∙ is 
an element-by-element multiplication. WOA assumes that there is a 50% probability of choosing 
shrinking encircling mechanism or the spiral model to update the position of whales in the 
optimization process. The algorithm is defined as follows: 𝑋⃗(𝑡 + 1) = ቊ𝑋∗ሬሬሬሬ⃗ (𝑡) − 𝐴 ∙ 𝐷ሬሬ⃗                                𝑖𝑓 𝑝 < 0.5𝐷ᇱሬሬሬሬ⃗ ∙ 𝑒௕௟ ∙ cos(2𝜋𝑙) + 𝑋∗ሬሬሬሬ⃗ (𝑡)      𝑖𝑓 𝑝 ≥ 0.5  (6)

where 𝑝 is a random number between 0 and 1. 

2.3.3. Search for Prey (Exploration Phase) 

Humpback whales can randomly search for prey according to the position of each other. In the 
exploration phase, we can update the location of a search agent based on a randomly selected search 
agent, rather than the best search agent found so far. This mechanism emphasizes exploration, allowing 
the WOA algorithm to perform a global search. This mathematical model is expressed as follows: 𝐷ሬሬ⃗ = ห𝐶 ∙ 𝑋௥௔௡ௗሬሬሬሬሬሬሬሬሬሬሬ⃗ − 𝑋⃗ห (7)𝑋⃗(𝑡 + 1) = 𝑋௥௔௡ௗሬሬሬሬሬሬሬሬሬሬሬ⃗ − 𝐴 ∙ 𝐷ሬሬ⃗  (8)

where 𝑋௥௔௡ௗሬሬሬሬሬሬሬሬሬሬሬ⃗  is a random location vector selected from the current population. 
The WOA algorithm starts with a set of random solutions. In each iteration, the search agent 

updates its location based on the randomly selected search agent or the best solution obtained so far. A 
random search agent is selected when |Aሬሬ⃗ | > 1, and the best solution is selected when |Aሬሬ⃗ | < 1. According 
to 𝑝 value, WOA can switch between spiral and circular movement. The WOA algorithm is terminated 
when it satisfies the termination criterion. The pseudo code of the WOA algorithm is represented as 
follows: 

Algorithm 1 WOA 
Input: Maximum number of iterations 𝐼𝑡𝑒𝑟ெ௔௫ , Fitness function 𝐹௜ , Current iteration 
number t, 
      A random number 𝑙 between -1 and 1, A constant number 𝑏.  
1: Initialize the whales population 𝑋௜(𝑖 = 1,2,3, … , 𝑛) 
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2: for each search agent do 
3:    Calculate the fitness function 𝐹௜ 
4: end for 
5: 𝑋∗ = the best search agent 
6: while 𝑡 < 𝐼𝑡𝑒𝑟ெ௔௫ do 
7:    for each search agent do 
8:       Update 𝑎, 𝐴, 𝐶, 𝑙 and 𝑝 
9:       if 𝑝 < 0.5 then 
10:         if |𝐴| < 1 then 
11:            Update the position of search agent using Eq(2);  
12:         elseIf |𝐴| ≥ 1 
13:            Select a random search agent 𝑋௥௔௡ௗ; 
14:            Update position of search agent using Eq(8); 
15:         end if 
16:       elseIf 𝑝 > 0.5 
17:         Update the position with spiral Eq(5); 
18:       end if 
19:    end for 
20:    Check if any search agent goes beyond the search space and amend it; 
21:    for each search agent do 
22:       Calculate the fitness function 𝐹௜ 
23:    end for 
24:    Update 𝑋∗ if there is a better solution; 
25:    𝑡 = 𝑡 + 1 
26: end while 
27: return 𝑋∗ 

2.4. Extreme Learning Machine (ELM) 

ELM [32] is a simple and extremely fast learning algorithm of single-hidden layer feedforward 
neural networks (SLFN). ELM randomly assign input weights and hidden layer biases (thresholds) 
without adjustment in the training process, which leads to thousands of times faster than traditional 
feedforward network learning algorithms and better generalization performance in most artificial and 
real benchmark problems. The structure of single-hidden layer feedforward neural network is shown 
in Figure 2. 

 
Figure 2. Single hidden layer feedforward neural network. 
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For 𝑁  independent samples (𝑥௜, 𝑡௜) , 𝑥௜ = [𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௡]் ∈ 𝑅௡  and 𝑡௜ = [𝑡௜ଵ, 𝑡௜ଶ, … 𝑡௜௠]் ∈ 𝑅௠ . 
SLFN can be expressed as [32]: 

෍ 𝛽௜𝑔൫𝑤௜ ∙ 𝑥௝ + 𝑏௜൯ = 𝑜௝,   𝑗 = 1,2, … , 𝑁௅
௜ୀଵ  (9)

where 𝑤௜ = [𝑤௜ଵ, 𝑤௜ଶ, … , 𝑤௜௡]் is the weight vector between the input layer neurons and the 𝑖th hidden 
layer neuron, 𝑏௜ is the threshold of the 𝑖th hidden layer neuron, 𝑔(𝑥) is the activation function, and 𝛽௜ = [𝛽௜ଵ, 𝛽௜ଶ, … , 𝛽௜௠]் is the weight vector between the 𝑖th hidden layer neuron and the output layer 
neurons. Formula (9) can be expressed as: 𝐻𝛽 = 𝑇 (10)

where 𝐻 is the output matrix of the hidden layer, 𝛽 is the weight vector between the hidden layer 
neurons and the output layer neurons, 𝑇 is the expected output of network, represented as follows 
[32]: 

𝐻 = ൥𝑔(𝑤ଵ ∙ 𝑥ଵ + 𝑏ଵ) ⋯ 𝑔(𝑤௅ ∙ 𝑥ଵ + 𝑏௅)⋮ ⋯ ⋮𝑔(𝑤ଵ ∙ 𝑥ே + 𝑏ଵ) ⋯ 𝑔(𝑤௅ ∙ 𝑥ே + 𝑏௅)൩ே×௅ (11)

The number of required hidden layer neurons 𝐿 ≤ 𝑁 when activation function 𝑔 is infinitely 
differentiable. Its solution is: 𝛽መ = 𝐻ା𝑇 (12)

where 𝐻ା is the Moore-Penrose generalized inverse of 𝐻. 
ELM can generate 𝑤 and 𝑏 randomly before training and calculate 𝛽 only by determining 𝐿 

and 𝑔(𝑥). Generally, the ELM algorithm has the following steps: 
(1) Determine the number of neurons 𝐿 in the hidden layer, and randomly set the connection 

weight 𝑤  between the input layer and the hidden layer and the threshold 𝑏  of hidden layer 
neurons. 

(2) An infinitely differentiable function 𝑔(𝑥) is selected as the activation function of the hidden 
layer neurons, and then the output matrix 𝐻 of the hidden layer is calculated. 

(3) Calculate the weight of the output layer: 𝛽ො = 𝐻+𝑇. 

2.5. Fuzzy Comprehensive Evaluation (FCE) 

Environmental quality is a huge and ambiguous system with a large number of uncertain factors. 
Fuzzy mathematics [18] can effectively solve the influences of ambiguity of evaluation boundary and 
monitoring error on evaluation. Using membership function to represent air quality level can eliminate 
subjective and artificial factors in classification, objectively reflecting regional air quality. The concrete 
steps of fuzzy comprehensive evaluation are as follows: 

(1) Establish the factor set 
A factor set is a set of elements that affect the evaluation object, usually represented by 𝑈 ={𝑢ଵ, 𝑢ଶ, … , 𝑢௠}. It is well known that different pollutants can cause different hazards to human health, 

so these parameters should be treated separately. Therefore, six main pollutants are selected as air 
quality parameters in this project: 𝑈 = {𝑢ଵ, 𝑢ଶ, … , 𝑢଺} = {𝑃𝑀ଶ.ହ, 𝑃𝑀ଵ଴, 𝑁𝑂ଶ, 𝑆𝑂ଶ, 𝐶𝑂, 𝑂ଷ} (13)

(2) Set up the evaluation set 
Because this research is carried out in China, air pollutant concentration limits from “Technical 

Regulation on Air Quality Index (on trial) (HJ 633-2012)” of China have a reference value. On account 
of the lack of values of O3 (8 h) beyond the fifth level, we have a decision that the evaluation set 
comprises five levels: 𝑉 = {𝑣ଵ, 𝑣ଶ, … 𝑣ହ} = {Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ}  and the corresponding air quality 
categories are “Excellent, Good, Moderate, Poor, Hazardous”. The air quality levels and 
corresponding concentration limits of different pollutants are given in Table 1. 
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Table 1. The air quality level and corresponding concentration limit (units: μg/m3, CO (mg/m3)). 

Level Category PM2.5 PM10 NO2 NO2 NO2 O3 
Ⅰ Excellent 35 50 40 50 2 100 
Ⅱ Good 75 150 80 150 4 160 
Ⅲ Moderate 115 250 180 475 14 215 
Ⅳ Poor 150 350 280 800 24 265 
Ⅴ Hazardous 250 420 565 1600 36 800 

(1) Establish fuzzy matrix 
The fuzzy matrix can be expressed by the matrix 𝑅, where 𝑅௜௝ is the membership degree of 

factor 𝑢௜ aiming at the comment 𝑣௝: 

𝑅 = (𝑟௜௝)௠×௡ = ቎𝑟ଵଵ 𝑟ଵଶ𝑟ଶଵ 𝑟ଶଶ ⋯ 𝑟ଵ௡⋯ 𝑟ଶ௡⋯ ⋯𝑟௠ଵ 𝑟௜ଶ ⋯ ⋯⋯ 𝑟௠௡቏ (14)

The membership function can calculate the membership degree of pollutant concentration to the 
evaluation grade. There are many membership functions such as halved trapezoidal distribution 
function, Gauss membership function, triangular membership function, etc. In this study, the halved 
trapezoidal distribution function [33] which has often been used in air quality evaluation is selected 
and details are presented as follows: 

𝑟௜௝ = ቐ( 1𝑢௜(௝ାଵ) − 𝑥௜)/(𝑢௜(௝ାଵ) − 𝑢௜௝)0           𝑥௜ ≤ 𝑢௜௝𝑢௜௝ < 𝑥௜ ≤ 𝑢௜(௝ାଵ)𝑥௜ > 𝑢௜(௝ାଵ)           𝑗 = 1 

𝑟௜௝ = ቐ(𝑥௜ − 𝑢௜(௝ିଵ))/(𝑢௜௝ − 𝑢௜(௝ିଵ))(𝑢௜(௝ାଵ) − 𝑥௜)/(𝑢௜(௝ାଵ) − 𝑢௜௝) 0         𝑢௜(௝ିଵ) ≤ 𝑥௜ ≤ 𝑢௜௝𝑢௜௝ < 𝑥௜ ≤ 𝑢௜(௝ାଵ)𝑥௜ > 𝑢௜(௝ାଵ)     𝑗 = 2,3,4 

𝑟௜௝ = ൝ 0(𝑥௜ − 𝑢௜(௝ିଵ))/(𝑢௜௝ − 𝑢௜(௝ିଵ))1           𝑥௜ ≤ 𝑢௜(௝ିଵ)𝑢௜(௝ିଵ) < 𝑥௜ ≤ 𝑢௜௝𝑥௜ > 𝑢௜௝           𝑗 = 5 

(15)

(2) Determine the factor weightsThe weight of a factor is an index to measure the relative degree 
of a pollutant impact on air quality. The multi-scale weighting method is commonly used in the 
fuzzy evaluation of environment quality, therefore the weight of pollution factor can be obtained 
by Equation (16): 

𝑤௜ = [𝑢௜௞/(1𝑛 ෍ 𝑣௜௝௡
௝ୀଵ )]/ ෍[𝑢௜௞/(1𝑛 ෍ 𝑣௜௝௡

௝ୀଵ )]௠
௜ୀଵ  (16)

(3) Evaluation result 
By synthesizing the weight vector and the fuzzy matrix with the appropriate operator, the final 

result of the fuzzy comprehensive evaluation can be obtained. The Zadeh operator 𝑀(∧,∨)  is 
commonly used as a solution, therefore it is adopted here: 

𝐵 = 𝑊𝑅 = (𝑤ଵ, 𝑤ଶ, … 𝑤௠) (∧,∨) ቎ 𝑟ଵଵ 𝑟ଵଶ𝑟ଶଵ 𝑟ଶଶ ⋯ 𝑟ଵ௡⋯ 𝑟ଶ௡⋯ ⋯𝑟௠ଵ 𝑟௠ଶ ⋯ ⋯⋯ 𝑟௠௡቏ (17)

According to the principle of maximum membership degree, the maximum value of 𝐵 is the 
result of fuzzy comprehensive evaluation of air quality. 
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3. Experimental Results and Analysis 

In this section, in order to evaluate the performance of proposed air quality early-warning 
system, three datasets from three cities (Beijing, Tianjin, Shijiazhuang) in China were used in case 
studies (the simple map of the study areas is displayed in Figure 3. The main reasons for the choice 
are: (1) Jing-Jin-Ji region is a Beijing-centered world-class urban agglomeration which has a 
developed economy and important strategic position. It covers 13 cities, 110 million people and 
218,000 km2 of land area, so air pollution is really of concern here. (2) In this region, the heavy 
industrial structure, dense population and limited environmental capacity have led to frequent haze 
events which cause serious troubles to people’s normal life and social development. At the moment, 
how to balance economic development and environmental protection is urgent and it is hoped our 
system will be beneficial for air pollution control. (3) Influenced by meteorological conditions, 
pollutant emissions and transport, secondary transformation of particulate matter, synthetical effect 
of nature and human, the air pollution is extremely complex and prominent here. This problem not 
only seriously endangers human health and economic development, but also has impacts on climate 
and environment change. Therefore, relevant research conducted in this region is representative and 
referential for air pollution control of other metropolis in the world. 

 
Figure 3. Locations and climatic conditions of the study areas. 

3.1. Dataset Description 

Datasets used in this study were from the Ministry of Ecology Environment of China including 
daily concentration of six main air pollutants in three cities from 1 September 2016 to 30 September 
2018. For missing data, the nearby mean was used as the missing data. The sample size of one 
pollutant in one city was 760, which were divided into training set (699) from 1 September 2016 to 31 
July 2018 and testing set (61) from 1 August 2018 to 30 September 2018. The characteristics of the 
whole samples including maximum (Max), minimum (Min), mean (Mean) and standard deviation 
(Std.) are shown in Table 2. 
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Table 2. The statistical properties of air pollutant concentration. 

City Pollutant Concentration ((μg/m3), CO (mg/m3)) 
Indicator PM2.5 PM10 NO2 SO2 CO O3 

Beijing 

Max 454 840 155 84 8 311 
Min 5 7 7 2 0.2 3 

Mean 61.2 89.8 45.5 7.2 1.0 98.4 
Std. 57.5 72.8 22.2 7.2 0.8 63.3 

Tianjin 

Max 290 931 132 89 9 282 
Min 8 11 14 2 0.3 3 

Mean 62.3 97.3 48.6 15.3 1.3 105.6 
Std. 47.8 68.3 21.6 11.5 0.8 61.5 

Shijiazhuang 

Max 621 870 183 153 10 297 
Min 12 22 13 5 0.3 6 

Mean 91.5 160.8 53.1 31.4 1.5 106.1 
Std. 82.0 118.0 24.2 24.1 1.1 68.2 

3.2. Evaluation Criteria 

To evaluate the performance of the proposed system in forecast, a set of four criteria [34] are 
applied: Mean absolute error (MAE), Root mean square error (RMSE), Mean absolute percentage 
error (MAPE) and Theil’s inequality coefficient (TIC). MAE reflects the difference between the 
predicted and actual value. RMSE reflects the extent of the difference between the predicted and 
actual values. MAPE is an index to measure the forecasting accuracy of a model in statistics. TIC is 
an indicator used to measure the predictive capability of a model. For all criteria, the smaller the 
value is, the better predictive performance the model has. 

• Mean absolute error (MAE): 

𝑀𝐴𝐸 = 1𝑁 ෍ |𝐹ప෡ − 𝐹௜|ே
௜ୀଵ  (18)

• Root mean square error (RMSE): 

𝑅𝑀𝑆𝐸 = ඩ1𝑁 ෍(𝐹ప෡ − 𝐹௜)ଶே
௜ୀଵ  (19)

• Mean absolute percentage error (MAPE): 

𝑀𝐴𝑃𝐸 = 1𝑁 ෍ | 𝐹ప෡ − 𝐹௜𝐹௜ |ே
ூୀଵ  (20)

• Theil’s inequality coefficient (TIC): 

𝑇𝐼𝐶 = ට1𝑁 ∑ (𝐹ప෡ − 𝐹௜)ଶே௜ୀଵට1𝑁 ∑ 𝐹ప෡ଶே௜ୀଵ + ට1𝑁 ∑ 𝐹௜ଶே௜ୀଵ  (21)

where 𝑁 is the number of data, 𝐹ప෡ and 𝐹௜ are the predicted and actual value at time 𝑖, respectively. 

3.3. Diebold-Mariano (D-M) Test 

The Diebold-Mariano test [35] is a hypothesis test that is employed to evaluate the significance 
of the performance of proposed model compared with other models. The hypothesis test is defined 
as follows: 
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𝐻଴: 𝐸[𝑙(𝜀௡ା௧ଵ )] = 𝐸[𝑙(𝜀௡ା௧ଶ )] (22)𝐻ଵ: 𝐸[𝑙(𝜀௡ା௧ଵ )] ≠ 𝐸[𝑙(𝜀௡ା௧ଶ )] (23)

where 𝑙 is the loss function, 𝜀௡ା௧ଵ  and 𝜀௡ା௧ଶ  are the forecast errors of two forecasting models. Each 
forecast accuracy is evaluated by an appropriate loss function, and the commonly used loss function 
is the MAE (Equation 18) function [36]. For given significance level, the null hypothesis indicates that 
there is no significant difference between proposed model and comparison model in predictive 
performance. 

The statistical function of the DM test is as follows: 𝐷𝑀 = ∑ (𝑙(𝜀௡ା௧ଵ ) − 𝑙(𝜀௡ା௧ଶ ))/𝑇௧்ୀଵ ඥ𝑠ଶ/𝑇 𝑠ଶ (24)

where 𝑠ଶ is the estimate of variance of 𝐷௜ = 𝑙(𝜀௡ା௧ଵ ) − 𝑙(𝜀௡ା௧ଶ ). The null hypothesis is that the two 
prediction models have the same predictive accuracy. The DM statistic converges to the standard 
normal distribution 𝑁(0,1), and the null hypothesis will be rejected if |𝐷𝑀| > 𝑍ఈ ଶ⁄ . 𝑍ఈ ଶ⁄  denotes the 
critical 𝑧-value of the standard normal distribution, and α is the significance level. 

3.4. Case Studies 

In this paper, case studies were carried out to measure the performance of forecasting model. 
Single model and hybrid model including ARIMA [37], GRNN [38], ELM [26], GA-ELM, WOA-ELM 
and EEMD-WOA-ELM were used as benchmarks to assess the proposed hybrid model. The 
experiment was first conducted in Beijing to verify the predictive performance of the model in details, 
and then experiments in Tianjin and Shijiazhuang were used to prove universality. If the proposed 
model outperforms other models in all case studies, we can certainly draw the conclusion that the 
proposed model has not only high accuracy but also universal applicability in different 
environments. Meanwhile, the model was assessed by the statistical test based on DM test. 
Furthermore, the trial-and-error method was used to determine the best experimental parameters 
which are listed in Table 3. 

Table 3. Experimental parameters. 

Parameter PM2.5 PM10 NO2 SO2 CO O3 
Input variable 4 4 8 3 8 3 

Number of search agents 10 10 10 10 10 10 
MaxIter of WOA 200 200 200 200 200 200 

MaxIter of ICEEMDAN 1000 1000 1000 1000 1000 1000 
MaxIter: maximum iteration; WOA: Whale Optimization Algorithm; ICEEMDAN: Improved 
Complete Ensemble Empirical Mode Decomposition with Adaptive Noise. 

3.4.1. Case Study One: Beijing 

The daily concentrations of six air pollutants from 1 September 2016 to 31 September 2018 in 
Beijing were employed to verify the forecasting performance of the proposed hybrid model. Daily 
pollutant concentrations of two months from 1 August 2018 to 31 September 2018 were predicted and 
compared with actual data. Figure 4 shows the predictive results and Figure 5 shows the daily relative 
errors (relative error = (predicted value − actual value)/actual value). In addition, four performance 
indicators are calculated and given in Table 4. At the same time, Table 4 also shows the predictive 
effectiveness of ARIMA, GRNN, ELM, GA-ELM, WOA-ELM, EEMD-WOA-ELM and ICCEMDAN-
WOA-ELM as comparison, and the bold values represent the best values for each criterion. It is 
evident that ICEEMDAN-WOA-ELM model has the most excellent performance among all models. 
Its predictive results are very closer to actual values than other models. Influenced by many factors, 
though relative errors of PM2.5 and PM10 are larger than that of other pollutants for the highly 
nonlinear and non-stationary characteristics, the proposed model is more satisfactory.  
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Figure 4. Predictive results (Beijing). 

 
Figure 5. Daily relative error (Beijing). 

Table 4. Predictive effectiveness (Beijing). 

Pollutant Criterion ARIMA GRNN ELM 
GA-
ELM 

WOA-
ELM 

EEMD-
WOA-
ELM 

ICEEMDAN-
WOA-ELM 

PM2.5 

MAE 14.6003 19.5838 19.1736 17.0523 16.1554 11.2074 5.9228 
RMSE 18.5605 23.7382 23.3620 21.7668 21.1993 15.0801 7.7563 
MAPE 89.4611 155.6999 143.0254 125.3109 116.7680 60.3403 28.8783 

TIC 0.2445 0.2772 0.2694 0.2562 0.2531 0.2019 0.1038 

PM10 

MAE 17.0591 25.0788 20.8773 19.3449 18.0783 11.7358 6.8349 
RMSE 21.4795 29.0880 26.4483 25.2979 23.6904 14.4054 8.6609 
MAPE 47.6182 83.1894 67.8279 63.4524 57.3004 30.2585 16.8055 

TIC 0.2011 0.2364 0.2169 0.2107 0.2032 0.1375 0.0830 

NO2 

MAE 0.7594 1.4453 1.3793 1.0707 0.7643 0.4734 0.2982 
RMSE 0.9677 1.5697 1.5207 1.3447 1.0222 0.5826 0.3717 
MAPE 27.7888 60.4805 56.8319 39.4689 28.0332 16.1434 9.9484 

TIC 0.1580 0.2164 0.2098 0.1998 0.1617 0.1006 0.0631 

SO2 

MAE 6.6864 11.8116 9.9558 7.6664 7.3561 5.6606 3.2131 
RMSE 8.6302 13.4116 11.3911 9.5799 8.9238 7.8410 4.1274 
MAPE 22.1293 46.2987 38.7423 28.5756 27.1341 18.4094 10.7605 

TIC 0.1362 0.1818 0.1596 0.1405 0.1315 0.1203 0.0632 

CO 

MAE 0.1856 0.2648 0.2465 0.2105 0.1952 0.0972 0.0740 
RMSE 0.2390 0.2990 0.2916 0.2476 0.2404 0.1167 0.0915 
MAPE 30.894 50.8398 50.3263 37.5665 34.6805 15.3490 10.3210 

TIC 0.1499 0.1770 0.1742 0.1509 0.1474 0.0737 0.0586 

O3 

MAE 0.1856 0.2648 0.2465 0.2105 0.1952 0.0972 0.0740 
RMSE 0.2390 0.2990 0.2916 0.2476 0.2404 0.1167 0.0915 
MAPE 30.894 50.8398 50.3263 37.5665 34.6805 15.3490 10.3210 

TIC 0.1499 0.1770 0.1742 0.1509 0.1474 0.0737 0.0586 
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ARIMA: Autoregressive Integrated Moving Average; GRNN: Generalized Regression Neural 
Network; ELM: Extreme Learning Machine; GA: Genetic Algorithm; WOA: Whale Optimization 
Algorithm; EEMD: Ensemble Empirical Mode Decomposition; ICEEMDAN: improved complete 
ensemble empirical mode decomposition with adaptive noise; MAE: Mean absolute error; RMSE: 
Root mean square error; MAPE: Mean absolute percentage error; TIC: Theil’s inequality coefficient. 
Bold values represent the best values for each criterion among all models. 

Based on the information in Figure 4, Figure 5 and Table 4, it is clear that the proposed model 
obtains the best results for all evaluation indicators. Therefore, we can conclude that the proposed 
ICEEMDAN-WOA-ELM model is superior to benchmark models in the prediction of air pollutant 
concentrations. More comparative analyses are presented as follows: 

(1) As one of time series forecasting models, ARIMA is superior to single artificial intelligence 
models in accuracy. The four indexes (MAE, RMSE, MAPE, TIC) of ARIMA are almost better than 
those of single artificial intelligence models, which is attributed to the high volatility and irregularity 
of air pollutant concentration data. The results show that single artificial intelligence models cannot 
meet the requirements of air pollutant prediction which means it is urgent to develop a hybrid model 
to improve the predictive performance. 

(2) From the comparison between ELM and GA-ELM as well as WOA-ELM, we can conclude 
that optimization algorithms can really help neural network model improve performance. The ELM 
optimized by GA or WOA provides better predictive results for six air pollutants. For example, in 
PM2.5 forecast, the MAE, RMSE, MAPE, TIC are 17.0523, 21.7668, 125.3109, 0.2562 and 16.1554, 21.1993, 
116.7680, 0.2531 for GA-ELM and WOA-ELM respectively, with moderate improvements compared 
with 19.1736, 23.3620, 143.0254, 0.2694 of ELM. From the comparative indicators, we can also see that 
WOA has better optimization capability as it can avoid local optima and maintain fast convergence. 
Compared with other optimization algorithms, WOA not only is simple, flexible and effective, but 
also can achieve a balance between exploration and exploitation. 

(3) It can be clearly seen that the data preprocessing algorithm has brought a great improvement 
to the neural network model. Compared with other models, EEMD-WOA-ELM and ICEEMDAN-
WOA-ELM are so outstanding in prediction, which fully proves the concept “decomposition and 
integration” or “divide and conquer” to be effective for establishing a robust air pollutant prediction 
model. It is obvious that model with ICEEMDAN performs better than the counterpart with EEMD 
in any cases. For instance, four metrics are 14.1866, 17.2348, 13.9759, 0.0665 and 21.1571, 24.5963, 
21.8809, 0.0938, respectively, for O3. The results show that the decomposition method can greatly 
reduce predictive errors of model, and moreover, ICEEMDAN is superior to other decomposition 
methods in data decomposition. 

Through the above analyses, MAE, RMSE, MAPE and TIC were used to prove the proposed 
ICEEMDAN-WOA-ELM hybrid model is obviously superior to all considered benchmark models for 
its higher accuracy and stability. Compared with single model, all models based on “decomposition 
and integration” framework have better predictive effectiveness, which shows this framework can 
effectively improve the model performance. The proposed forecasting model fits all the data of air 
pollutants with high volatility and irregularity, so it is qualified as the prediction part of air quality 
early-warning system. 

3.4.2. Case Study Two: Tianjin and Shijiazhuang 

In order to verify the predictive and universal capabilities of the proposed model, the daily air 
pollutant concentration data of Tianjin and Shijiazhuang (from 1 September 2016 to 30 September 
2018) were also used in case studies. The main purpose is to test the generality of model under 
different environments. The predictive results are shown in Figures 6–9 and Tables 5–6. In Table 5 
and 6, bold values represent the best values for each criterion among all models. From predictive 
results, we can see at a glance that the proposed model has better predictive results and predicted 
values are much closer to real values. 
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Figure 6. Predictive effectiveness (Tianjin). 

 
Figure 7. Daily relative error (Tianjin). 

 
Figure 8. Predictive results (Shijiazhuang). 
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Figure 9. Daily relative error (Shijiazhuang). 

Table 5. Predictive effectiveness (Tianjin). 

Pollutant Criterion ARIMA GRNN ELM 
GA-
ELM 

WOA-
ELM 

EEMD-
WOA-ELM 

ICCEMDAN-
WOA-ELM 

PM2.5 

MAE 11.1395 23.9600 18.3412 15.6653 13.1864 9.4036 3.6645 
RMSE 14.0459 26.7422 21.0818 18.2338 16.4877 12.6058 4.6569 
MAPE 54.9751 136.5288 106.1613 88.4899 72.3501 46.5237 14.3900 

TIC 0.2005 0.2982 0.2546 0.2276 0.2131 0.1743 0.0669 

PM10 

MAE 12.7673 24.9898 20.4742 17.8837 16.3696 7.4594 3.9662 
RMSE 15.9043 28.5802 24.1671 22.3880 20.5478 9.5307 5.3299 
MAPE 30.3552 65.0635 52.6416 45.1890 42.6398 14.6617 7.8186 

TIC 0.1388 0.2106 0.1837 0.1733 0.1624 0.0844 0.0471 

NO2 

MAE 2.1836 2.5998 2.5202 2.3106 2.1731 1.2511 0.6417 
RMSE 2.7434 3.1492 3.0093 2.8300 2.0674 1.6499 0.7914 
MAPE 30.1119 44.1561 42.9450 37.7425 35.5006 18.3743 9.2402 

TIC 0.1736 0.1765 0.1681 0.1625 0.1528 0.0979 0.0478 

SO2 

MAE 6.3905 8.5673 7.8709 7.8024 7.5693 5.0008 3.4196 
RMSE 8.6427 10.9683 9.7383 9.8299 9.3928 6.3693 4.3845 
MAPE 19.4000 27.1388 25.8628 25.2229 25.2437 15.8650 10.9658 

TIC 0.1268 0.1540 0.1340 0.1364 0.1289 0.0894 0.0619 

CO 

MAE 0.1690 0.2124 0.1862 0.1830 0.1832 0.1071 0.0613 
RMSE 0.2127 0.2645 0.2321 0.2287 0.2244 0.1256 0.0834 
MAPE 19.5594 27.9640 23.8661 22.6987 22.4912 12.0626 6.4375 

TIC 0.1051 0.1235 0.1105 0.1090 0.1078 0.0624 0.0413 

O3 

MAE 36.9855 45.531 37.6976 36.3093 33.8067 23.4066 16.9133 
RMSE 46.9635 56.3589 48.6523 48.3885 43.7632 29.5649 22.2439 
MAPE 39.8767 42.4992 39.7669 38.3299 34.7636 21.4147 14.7261 

TIC 0.1606 0.1999 0.1688 0.1689 0.1531 0.1029 0.0779 

Bold values represent the best values for each criterion among all models. 

Table 6. Predictive effectiveness (Shijiazhuang). 

Pollutant Criterion ARIMA GRNN ELM GA-ELM 
WOA-
ELM 

EEMD-
WOA-LM 

ICCEMDAN-
WOA-ELM 

PM2.5 

MAE 10.4859 21.7164 21.4921 12.7615 12.8217 6.7221 3.6732 
RMSE 15.3272 24.7551 24.6503 16.9633 16.8340 8.8484 5.5817 
MAPE 30.3538 80.5130 74.7687 41.2516 39.6367 20.4192 9.6500 

TIC 0.1944 0.2502 0.2514 0.1952 0.1956 0.1096 0.0708 

PM10 

MAE 16.0775 32.3695 31.6741 23.5597 22.3872 10.0835 6.3997 
RMSE 23.4520 35.6565 35.8119 29.3459 27.5434 13.7531 8.9303 
MAPE 25.0404 57.2783 54.0533 39.1774 37.2602 14.7342 8.9955 

TIC 0.1601 0.2050 0.2053 0.1772 0.1689 0.0939 0.0613 

NO2 

MAE 2.5505 4.2360 3.7139 3.6167 2.5586 1.4341 0.8704 
RMSE 3.3275 4.7459 4.3104 4.2334 3.3493 1.7469 1.0678 
MAPE 20.2175 40.3479 35.7381 34.7040 21.7254 11.6619 6.8435 

TIC 0.1263 0.1575 0.1464 0.1445 0.1212 0.0647 0.0402 
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SO2 

MAE 7.0109 8.4042 8.0516 6.9242 6.6580 4.2502 2.9950 
RMSE 8.5705 10.1475 9.6071 8.5093 8.3986 5.0193 3.3823 
MAPE 21.1643 31.5203 28.5835 24.0445 23.3857 13.7525 9.2431 

TIC 0.1170 0.1279 0.1227 0.1111 0.1087 0.0662 0.0448 

CO 

MAE 0.1537 0.2320 0.1770 0.1716 0.1633 0.0992 0.0469 
RMSE 0.2132 0.2621 0.2340 0.2384 0.2231 0.1477 0.0606 
MAPE 18.9156 30.0013 23.5163 22.4597 21.4932 13.6973 5.8451 

TIC 0.1255 0.1421 0.1289 0.1330 0.1251 0.0836 0.0351 

O3 

MAE 33.2598 36.6192 34.486 33.1336 32.2717 18.0171 13.3396 
RMSE 41.6933 44.6073 42.289 41.2401 40.1199 22.4609 17.9202 
MAPE 36.7295 35.1486 36.6671 35.9133 34.2240 18.2649 12.8219 

TIC 0.1531 0.1663 0.1570 0.1508 0.1485 0.0842 0.0675 

Bold values represent the best values for each criterion among all models. 

These experiments lead to the same conclusion as case study one that the hybrid model 
ICEEMDAN-WOA-ELM is superior to all listed benchmark models. For example, for the PM10 
forecast in Tianjin and Shijiazhuang, four metric values (MAE, RMSE, MAPE, TIC) of the proposed 
hybrid model are 3.9662, 5.3299, 7.8186, 0.0471 and 6.3997, 8.9303, 8.9955, 0.0613, respectively, which 
are much lower than that of other models, and the same is true for other pollutants. Overall, different 
denoising methods and optimization algorithms lead to the large gaps in predictive performance. 
Obviously, the model has great accuracy, stability, applicability and can be well adapted to various 
pollutants under different environments. 

Four typical evaluation indicators (MAE, RMSE, MAPE and TIC) were used to measure the 
performance of all models. The hybrid model ICEEMDAN-WOA-ELM performs best for it has the 
greatest evaluation criteria. Through these experiments, we can reasonably draw following 
conclusions: data preprocessing algorithm and optimization algorithm can significantly improve the 
predictive performance of the model. The proposed model with excellent predictive performance will 
be the bedrock of establishing air quality early-warning system. In addition, for their universality, 
these methods can be combined with some basic models to meet the needs of other research fields. 

3.4.3. Diebold-Mariano Test 

In this section, Diebold-Mariano test was used to examine the effectiveness of the proposed 
hybrid model. DM test is employed to test under which circumstance an experiment will enable us 
to reject null hypothesis at a given significance level. The detailed description of DM test is presented 
in section 3.3. The null hypothesis (Equation 22) here is that there is no significant difference between 
the two models. Table 7 shows the DM test statistic value based on the MAE (Equation 18) function. 
The DM values from all models are greater than the upper limits at the 1% significance level, which 
reflects that the proposed hybrid model significantly outperforms other comparison models. 

Table 7. Diebold-Mariano test of seven models. 

Model DM Value 
ARIMA 4.490165 * 

GRNN 6.575409 * 
ELM 6.162329 * 

GA-ELM 5.093331 * 
WOA-ELM 4.742791 * 

EEMD-WOA-ELM 3.587006 * 
ICEEMDAN-WOA-ELM - 

* Denotes the 1% significance level. 

3.5. Fuzzy Comprehensive Evaluation of Air Quality 

In this section, predicted data of September 2018 were used for fuzzy comprehensive evaluation 
and further analysis. This work could visualize the predicted results of three cities. Limited by the 
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length of paper, we had to take only the results of twenty days in September 2018 as examples which 
included evaluation results based on predicted and actual value as comparison to get the accuracy of 
the model in level forecast. Firstly, according to the methodology of fuzzy comprehensive evaluation 
described in section 2.4, the evaluation set V= {Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ} was established. Secondly, the 
membership degree of each factor to each evaluation level was calculated by the membership degree 
formula, and the fuzzy matrix 𝑅  was established. Thirdly, the weight of pollution factor value 
calculated by multi-scale weighting method was an index to measure the relative degree of 
environmental hazards which greatly affected the evaluation result. Finally, according to the fuzzy 
matrix and weight index, the membership degree of evaluation level and air quality level were 
obtained. Evaluation results of Beijing are shown in Table 8. Taking the result of one day (01/09/2018) 
as an example, the probability of air quality as “Ⅰ” is 0.3759, and the probability of “Ⅱ”, “Ⅲ”, “Ⅳ” 
and “Ⅴ” are 0.3409, 0, 0 and 0 respectively. According to the principle of maximum membership 
degree, the comprehensive evaluation level of air quality should be “Ⅰ” and the corresponding 
category is “Excellent”. 

The consistency ratio of the two results in Beijing is 27/30 (90%), which not only shows the high 
accuracy of the proposed hybrid model in level forecast but also indirectly proves predicted 
concentration data are so accurate that they can fully satisfy the need of air quality early warning. 
Using the same algorithm, the fuzzy comprehensive evaluation of air quality for Tianjin and 
Shijiazhuang were conducted and the results are shown in Table 9 and Table 10. Overall, the 
evaluation results are basically same in these two cities. The consistency rates in Tianjin and 
Shijiazhuang are 26/30 (87%) and 30/30 (100%), respectively.
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Table 8. Air quality evaluation results of Beijing. 

Date 
Predicted Value Actual Value 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Level Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Level 
2018/9/1 0.3759 0.3409 0 0 0 Ⅰ 0.2879 0.3823 0 0 0 Ⅱ 
2018/9/2 0.3420 0.0630 0 0 0 Ⅰ 0.3805 0.2167 0 0 0 Ⅰ 
2018/9/3 0.3996 0 0 0 0 Ⅰ 0.3530 0 0 0 0 Ⅰ 
2018/9/4 0.5586 0.1814 0 0 0 Ⅰ 0.5055 0 0 0 0 Ⅰ 
2018/9/5 0.5250 0.1205 0 0 0 Ⅰ 0.4839 0.2333 0 0 0 Ⅰ 
2018/9/6 0.4711 0 0 0 0 Ⅰ 0.4105 0 0 0 0 Ⅰ 
2018/9/7 0.5059 0 0 0 0 Ⅰ 0.5125 0 0 0 0 Ⅰ 
2018/9/8 0.4855 0 0 0 0 Ⅰ 0.4675 0 0 0 0 Ⅰ 
2018/9/9 0.4009 0.4009 0 0 0 Ⅰ 0.3962 0.3962 0 0 0 Ⅰ 

2018/9/10 0.3367 0.3367 0 0 0 Ⅰ 0.3067 0.3067 0 0 0 Ⅰ 
2018/9/11 0.3363 0.3363 0 0 0 Ⅰ 0.3377 0.3377 0 0 0 Ⅰ 
2018/9/12 0.3094 0.3398 0.0035 0 0 Ⅱ 0.2744 0.3885 0.0727 0 0 Ⅱ 
2018/9/13 0.1892 0.3649 0.2231 0 0 Ⅱ 0.2123 0.3418 0.1818 0 0 Ⅱ 
2018/9/14 0.2579 0.3874 0.2620 0 0 Ⅱ 0.2174 0.3750 0.3894 0 0 Ⅲ 
2018/9/15 0.3459 0.1011 0 0 0 Ⅰ 0.3840 0 0 0 0 Ⅰ 
2018/9/16 0.4600 0 0 0 0 Ⅰ 0.4532 0 0 0 0 Ⅰ 
2018/9/17 0.3094 0.0540 0 0 0 Ⅰ 0.3267 0.0250 0 0 0 Ⅰ 
2018/9/18 0.2673 0.2636 0 0 0 Ⅰ 0.2722 0.2500 0 0 0 Ⅰ 
2018/9/19 0.2867 0.2427 0 0 0 Ⅰ 0.2755 0.2749 0 0 0 Ⅰ 
2018/9/20 0.3129 0.0907 0 0 0 Ⅰ 0.2954 0.2954 0 0 0 Ⅰ 

Table 9. Air quality evaluation results of Tianjin. 

Date 
Predicted Value Actual Value 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Level Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Level 
2018/9/1 0.3742 0.4024 0 0 0 Ⅱ 0.3873 0.3000 0 0 0 Ⅰ 
2018/9/2 0.3429 0.2484 0 0 0 Ⅰ 0.3369 0.2500 0 0 0 Ⅰ 
2018/9/3 0.3899 0.3899 0 0 0 Ⅰ 0.3286 0.0833 0 0 0 Ⅰ 
2018/9/4 0.4165 0.4944 0 0 0 Ⅱ 0.4933 0.1167 0 0 0 Ⅰ 
2018/9/5 0.4325 0.4325 0 0 0 Ⅰ 0.4160 0.4160 0 0 0 Ⅰ 
2018/9/6 0.3855 0.0981 0 0 0 Ⅰ 0.3448 0.1900 0 0 0 Ⅰ 
2018/9/7 0.4138 0 0 0 0 Ⅰ 0.4372 0 0 0 0 Ⅰ 
2018/9/8 0.3991 0 0 0 0 Ⅰ 0.3970 0 0 0 0 Ⅰ 
2018/9/9 0.4137 0.3976 0 0 0 Ⅰ 0.3833 0.4446 0 0 0 Ⅱ 
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2018/9/10 0.2117 0.4074 0 0 0 Ⅱ 0.2050 0.4109 0.1273 0 0 Ⅱ 
2018/9/11 0.2155 0.4149 0.1949 0 0 Ⅱ 0.2090 0.4366 0.2727 0 0 Ⅱ 
2018/9/12 0.2329 0.3903 0.2889 0 0 Ⅱ 0.2423 0.3796 0.1091 0 0 Ⅱ 
2018/9/13 0.2748 0.3510 0.3495 0 0 Ⅱ 0.2624 0.3427 0.3091 0 0 Ⅱ 
2018/9/14 0.3118 0.3118 0 0 0 Ⅰ 0.2174 0.3261 0.0727 0 0 Ⅱ 
2018/9/15 0.3053 0.0750 0 0 0 Ⅰ 0.3111 0.0800 0 0 0 Ⅰ 
2018/9/16 0.2726 0.1214 0 0 0 Ⅰ 0.3342 0.0750 0 0 0 Ⅰ 
2018/9/17 0.2436 0.2089 0 0 0 Ⅰ 0.2807 0.2512 0 0 0 Ⅰ 
2018/9/18 0.3321 0.3321 0 0 0 Ⅰ 0.2924 0.2250 0 0 0 Ⅰ 
2018/9/19 0.3263 0.4014 0 0 0 Ⅱ 0.1878 0.4159 0 0 0 Ⅱ 
2018/9/20 0.3211 0.2638 0 0 0 Ⅰ 0.3070 0.2000 0 0 0 Ⅰ 

Table 10. Air quality evaluation results of Shijiazhuang. 

Date 
Predicted Value Actual Value 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Level Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Level 
2018/9/1 0.3760 0.3359 0 0 0 Ⅰ 0.4052 0.4000 0 0 0 Ⅰ 
2018/9/2 0.2113 0.4302 0 0 0 Ⅱ 0.2326 0.4248 0.2000 0 0 Ⅱ 
2018/9/3 0.3602 0.1608 0 0 0 Ⅰ 0.3749 0.2000 0 0 0 Ⅰ 
2018/9/4 0.3898 0.0818 0 0 0 Ⅰ 0.4083 0.0500 0 0 0 Ⅰ 
2018/9/5 0.3464 0.0377 0 0 0 Ⅰ 0.3453 0.1833 0 0 0 Ⅰ 
2018/9/6 0.3377 0.1469 0 0 0 Ⅰ 0.3175 0.2300 0 0 0 Ⅰ 
2018/9/7 0.3980 0 0 0 0 Ⅰ 0.4072 0 0 0 0 Ⅰ 
2018/9/8 0.4098 0.2360 0 0 0 Ⅰ 0.3883 0.2333 0 0 0 Ⅰ 
2018/9/9 0.2982 0.3537 0 0 0 Ⅱ 0.2500 0.3614 0 0 0 Ⅱ 

2018/9/10 0.2602 0.3283 0 0 0 Ⅱ 0.2654 0.3243 0.0364 0 0 Ⅱ 
2018/9/11 0.2729 0.3297 0 0 0 Ⅱ 0.2821 0.3100 0 0 0 Ⅱ 
2018/9/12 0.3150 0.3306 0 0 0 Ⅱ 0.2610 0.3448 0 0 0 Ⅱ 
2018/9/13 0.2704 0.2704 0 0 0 Ⅰ 0.2543 0.2400 0 0 0 Ⅰ 
2018/9/14 0.2224 0.3135 0 0 0 Ⅱ 0.1821 0.3227 0.1750 0 0 Ⅱ 
2018/9/15 0.2477 0.3391 0 0 0 Ⅱ 0.3245 0.3619 0 0 0 Ⅱ 
2018/9/16 0.2830 0.2830 0 0 0 Ⅰ 0.2842 0.2842 0 0 0 Ⅰ 
2018/9/17 0.2858 0.2087 0 0 0 Ⅰ 0.2998 0.2998 0 0 0 Ⅰ 
2018/9/18 0.3047 0.2141 0 0 0 Ⅰ 0.2622 0.2168 0 0 0 Ⅰ 
2018/9/19 0.3170 0.2195 0 0 0 Ⅰ 0.3291 0.2131 0 0 0 Ⅰ 
2018/9/20 0.2597 0.2129 0 0 0 Ⅰ 0.2451 0.2197 0 0 0 Ⅰ 
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Therefore, the evaluation method can effectively link the pollutant concentration prediction with 
air quality early warning. Nevertheless, precise predictions of pollutant concentration and air quality 
level are not enough, because achievements of scientific research are expected to truly serve the 
society. Further work can be performed based on former research which means more intuitive air 
quality information can be released and public alarms can be issued. Therefore, an air pollution early-
warning handbook was compiled and details are shown in Table 11. This work can not only guide 
people’s daily activities against air pollution but also provide decision-making support for 
government such as evaluate whether the air quality of a city meets the criteria or which temporary 
but mandatory measures should be taken to address potential air pollution problems. 

Table 11. Air pollution early-warning handbook. 

Level Category Color Condition Measure 

Ⅰ excellent green 
satisfactory air 
quality 

Outdoor activities are suitable for all people. 

Ⅱ good blue 
acceptable air 
quality 

The very few abnormally sensitive people should reduce 
outdoor activities. 

Ⅲ moderate yellow 
mild pollution is 
unhealthy to 
sensitive people 

Sensitive people including children, the elderly and patients 
with respiratory tract, cardiovascular and cerebrovascular 
diseases should reduce outdoor activities. Public transportation 
is recommended for travel. 

Ⅳ poor red 
moderate pollution 
is unhealthy to all 
people 

Sensitive people should avoid outdoor activities which also 
need to be reduced by general people. Prefer public 
transportation and reduce construction and traffic dust. 

Ⅴ hazardous purple 
heavy pollution is 
hazardous to all 
people 

Besides above measures, road flushing and cleaning, 
suspension of large-scale open-air activities, outdoor personnel 
wear masks are all needed. 

Tips: six major air pollutants include PM2.5, PM10, NO2, SO2, CO and O3. It is necessary to know 
their characteristics: 

• PM2.5: namely fine particulate matter, particle size less than or equal to 2.5 μm, it has smaller 
size, larger area, stronger activity, easier to attach toxic and harmful substances, longer residence 
time and transportation distance in atmosphere which mean more harmful to human health and 
air quality than PM10, can enter bronchioles and alveoli causing cardiopulmonary disease and 
even lung cancer. 

• PM10: namely inhalable particulate matter, particle size less than or equal to 10 μm, can reduce 
the atmospheric visibility, enter upper respiratory tract causing respiratory disease. 

• NO2: rufous and irritating odor, can promote acid rain and ozone, damage respiratory tract. 
• SO2: colorless and irritating odor, can be oxidized into sulfuric acid mist (acid rain) or sulfate 

aerosol, cause respiratory diseases and cancer. 
• CO: colorless and tasteless, mainly from uncompleted combustion, cause suffocation even death. 
• O3: light blue with special odor, major constituent of photochemical smog, damage human 

mucosa and respiratory tract. 

4. Conclusions 

Air pollution is a long-standing problem that plagues the whole world, seriously harming 
human health, social development and natural environment. In order to solve this problem, a great 
deal of manpower and material resources have been invested, but unfortunately the results are not 
satisfactory enough. There is always a way and the rapid development of artificial intelligence in 
recent years has brought new hope for air pollution control. This proposed air quality early-warning 
system is hoped to play a key role in future for its accuracy and effectiveness. This system mainly 
consists of two parts: prediction model and evaluation model. 

In order to establish the prediction model, ELM, which is famous for accuracy and robustness, 
was employed. Taking ELM as the core, a hybrid model ICEEMDAN-WOA-ELM was proposed. 
Firstly, according to the theory of “decomposition and integration”, the original time series of 
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pollutant concentration were decomposed into IMFs by decomposition algorithm (ICEEMDAN). 
Secondly, the ELM optimized by WOA was used to predict each IMF. Finally, all the predictive 
results were combined to get the final predictive result. In this study, six main air pollutants PM2.5, 
PM10, NO2, SO2, CO and O3 in Beijing, Tianjin and Shijiazhuang were chosen. This proposed 
prediction model was used to predict air pollutant concentrations and compare with the six 
benchmark models including ARMA, GRNN, ELM, GA-ELM, WOA-ELM and EEMD-WOA-ELM. 
The simulation results showed that the proposed ICEEMDAN-WOA-ELM model was superior to 
other models and ICEEMDAN decomposition algorithm along with WOA optimization algorithm 
played important roles in improving the prediction accuracy of neural network. 

In addition to prediction of air pollutant concentration, air quality evaluation was an 
indispensable part of the air early warning system. For the sake of understanding the future state of 
air, air quality was evaluated with the above predicted data by fuzzy comprehensive evaluation. The 
evaluation results were satisfactory enough compared with the actual status, which means our 
proposed evaluation model can meet the requirement of early warning. Furthermore, air pollution 
early-warning handbook was compiled to provide the public with intuitive air quality information 
and reasonable measures. 

The combination of air pollutant prediction and air quality evaluation lays a solid foundation 
for the establishment and implementation of air quality early-warning system. The proposed system 
can offer us accurate air pollutant concentration prediction, correct air quality evaluation, reasonable 
countermeasures and scientific decision-making support, which means it will become a sharp 
weapon for air pollution control and even smart city construction in future. 
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