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Abstract: The future implications of climate change on malaria transmission at the global level have
already been reported, however such evidences are scarce and limited in India. Here our study
aims to assess, identify and map the potential effects of climate change on Plasmodium vivax (Pv) and
Plasmodium falciparum (Pf ) malaria transmission in India. A Fuzzy-based Climate Suitability Malaria
Transmission (FCSMT) model under the GIS environment was generated using Temperature and
Relative Humidity data, extracted from CORDEX South Asia for Baseline (1976–2005) and RCP 4.5
scenario for future projection by the 2030s (2021–2040). National malaria data were used at the model
analysis stage. Model outcomes suggest that climate change may significantly increase the spatial
spread of Pv and Pf malaria with a numerical increase in the transmission window’s (TW) months,
and a shift in the months of transmission. Some areas of the western Himalayan states are likely to
have new foci of Pv malaria transmission. Interior parts of some southern and eastern states are likely
to become more suitable for Pf malaria transmission. Study has also identified the regions with a
reduction in transmission months by the 2030s, leading to unstable malaria, and having the potential
for malaria outbreaks.
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1. Introduction

Malaria is still a major public health challenge in India, where around one million cases are
reported annually [1]. One of the major reasons for the persistence of malaria is the extensive geographic
and climatic diversity of the country, which supports ideal ecological conditions for sustaining the
parasites and their vectors. Studies have found that the spatial limits of the distribution and seasonality
of malaria are sensitive to the seasonal characteristics of climatic factors [2–4]. The major climatic
determinants of malaria are temperature, rainfall and humidity [5–9]. Impact of climate change is not
uniform around the globe: Some places may become warmer and drier, while others warmer and
wetter [10]. Hence, the threat of climate change is expected to have a profound effect on the mosquito’s
longevity, development of malaria parasites in the vectors, and consequently opening the windows
of malaria transmission particularly in areas which are free due to temperature constrains. In other
words, global climate change is likely to alter the spatial and temporal distribution of malaria.

Prior studies suggest that climate change will increase the opportunities for malaria transmission in
traditionally non-malarious areas, and make it difficult to control in traditionally malarious areas due
to an alteration in their growth cycle and transmission seasons [11–13]. Studies in recent decades have
reported the evidences about an increase in the spread of the disease in the current malaria endemic
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areas [14,15], a reemergence of the disease in areas which have eliminated the disease in the past [16],
and at the same time, areas with reduced endemicity due to reduction in overall vectorial capacity [17].
Although it has been recognized that the direct and indirect effects of climate change depend upon the
population’s ability (social, economic and political environment) to cope with and respond to disease
burdens, the impacts of future climate change on malaria transmission cannot be ignored [18,19].

The future repercussions of climate change on malaria transmission at the global level have
already been explored; however, such evidences are limited in India. In India, climate suitability
models for malaria transmission were developed mainly by considering the Temperature and Rainfall
variables [20,21]. Based on PRECIS data (baseline of 1961–1990) for Temperature and Relative
Humidity (RH), Dhiman et al., 2011 [22] had projected the climate suitability of malaria transmission
with respect to climate change by the year 2030. These regional models were developed on traditional
threshold-based hard partitioning. Soft partitioning approaches like Fuzzy logic-based climate
suitability models have been applied to define suitable and unsuitable areas for malaria transmission in
many studies [3,23–26] around the globe, but not in India. While resolving the uncertainty in defining
distinct thresholds of most suitable to least suitability, the present study adopts the soft partitioning
approach using Temperature and RH to map potential malaria transmission vulnerability in the context
of climate change. Hence, a Fuzzy-based Climate Suitability Malaria Transmission (FCSMT) model
using CORDEX (Coordinated Regional Climate Downscaling Experiment) data is generated with the
objective of identifying climate-based Plasmodium vivax (Pv) and Plasmodium falciparum (Pf ) malaria
transmission vulnerability with respect to the climate change scenario. Resultant maps would guide
the National Vector Borne Disease Control Programme (NVBDCP) in addressing the early preparedness
to eradicate malaria. The near-future projected malaria transmission scenario in the present study is
limited to the 2030s for two reasons: One, climate sensitivity uncertainty increases in the long term
projections; and two, this study is an initiative towards the Government of India’s National Framework
for Malaria Elimination in India 2016–2030 Program [27].

2. Materials and Methods

2.1. Characteristics of Malaria Transmission in India

In India, the distribution of vectors and malaria endemicity largely depends on the physiographic,
climatic, eco-epidemiology and socio-developmental conditions and varying from area to area.
The northern part of the country is characterized by a subtropical climate and increase in altitude
towards north, and has high variation of temperature between summer and winter with only a brief
rainy season, providing suitable RH for a shorter period. The southern part of India has a tropical
climate and is surrounded by seas; the temperature varies little throughout the year, and receives
significant SW and NE monsoonal rains. The northeastern states are characterized by the Himalayan
ranges receiving heavy annual rainfall (>2000 mm), a most conducive temperature, and thus stable
malaria transmission. The western states, particularly Rajasthan, Gujarat and parts of Karnataka,
are mainly plain areas, receive scanty rainfall (<1000 mm), and are prone to malaria outbreaks.

There are nine major vectors of malaria in India, of which An. culicifacies, An. fluviatilis, An. stephensi,
An. minimus and An. dirus are the primary vectors in India, while An. sundaicus, An. annularis,
An. pulcherrimus and An. subpictus are reported as the secondary vectors [28,29].

Of 630 districts (an administrative unit in a state having population of around one million or
more, Census of India 2011) in India, the major vectors, An. culicifacies, An. fluviatilis and An. stephensi
are present in 420, 241, and 243 districts respectively [30]. Such diversity, no doubt, plays a key role in
determining the distribution and seasonality of malaria across the country.

Plasmodium vivax and Plasmodium falciparum are the main malaria parasites, though P. malariae,
P. ovale and P. knowlesi have also been recorded, but rarely. P. vivax accounts for around half of all malaria
cases in the country. As per the available data of 2014, a high Annual Parasite Incidence (API > 5) was
found in most of the districts of Chhattisgarh, Jharkhand, Odisha and north-eastern states of India; and
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a few districts of Madhya Pradesh, Andhra Pradesh, Maharashtra and Gujarat (Figure 1A). Notably,
except Andhra Pradesh and some NE states, all of the states, particularly in western part of India, have
annual malaria cases less than 50,000, and more cases attributable to Pv (Figure 1B), probably because of
the phenomenon of relapse/reinfection. The states of Chhattisgarh, Jharkhand and Odisha located in
the eastern part are the predominant states for the Pf burden, of which the state of Odisha alone shares
nearly 50% of this Pf burden of the country. The high burden states have the presence of two vectors (An.
culicifacies and An. fluviatilis in the eastern part, while An. minimus and An. dirus in northeastern states).Int. J. Environ. Res. Public Health 2019, 16, x 4 of 17 
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Figure 1. (A) Annual parasite incidence (API) for Plasmodium vivax (Pv) and Plasmodium falciparum (Pf ),
2014; (B). State wise average annual distribution of Pv, Pf and death cases (2013–2017). (Data source:
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The control strategy for malaria is active case detection with blood slides and or rapid diagnostic
kits at fortnightly intervals, two rounds of Indoor residual spray (IRS) with appropriate insecticide for
vector control and the distribution of Long Lasting Nets in high endemic areas [31].
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2.2. Climate Model Data

District wise monthly Temperature and RH data for Baseline years (1976–2005) and its near
future projection scenario of the 2030s (2021–2040) were extracted from CORDEX South Asia (domain
WAS-44i). The near-future projection has an advantage of a minimum climate sensitivity uncertainty
that increases in long term projections [32]. CORDEX South Asia downscaled RCM simulations are
driven with 10 CMIP5 (Coupled Model Intercomparison Project Phase 5) AOGCMs (Atmosphere-Ocean
coupled General Circulation Models) [33], using three of the four greenhouse gas emissions scenarios
known as Representative Concentration Pathways (RCPs) [34]. Studies have put forward that the
CMIP5 ensemble is able to simulate the broad spatial distribution patterns of the all-India annual
mean temperature and precipitation distribution reasonably well [35]. Details on the CORDEX data
which are comprised of downscaled climate scenarios for the South Asia region can be available from
http://www.cordex.org/.

The CORDEX South Asia dataset includes dynamically downscaled projections to remove
systematic error (called bias) and provide a set of high resolution (50 km) regional climate change
projections. For the near future projection scenario of the 2030s, Near-Air-surface Temperature and RH,
MPI-M-MPI-ESM-LR_MPI-CSC-REMO2009 and MPI-M-MPI-ESM-LR_SMHI-RCA4-simulated climate
data models RCP 4.5 scenario, respectively were used. RCP 4.5 corresponds to a low stabilization
scenario, and represents the realistic range from a reduction of GHG emissions in the near-term
future [36,37]. Increase of global mean surface temperatures under RCP 4.5 is projected to be between
1.1 ◦C and 2.6 ◦C (high confidence) until the end of this century with respect to 1986–2005 [38]. The RCP
4.5 was found to be in good coherence with the observed climate of the Indian subcontinent [35] and
was, therefore, chosen for the present study. The projected increase in temperature by the 2030s is
expected to be 1.7–2 ◦C. The CORDEX South Asia RCM data sets were downloaded from Earth System
Grid Federation (ESGF) Data Node. The other secondary datasets used during model formulation
and analysis are observed meteorological data (temperature, rainfall and RH) 2010–2012, and malaria
epidemiological data 2013–2017, procured from the Indian Meteorological Department (IMD, Pune)
and NVBDCP, respectively.

2.3. Selection of Model Indices

The diverse geography of India is characterized by a subtropical monsoon climate. Therefore,
to model the climate suitability map for malaria transmission, multicollinearity among temperature,
rainfall and RH for 2010, 2011 and 2012 IMD data were assessed. It shows that rainfall and RH are the
two predictor variables that are highly correlated (r = 0.8, p < 0.05). Thus, both the predictors have a
similar effect upon malaria transmission under suitable temperature conditions. Unlike RH, Rainfall
pattern (number of rainy days etc.) and quantity is highly variable across the country, and has a lag
period effect on malaria transmission [39,40], which also varies geographically.

The influences of temperature and humidity on the mosquito were considered inseparable in
earlier studies [41,42], and were, therefore, considered as indices for the FCSMT model.

2.4. Fuzzy-Based Climate Suitability Malaria Transmission (FCSMT) Model Framework

The FCSMT model includes six stages: 1. Generation of monthly interpolated temperature and RH
maps for both the periods i.e., Baseline (1976–2005) and projected by 2030s (2021–2040); 2. Determination
of fuzzy membership functions for both indices; 3. Creation of fuzzy-monthly temperature and RH
suitability maps; 4. Month-wise generation of climate suitability maps for each period; 5. Generation of
TW’s-based climate suitability map for both period; and, 6. Generation of ‘climate suitability change map’.

An Inverse Distance Weighting (IDW) [43] interpolation algorithm was applied to further
downscale the climate data to a 10 km resolution, the data were later classified into fuzzy subsets by
fuzzy membership functions. Fuzzy set theory attempts to generate a consistent representation of an
inconsistent reality [44], where the fuzzy membership function (µ) is a curve that defines the degree

http://www.cordex.org/
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of belongingness between 0 and 1 [45]. Unlike threshold-based models, fuzzy-based models have
an advantage over information or data loss by making it a prime candidate for inclusion in a model
during classification.

Vectorial capacity estimates for malaria (relying upon temperature) have generally been
represented in Gaussian/binomial shapes [46,47], but in such cases where we work with ‘optimal range’
instead of ‘optimal point’ for Temperature and RH for malaria transmission suitability, these functions
are not appropriate. Previous studies suggest that temperature ranging between 18 ◦C and 32 ◦C is
required for Pf transmission [3,48], while for Pv it is 16 ◦C and 32 ◦C. Regarding RH, the ‘most suitable’
range for transmission is between 55 and 80 percent, while, the lower and upper threshold, which
are though poorly delineated so far, are taken as 40 and 95, respectively, on the basis of: 1. Vector
survival is least at RH less than 40% [49,50], and 2. Mosquito activity is suppressed with humidity
over 95% [51–54]. Until now, no study has been able to determine the ‘optimal RH%’, as for temp it
is 28 ◦C [48]. Since, we have considered the ‘most suitable range’ for defining temperature and RH
suitability thresholds; ‘sinusoidal membership function’ was selected. This function is characterized
by four scalar parameters, a, b, c and d. Defined as (Figure 2):
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Figure 2. Sinusoidal membership function definition.

For the temperature index, ‘a’ represents the lower threshold (18 ◦C for Pf, and 16 ◦C for Pv),
‘d’ represents the upper threshold (32 ◦C for both Pf and Pv), beyond which the membership function
is 0 that is ‘least suitable’; whereas, ‘b’ and ‘c’ represent 24 ◦C and 28 ◦C, respectively, this range has
been identified as the ‘most suitable’ range for malaria transmission [48,55], the membership function
is 1. Similarly, for RH scalar parameters a, b, c and d are 40, 55, 80 and 95, respectively, where the
membership function for the range 55% and 80% is 1 as ‘most suitable’, and as the value moves away
from the range towards 40% or 95%, the membership function decreases to 0, representing ‘least
suitable’ (Table 1).
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Table 1. The scalar parameters of the function.

Parameters Temperature (in ◦C) RH (in %) Remarks

Pv a 16 40 Least suitable
b 24 55 Most suitable
c 28 80 Most suitable
d 32 95 Least suitable

Pf a 18 40 Least suitable
b 24 55 Most suitable
c 28 80 Most suitable
d 32 95 Least suitable

Arc GIS10 software and its FUZZY tools were used for the FCSMT modeling and mapping,
and using a fuzzy intersection operator, monthly climate suitability maps were generated from fuzzy
classified monthly temperature maps and RH maps (Refer Figure S1).

According to Zadeh-intersection, the membership function µA∩B of the intersection A∩B is
point-wise defined for all x ε U by: µA∩B(x) = min(µA(x), µB(x). The ‘Composite climate suitability
map’, representing the length of transmission windows (TWs), was generated by compiling monthly
suitability maps for both baseline and projected 2030s scenarios. A ‘climate suitability change map’
between baseline and projected by 2030s were generated for visualizing the spatio-temporal changes
in the length of the TWs, and to identify the new foci of malaria transmission due to climate change.

3. Results

3.1. Monthly Climate Suitability for Baseline and Projected 2030s for Pv and Pf

Monthly climatic suitability maps (combining temperature and RH) for Pv and Pf (Figures 3
and 4) show that the northern half of India remains least suitable for malaria transmission in both
baseline and projected periods during first six months of the year. The low temperature (below
malaria transmission threshold) during the winter months (December, January and February) and
high temperature with low humidity (exceeding upper malaria transmission thresholds) during the
summer months (March, April and May) are the barriers here. With the onset of the monsoon in the
June month, the transmission suitability improves, thereby between July and October about 80% of the
country becomes suitable for Pv and Pf transmission at different suitability scales. The trend remains
the same in both baseline and 2030s scenario with some exceptions as projected in the 2030s: 1. Late
onset of malaria transmission suitability during monsoon in the Indo-Gangetic plains of India, as the
onset of transmission suitability shifts from July to August; 2. Enhancement in malaria transmission
suitability during December, January and February months in Southern states of India; 3. Improvement
in intensity of transmission suitability in Central and Eastern states between September and November,
and 4. For Pv malaria transmission, a one month window has expanded in the month of November
in most of the Central and Southern states. All these projected outcomes indicate the shifting and
extension of malaria transmission windows (TWs).

3.2. Composite Climate Suitability Map for Baseline and Projected 2030s for Pv and Pf

The generated composite climate suitability maps for malaria transmission (Figure 5) show the
spatial distribution of TWs (no. of months) across the country for both Pv and Pf. For both the Pv and
Pf malaria, the spatial extent of TWs of 4–6 months and 10–12 months are projected to increase by
2030s. This may result in shifting of some Pf areas in the northwestern part of India from 4–6-months
category to 1–3 months and some areas in the central part of India from the 7–9 months’ category to
the 4-6 months’ category of TWs. Eastern coastal belt, mainly Odisha and West Bengal, are projected to
experience increased TWs for Pv malaria transmission by the 2030s.
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Figure 3. Monthly climate suitability maps for P. vivax malaria using Temperature and RH combined
(A) Baseline (1976–2005) and (B) projected 2030s. Increased climate suitability is visible in the months
of September to November, while reduction from April to June under the 2030s scenario, as compared
to the baseline.
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Figure 4. Monthly climate suitability maps for P. falciparum malaria using Temperature and RH
combined (A) Baseline and (B) projected 2030s. Increased climate suitability is visible in the months of
August to November, while reduction from April to June under the 2030s scenario, as compared to
the baseline.
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Figure 5. Composite climate suitability map for malaria transmission for the baseline and projected
2030s. For P. vivax, new foci of transmission are visible in parts of Jammu & Kashmir, Uttarakhand
and Himachal Pradesh. Increase in the number of months of TWs in northeastern states and reduction
in parts of Orissa and Gujarat states are also seen. In the case of P. falciparum, few foci in Jammu &
Kashmir and Uttarakhand; an increase in transmission months in northeastern states and reduction in
parts of Orissa and Gujarat states are visible.

3.3. Changes in Climate Suitability between Baseline and Projected 2030s

The climate suitability change map (Figure 6) depicts the changes in number of months of TWs
(new foci/extension/reduction) projected to occur by the 2030s as compared to our baseline year.
The major changes are: 1. Some areas in a few districts of the western Himalayan states like Jammu
and Kashmir, Himachal Pradesh and Uttarakhand, are likely to have new foci of transmission (Table 2);
2. In other Himalayan states like the northern parts of West Bengal, Bihar and Sikkim, a spatial
extension of TWs by two months within the districts is more likely; 3. All of the foothill blocks/circles
of the Arunachal Pradesh districts are projected to gain up to three months of Pv and Pf malaria TWs,
the highest being the Wakro, Chowkham and Tezu circles of the Lohit district with seven months.
4. Few districts in Rajasthan, Punjab, Gujarat, Maharashtra and West Bengal are also likely to experience
nearly two months gain in Pv malaria TWs, 5. Maharashtra, Madhya Pradesh, Telangana, Odisha,
Karnataka and West Bengal are also likely to experience an increase in nearly two TW’s months for Pf
malaria transmission; 6. Coastal districts of Maharashtra, Odisha, Goa and West Bengal are also likely
to become suitable for Pf malaria transmission; and, 7. Rest of the districts in the states of Haryana,
Bihar, Uttar Pradesh, Andhra Pradesh and Tamil Nadu are projected to experience reduction in number
of months of TWs.
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Figure 6. Projected changes in a number of months in the Transmission Window (TW) for malaria (Pv
and Pf ) transmission by the 2030s as compared to baseline years. New foci of malaria transmission in
the states of Jammu & Kashmir, Uttarakhand and Himachal Pradesh particularly for P vivax, while a
reduction in parts of Orissa and Gujarat are visible. Increase in the transmission of P. falciparum by one
month in the central part of India is discernible.

Table 2. Districts having projected new foci for P vivax malaria transmission (TWs in months). (Refer
Figure S2).

States Sl.
No. Districts Circles/Tehsils No. of Months Projected Months

Jammu and
Kashmir

1 Pulwama Chrar-e-Shrief up to 1 July
2 Srinagar Shrinagar South up to 2 July, August

3 Baramula Rafaibad, Baramula,
Kheeri, Boniar, Tangmarg up to 2 July, August

4 Bagdam All tehsils up to 2 July, August
5 Anantnag Dooru, Kokemag up to 2 July, August
6 Shupiyan All tehsils up to 2 July, August
7 Kulgam All tehsils up to 2 July, August
8 Ganderbal Ganderbal up to 2 July, August
9 Ramban Banihal up to 2 July, August

Himachal Pradesh 10 Chamba Chamba up to 2 July, August

Uttarakhand
11 Champawat Lohaghat up to 2 June, July
12 Bageshwar Kapkot up to 3 June, July, August

13 Pithoragarh Berinag, Didihat,
Gangolihat, Pithoragarh up to 4 June, July, August,

September

4. Discussion

Various climate-based models for the suitability of malaria transmission have been proposed
around the world in view of climate change for fore-warning and improvement in planning intervention
measures [46,56–58]. Fuzzy logic has been used in the field of malaria since 1998 [23]. We attempted
CORDEX data using fuzzy logic, a soft modeling approach, to map the climate suitability for
malaria transmission. Fuzzy sets express how the transition of indices’ suitability from least to most,
representing the intensity of suitability, takes place. It offers a better approach to climate suitability
classification for malaria transmission than discrete sets. We have generated a Climate Suitability Map
for both Pv and Pf malaria transmission with baseline (1976–2005) and projected 2030s for India using
the FCSMT model under the GIS (Geographical Information System) environment, and have projected
the changes that are likely to occur in malaria TWs with reference to climate change.
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The physiography of the country has a great role in determining the temperature and humidity
distribution, which is reflected in the monthly climate suitability maps for malaria transmission.
Climate suitability for more than six months ensures stable malaria transmission [3]. In all the southern
states, there exists stable climate suitability for malaria transmission, while in northern states monthly
suitability decreases considerably from eastern to western parts of the country. Between the two
periods (baseline and projected 2030s) for both Pv and Pf increase in ‘outbreak prone regions’ i.e.,
for 4–6 months TWs may be registered due to the reduction in ‘stable transmission regions’, and again,
7–9 months of TWs by the 2030s. Meanwhile interior parts of Karnataka, and Telangana are expected to
gain 2–3 months of TWs due to a projected increase in temperature in the winter months. Districts in the
Himalayan foot hills that are also likely to experience new foci or increase in TWs by 1–3 months, are due
to a projected increase in temperature which at present remains below the temperature threshold of
malaria transmission. Owing to the variability in temperature as projected during the 2030s, a shift in
TWs is also likely in the northern and eastern states. In baseline years, the transmission suitability
improves from July onwards and withdraws by October, but in the 2030s scenario, the transmission
suitability window extends up to November, thus making these regions vulnerable to prolonged
malaria transmission. In short, the projected suitability of malaria transmission by those 2030s in the
context of climate change projects the opening of new foci of transmission in the Himalayan region,
a change in the length of TWs in most parts of the country including reduction, and a shift in the
months of transmission in some regions.

The discussion can further be enriched with an attempt to corroborate the present malaria trend
in India with the FCSMT model’s projected outcomes (Figure 7). The western states like Rajasthan
(Barmer, Bikaner and Jaisalmer districts) that have less than four months of TWs, have often experienced
an outbreak. Malaria seasonality of Saharanpur and Khushinagar, lying at the two extremes of Uttar
Pradesh, also corroborates the length of TWs available for transmission, with no change in the number of
TWs during the projected 2030s. The situation is similar in Assam and Andaman-Nicobar Islands, where
the region is climatically stable and cases are registered throughout the year with peaks during monsoon
months. In southern states, stable climate suitability prevails here too, the graphs for Dakshin Kannada
(Karnataka), Prakasham (Andhra Pradesh) and Ramanathapuram (Tamil Nadu) show that cases are
registered throughout the year, however, their incidence is low. The region has less than 2 API, and even
few districts with 0 API. It shows the predominance of the physiographic complexity of the region in
terms of soil type, surface gradient, hydro-geology and land use pattern, over climatic suitability. One
important fact has to be accentuated that the potential geographic distribution of climate suitability in
the study does not directly translate into an actual malaria case scenario. Striking examples are southern
states and the state of Punjab. In southern states, the temperature remains mostly between 28 ◦C and
34 ◦C, and in spite of climate suitability for 10–12 months, malaria incidence remains low.

It needs to be evaluated in the light of Mordecai et al. [47], who postulated the optimal temperature
for malaria transmission is lower than 32 ◦C, as suggested earlier [3]. In the state of Punjab, owing to
the better economy and health seeking behavior of the inhabitants, the malaria burden is minimal.
Studies have suggested that large areas of the United States and Europe are characterized by suitable
climates for malaria transmission, yet only few cases occur because of the strength of their public
health infrastructure and other economic factors [47].
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Figure 7. Climate-based Transmission Windows (TW) Vis-à-vis malaria endemicity in selected districts
of India. Seasonal fluctuations in 10 representative districts match with months of TWs shown in the
map in almost all the districts except Kasaragod (Kerala). In the state of Kerala, malaria transmission is
very low due to various other reasons.

The near-future malaria transmission patterns, generated from the FCSMT model using one
of latest simulated climate database CORDEX and soft partitioning techniques ‘Fuzzy’, have given
a broad spectrum of advantages over the projections for malaria transmission that were made in
earlier studies [20,40]. First, earlier crisp temperature and RH threshold-based models informed
regional climatic suitability in binomial: Yes (1) or No (0); whereas the fuzzy model works on threshold
gradation between 0 (least suitable) to 1(most suitable), and thus generates trend-surface maps with
third dimensions. The spatial trend-surfaces are indicated by a likelihood of the suitability between
0 (least) and 1 (most), i.e., the closer a region is to value 1, the higher is the suitability intensity, and
vise-versa. This is sharply visible for the month of November, where in central India the climate-based
transmission suitability is likely to be at its peak during the projected 2030s, while it is weak during
baseline. Second, monthly transition of climate suitability (temperature and RH) maps from most to
least across the country gives a detailed visualization on the projected changing pattern of malaria
transmission. Third, month-wise gradual changes in the climate-based transmission suitability index
within the district not only helps in defining the enhancement or reduction in months of TWs at better
resolution, but also assists in identifying areas within the district as potential new foci. Fourth, regions
with possible reduction in TWs in the projected 2030s have also been identified, which are likely to the
possibility of less than six months of transmission and thus suitable for outbreaks of malaria.

Moreover, the climate suitability for district Jaisalmer in Rajasthan shows that except for September,
all its months blocked for transmission owing to temperature > 34 ◦C and RH < 40% in both
scenarios, however, the cases occurring from August to October (Figure 6) reflect the effect of the local
micro-niche, which makes the transmission possible, but it could not be captured. Otherwise, the
CORDEX data-based FCSMT model has efficiently mapped the climatically vulnerable areas of malaria
transmission in response to climate change in India. Through the fuzzy-based transmission suitability
mapping, month-wise gradual change in the suitability index from least to most within the district has
been highlighted, along with the identified few ‘new foci’ for malaria transmission during the 2030s.
This soft partitioning approach of malaria transmission suitability mapping has dissolved the crisp
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boundaries generated from conventional hard classifiers, making the suitability results more close to
the reality. Further, in view of the launch of a malaria elimination program in India [31], the gradual
increase in malaria outbreak-prone areas due to a reduction in malaria would also necessitate an early
warning system for the detection of outbreaks. The projected new foci need health education in the
vulnerable communities.

The limitations of the study include: (i) The projected outcome of the FCSMT model are based
upon only two climatic parameters (Temperature and RH), and (ii) the certainty of the projected
scenario may largely be affected by strengthened intervention measures guided by micro-stratification
for malaria control, ecological changes and socio-economic conditions, etc. The outcome of the model
can further evolve if intervention measures are included in it. In this study, only the CORDEX model
has been used, warranting the need for other climate models as well as epidemiological or vector
distribution models for comprehensive conclusions.

The findings of the study would guide the National Program in planning and judicious decision
making in new emerging foci and the areas projected to experience increase in transmission months,
towards strengthening health infrastructure and making best use of available tools of intervention for
controlling of malaria in view of climate change.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/18/3474/s1,
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potential districts as new foci for Pv malaria transmission.

Author Contributions: S.S.—Data processing, model development, and drafting of manuscript. V.G.—extraction
of CORDEX data, projected scenario by 2030s and drafting of manuscript, P.S.—analysis of malaria and climatic
data and drafting of manuscript, R.C.D.—Conception, study design, drafting and critical revision of manuscript.
All authors read and approved the final manuscript.

Funding: This work was supported by DST Climate Change Project (no. DST/CCP/(NET-2) PR-29/2012(G)) and
Ministry of Environment, Forest and Climate Change (IND0459.05-83/2016-17/INE-1570).

Acknowledgments: The authors wish to express thanks to Director, National Institute of Malaria Research,
Delhi for the facilities provided and to National Vector Borne Disease Control Programme for epidemiological data.

Conflicts of Interest: The authors declare no competing interests.

References

1. National Vector Borne Disease Control Programme (NVBDCP). National Strategy Plan Malaria
Elimination in India 2017–2022, Ministry of Health and Family Welfare, GoI. 2017. Available online:
http://www.indiaenvironmentportal.org.in/files/file/nsp_2017-2022-updated.pdf (accessed on 5 December 2017).

2. Gill, C.A. The role of meteorology and malaria. Indian J. Med. Res. 1921, 8, 633–693.
3. Craig, M.H.; Snow, R.W.; le Sueur, D. A climate-based distribution model of malaria transmission in

sub-Saharan Africa. Parasitol. Today 1999, 15, 105–111. [CrossRef]
4. Grover-Kopec, E.K.; Blumenthal, M.B.; Ceccato, P.; Dinku, T.; Omumbo, J.A.; Connor, S.J. Web-based climate

information resources for malaria control in Africa. Malar. J. 2006, 5, 38. [CrossRef] [PubMed]
5. Dhiman, R.C.; Pahwa, S.; Dash, A.P. Climate change and malaria in India: Interplay between temperatures

and mosquitoes. Reg. Health Forum 2008, 12, 27–31.
6. Dhiman, R.C.; Pahwa, S.; Dhillon, G.P.S.; Dash, A.P. Climate change and threat of vector-borne diseases in

India: Are we prepared? Parasitol. Res. 2010, 106, 763–773. [CrossRef]
7. Bhadra, A.; Ionides, L.L.; Laneri, K.; Pascual, M.; Bouma, M.; Dhiman, R.C. Malaria in Northwest India:

Data analysis via partially observed stochastic differential equation models driven by Lévy noise. J. Am.
Stat. Assoc. 2011, 106, 440–451. [CrossRef]

8. Blanford, J.I.; Blanford, S.; Crane, R.G.; Mann, M.E.; Paaijmans, P.; Schreiber, K.V.; Thomas, M.B. Implications
of temperature variation for malaria parasite development across Africa. Sci. Rep. 2013, 3, 1300. [CrossRef]

9. Cash, B.A.; Rodó, X.; Ballester, J.; Bouma, M.J.; Baeza, A.; Dhiman, R.; Pascual, R. Malaria epidemics and
the influence of the tropical South Atlantic on the Indian monsoon. Nat. Clim. Chang. 2013, 3, 502–507.
[CrossRef]

http://www.mdpi.com/1660-4601/16/18/3474/s1
http://www.indiaenvironmentportal.org.in/files/file/nsp_2017-2022-updated.pdf
http://dx.doi.org/10.1016/S0169-4758(99)01396-4
http://dx.doi.org/10.1186/1475-2875-5-38
http://www.ncbi.nlm.nih.gov/pubmed/16689992
http://dx.doi.org/10.1007/s00436-010-1767-4
http://dx.doi.org/10.1198/jasa.2011.ap10323
http://dx.doi.org/10.1038/srep01300
http://dx.doi.org/10.1038/nclimate1834


Int. J. Environ. Res. Public Health 2019, 16, 3474 14 of 16

10. Feng, H.; Zhang, M. Global land moisture trends: Drier in dry and wetter in wet over land. Sci. Rep. 2015, 5,
18018. [CrossRef]

11. Jetten, T.H.; Martens, W.J.; Takken, W. Model stimulations to estimate malaria risk under climate change.
J. Med. Entomol. 1996, 33, 361–371. [CrossRef]

12. Rogers, D.J. Changes in disease vector distributions. In Climate Change and Southern Africa: An Exploration of
Some Potential Impacts and Implications in the SADC Region; Hulme, M., Ed.; Climate Research Unit; University
of East Anglia: Norwich, UK, 1996; pp. 49–55.

13. Sutherst, R.W. Implications of global change and climate variability for vector-borne diseases: Generic
approaches to impact assessments. Int. J. Parasitol. 1998, 28, 935–945. [CrossRef]

14. Zhou, G.; Minakawa, N.; Githeko, A.K.; Yan, G. Climate variability and malaria epidemics in the highlands
of East Africa. Trends Parasitol. 2005, 21, 54–56. [CrossRef] [PubMed]

15. Pascual, M.; Ahumada, J.A.; Chaves, L.F.; Rodó, X.; Bouma, M. Malaria resurgence in the East African
highlands: Temperature trends revisited. Proc. Natl. Acad. Sci. USA 2006, 103, 5829–5834. [CrossRef]
[PubMed]

16. Ivanescu, L.; Bodale, I.; Florescu, S.-A.; Roman, C.; Acatrinei, D.; Miron, L. Climate change is increasing the
risk of the reemergence of malaria in Romania. BioMed Res. Int. 2016, 8560519. [CrossRef] [PubMed]

17. Murdock, C.C.; Sternberg, E.D.; Thomas, M.B. Malaria transmission potential could be reduced with current
and future climate change. Sci. Rep. 2016, 6, 27771. [CrossRef] [PubMed]

18. Bouma, M.J.; Baeza, A.; terVeen, A.; Pascual, M. Global malaria maps and climate change: A focus on East
African highlands. Trends Parasitol. 2011, 27, 421–422. [CrossRef] [PubMed]

19. Caminadea, C.; Kovats, S.; Rocklov, J.; Tompkins, A.M.; Morse, A.P.; Colón-González, F.J.; Stenlund, H.;
Martens, P.; Lloyd, S.J. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. USA
2014, 111, 3286–3291. [CrossRef] [PubMed]

20. Lauderdale, J.M.; Caminade, C.; Heath, A.E.; Jones, A.E.; MacLeod, D.A.; Gouda, K.C.; Murty, U.S.;
Goswami, P.; Mutheneni, S.R.; Morse, A.P. Towards seasonal forecasting of malaria in India. Malar. J. 2014,
13, 310. [CrossRef] [PubMed]

21. Upadhyayula, S.M.; Mutheneni, S.R.; Chenna, S.; Parasaram, V.; Kadiri, M.R. Climate drivers on malaria
transmission in Arunachal Pradesh, India. PLoS ONE 2015, 10, e0119514. [CrossRef]

22. Dhiman, R.C.; Chavan, L.; Pant, M.; Pahwa, S. National and regional impacts of climate change on malaria
by 2030. Curr. Sci. 2011, 101, 372–383.

23. MARA/ARMA. Towards an Atlas of Malaria Risk in AFRICA; First Technical Report of the MARA/ARMA
Collaboration; MARA/ARMA: Durban, South Africa, 1998. Available online: https://www.mara-database.
org/docs/ENG_MARA_Tech_Rep.pdf (accessed on 5 December 2017).

24. Snow, R.W.; Gouws, E.; Omumbo, J.; Rapuoda, B.; Craig, M.H.; Tanser, F.C.; le Sueur, D.; Ouma, J. Models to
predict the intensity of Plasmodium falciparum transmission: Applications to the burden of disease in Kenya.
Trans. R. Soc. Trop. Med. Hyg. 1998, 92, 601–606. [CrossRef]

25. Ebi, K.L.; Hartman, J.; Chan, N.; Mcconnell, J.; Schlesinger, M.; Weyant, J. Climate suitability for stable
malaria transmission in Zimbabwe under different climate change scenarios. Clim. Chang. 2005, 73, 375–393.
[CrossRef]

26. Buczak, A.L.; Baugher, B.; Guven, E.; Ramac-Thomas, L.C.; Elbert, Y.; Babin, S.M.; Lewis, S.H. Fuzzy
association rule mining and classification for the prediction of malaria in South Korea. BMC Med. Inform.
Decis. Mak. 2015, 15, 47. [CrossRef] [PubMed]

27. Directorate of National Vector Borne Disease Control Programme (NVBDCP). National Framework for Malaria
Elimination in India 2016–2030; Directorate General of Health Services Ministry of Health and Family Welfare,
Govt of India: New Delhi, India, 2016; pp. 1–43.

28. Rao, T.R. The Anophelines of India, 2nd ed.; Malaria Research Centre, Indian Council of Medical Research:
New Delhi, India, 1984.

29. Sharma, V.P. Battling malaria iceberg incorporating strategic reforms in achieving millennium development
goals & malaria elimination in India. Indian J. Med. Res. 2012, 136, 907–925. [PubMed]

30. Singh, P.; Lingala, M.A.L.; Sarkar, S.; Dhiman, R.C. Mapping of malaria vectors at district level in India:
Changing scenario and identified gaps. Vector Borne Zoonotic Dis. 2017, 17, 91–98. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/srep18018
http://dx.doi.org/10.1093/jmedent/33.3.361
http://dx.doi.org/10.1016/S0020-7519(98)00056-3
http://dx.doi.org/10.1016/j.pt.2004.11.002
http://www.ncbi.nlm.nih.gov/pubmed/15664525
http://dx.doi.org/10.1073/pnas.0508929103
http://www.ncbi.nlm.nih.gov/pubmed/16571662
http://dx.doi.org/10.1155/2016/8560519
http://www.ncbi.nlm.nih.gov/pubmed/27847824
http://dx.doi.org/10.1038/srep27771
http://www.ncbi.nlm.nih.gov/pubmed/27324146
http://dx.doi.org/10.1016/j.pt.2011.07.003
http://www.ncbi.nlm.nih.gov/pubmed/21873114
http://dx.doi.org/10.1073/pnas.1302089111
http://www.ncbi.nlm.nih.gov/pubmed/24596427
http://dx.doi.org/10.1186/1475-2875-13-310
http://www.ncbi.nlm.nih.gov/pubmed/25108445
http://dx.doi.org/10.1371/journal.pone.0119514
https://www.mara-database.org/docs/ENG_MARA_Tech_Rep.pdf
https://www.mara-database.org/docs/ENG_MARA_Tech_Rep.pdf
http://dx.doi.org/10.1016/S0035-9203(98)90781-7
http://dx.doi.org/10.1007/s10584-005-6875-2
http://dx.doi.org/10.1186/s12911-015-0170-6
http://www.ncbi.nlm.nih.gov/pubmed/26084541
http://www.ncbi.nlm.nih.gov/pubmed/23391787
http://dx.doi.org/10.1089/vbz.2016.2018
http://www.ncbi.nlm.nih.gov/pubmed/28051366


Int. J. Environ. Res. Public Health 2019, 16, 3474 15 of 16

31. National Vector Borne Disease Control Programme (NVBDCP). Malaria Situation in India. Ministry of
Health and Family Welfare, Govt. of India, New Delhi, India, 2016. Available online: http://nvbdcp.gov.in/

malaria-new.html (accessed on 12 December 2017).
32. Rogelj, J.; Meinshausen, M.; Knutti, R. Global warming under old and new scenarios using IPCC climate

sensitivity range estimates. Nat. Clim. Chang. 2012. [CrossRef]
33. Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am.

Meteorol. Soc. 2012, 93, 485–498. [CrossRef]
34. Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma ML, T.; Lamarque, J.F.; Matsumoto, K.;

Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions
from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [CrossRef]

35. Chaturvedi, R.K.; Joshi, J.; Jayaraman, M.; Bala, G.; Ravindranath, N.H. Multi-model climate change
projections for India under representative concentration pathways. Curr. Sci. 2012, 103, 1–12.

36. Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.;
Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011,
109, 5–31. [CrossRef]

37. Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Arias, S.D.; Lamberty, B.B.; Wise, M.A.;
Clarke, L.E.; et al. RCP 4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109,
77. [CrossRef]

38. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis.
In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;
Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013.

39. Laneri, K.; Bhadra, A.; Ionides, L.L.; Bouma, M.; Dhiman, R.C.; Rajpal, S.Y.; Pascual, M. Forcing versus
feedback: Epidemic malaria and monsoon rains in northwest India. PLoS Comput. Biol. 2010, 6. [CrossRef]
[PubMed]

40. Roy, M.; Bouma, M.; Dhiman, R.C.; Pascual, M. Predictability of epidemic malaria under non-stationary
conditions with process-based models combining epidemiological updates and climate variability. Malar. J.
2015, 14, 419. [CrossRef] [PubMed]

41. Gill, C.A. The Season Periodicity of Malaria; Churchill: London, UK, 1938.
42. Russel, P.F.; Luther, S.W.; Manwell, R.D. Practical Malariology; Saunders: London, UK, 1946.
43. Sluiter, R. Interpolation methods for climate data: Literature review. In KNMI Intern Rapport: IR 2009-04

Version 1.0; R&D Information and Observation Technology: De Bilt, The Netherlands, 2009.
44. Fisher, P.; Unwin, D.J. Representing geographical information system. In Representing GIS; Fisher, P.,

Unwin, D.J., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005; pp. 1–13.
45. Zadeh, L.A. Fuzzy Sets. Inform. Control 1965, 8, 338–353. [CrossRef]
46. Martens, W.J.M.; Niessen, L.W.; Rotmans, J.; Mcmichael, A.J. Potential impacts of global climate change on

malaria risk. Environ. Health Perspect. 1995, 103, 458–464. [CrossRef] [PubMed]
47. Mordecai, E.A.; Krijn, P.P.; Leah, R.J. Optimal temperature for malaria transmission is dramatically lower

than previously predicted. Ecol. Lett. 2013, 16, 22–30. [CrossRef] [PubMed]
48. Bhattacharya, S.; Sharma, C.; Dhiman, R.C.; Mitra, A.P. Climate change and malaria in India. Curr. Sci. India

2006, 90, 369–375.
49. Bayoh, M.N. Studies on the Development and Survival of Anopheles Gambiae Sensu Stricto at Various

Temperatures and Relative Humidities. Ph.D. Thesis, University of Durham, Durham, UK, 2001.
50. Yamana, T.K.; Eltahir, E.A.B. Incorporating the effects of humidity in a mechanistic model of Anopheles

gambiae mosquito population dynamics in the Sahel region of Africa. Parasites Vectors 2013, 6, 235. [CrossRef]
[PubMed]

51. Bidlingmayer, W.L. The measurement of adult mosquito population changes-some considerations. J. Am.
Mosq. Control Assoc. 1985, 1, 328–350.

52. Rudolfs, W. Observations on the relations between atmospheric conditions and the behavior of mosquitoes.
Bull. N. J. Agric. Exp. Stn. 1923, 388, 32.

53. Rudolfs, W. Relation between temperature, humidity and activity of house mosquitoes. J. N. Y. Entomol. Soc.
1925, 33, 163–169.

54. Platt, R.; Love, G.J.; Williams, E.L. A positive response between relative humidity and the distribution and
abundance of Aedes vexans. Ecology 1958, 39, 167–169. [CrossRef]

http://nvbdcp.gov.in/malaria-new.html
http://nvbdcp.gov.in/malaria-new.html
http://dx.doi.org/10.1038/nclimate1385
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1007/s10584-011-0156-z
http://dx.doi.org/10.1007/s10584-011-0148-z
http://dx.doi.org/10.1007/s10584-011-0151-4
http://dx.doi.org/10.1371/journal.pcbi.1000898
http://www.ncbi.nlm.nih.gov/pubmed/20824122
http://dx.doi.org/10.1186/s12936-015-0937-3
http://www.ncbi.nlm.nih.gov/pubmed/26502881
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1289/ehp.95103458
http://www.ncbi.nlm.nih.gov/pubmed/7656875
http://dx.doi.org/10.1111/ele.12015
http://www.ncbi.nlm.nih.gov/pubmed/23050931
http://dx.doi.org/10.1186/1756-3305-6-235
http://www.ncbi.nlm.nih.gov/pubmed/23938022
http://dx.doi.org/10.2307/1929987


Int. J. Environ. Res. Public Health 2019, 16, 3474 16 of 16

55. Reiter, P. Climate change and mosquito-borne disease. Environ. Health Perspect. 2001, 109, 141–161. [PubMed]
56. Lindsay, S.W.; Birley, M.H. Climate change and malaria transmission. Ann. Trop. Med. Parasitol. 1996, 90,

573–588. [CrossRef] [PubMed]
57. Hay, S.I.; Cox, J.; Rogers, D.J.; Randolph, S.E.; Stern, D.I.; Shanks, G.D.; Myers, M.; Snow, R.W. Climate

change and the resurgence malaria in the East African highlands. Nature 2002, 415, 905–909. [CrossRef]
[PubMed]

58. Gao, C.Y.; Xiong, H.Y.; Yi, D.; Chai, G.J.; Yang, X.W.; Liu, L. Study on meteorological factors-based neural
network model of malaria. Zhonghua Liu Xing Bing Xue Za Zhi 2003, 24, 831–834. [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.ncbi.nlm.nih.gov/pubmed/11250812
http://dx.doi.org/10.1080/00034983.1996.11813087
http://www.ncbi.nlm.nih.gov/pubmed/9039269
http://dx.doi.org/10.1038/415905a
http://www.ncbi.nlm.nih.gov/pubmed/11859368
http://www.ncbi.nlm.nih.gov/pubmed/14521780
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Characteristics of Malaria Transmission in India 
	Climate Model Data 
	Selection of Model Indices 
	Fuzzy-Based Climate Suitability Malaria Transmission (FCSMT) Model Framework 

	Results 
	Monthly Climate Suitability for Baseline and Projected 2030s for Pv and Pf 
	Composite Climate Suitability Map for Baseline and Projected 2030s for Pv and Pf 
	Changes in Climate Suitability between Baseline and Projected 2030s 

	Discussion 
	References

