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Abstract: Nitrogen and phosphorus are essential for plant growth and are the primary limiting
nutrient elements. The loss of nitrogen and phosphorus in agricultural systems can cause the
eutrophication of natural water bodies. In this paper, a field simulated rainfall experiment was
conducted in a typical small watershed of the Danjiang River to study the nutrient loss process
of nitrogen and phosphorus in slope croplands subjected to different crops and tillage measures.
The characteristics of the runoff process and nutrient migration of different slope treatments were
studied, which were the bare-land (BL, as the control), peanut monoculture (PL), corn monoculture
(CL), bare land (upper slope) mixed with peanut monoculture (lower slope) (BP), corn and peanut
intercropping (TCP), corn and soybean intercropping (TCS), downslope ridge cultivation (BS) slope,
and straw-mulched (SC), respectively. The results showed that the runoff of CL, SC, TCS, BS, BP,
PL and TCP slope types were 93%, 75%, 51%, 39%, 28%, 12%, and 6% of the those of the bare land,
respectively. The total nitrogen concentration in runoff on different slope types decreased in the order
of BP > PL > BS > SC > TCP > BL > CL > TCS. The BL was characterized with the highest NRL-TN
(the loss of total nitrogen per unit area), with the value of 1.188 kg/hm2, while those of the TCP is the
smallest with the value of 0.073 kg/hm2. The total phosphorus concentration in runoff decreasd in
the order of BS > BP > PL > BL > TCP > SC > CL > TCS. The PRL-TP (the loss of total phosphorus
per unit area) of BL is the largest (0.016 kg/hm2), while those of TCP is the smallest (0.001 kg/hm2).
These indicate that the loss of nitrogen is much higer than that of phosphorus. The loss of nitrogen in
runoff is dominated by nitrate nitrogen, which accounts for 54.4%–78.9% of TN. Slope croplands in
the water source area should adopt the tillage measures of TCP and PL.These measures can reduce
85% of the runoff of nitrogen and phosphorus compared to the bare land. The results may assist in
agricultural non-point source pollution control and help promote improved management of the water
environment in the Danjiang River’s water source area.

Keywords: Field rainfall experiment; runoff generation; cropping patterns; N and P loss

1. Introduction

Soil erosion is one of the most severe global environmental problems. Approximately 90% of the
world’s agricultural land suffers from erosion [1–3]. In the past 50 years, along with the expansion
of agricultural developments implemented to increase crop yields, the amount of chemical fertilizer
applied to cultivated land has increased continuously [4–6]. Nevertheless, soil erosion caused by
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runoff has resulted in a significant loss of nutrients, especially from sloping fields [7–9]. The loss of
these nutrients reduces the efficiency of fertilizer and, thus, soil productivity, and leads to agricultural
non-point source pollution [10–12]. It is reported that China’s annual soil erosion is greater than
452 million tons, and the corresponding loss of organic matter is more than twice of the total amount
of fertilizers produced in this country [13]. Thus, agricultural non-point source pollution has become a
serious threat to the quality of surface water, and the nutrients lost from farmland has become the
dominant factor determining eutrophication of water bodies [14–16]. The eutrophication caused by
nitrogen and phosphorus non-point source pollution has become a serious water pollution problem
in many rivers in China [17]. Therefore, the losing procedure of nutrients from farmland needs to
be to systematically studied to eliminate their loss and control the severity of eutrouphication in the
accepting water bodies.

The present work address this problem in the area of the Danjiang River. The river is the water
source of the central route project of the South-to–North Water Diversion Project, which is a very large
inter-basin water transfer project in China [18,19], and by far the largest hydraulic engineering project
in the world. This project aims to repair and improve the water shortage and ecological problems in
Northern China, which will be completed in 2050 and have the capacity to transfer 45 billion cubic
meters of water per year, equivalent to the total water volume of the Yellow River [20,21]. This project
is divided into western, central, and eastern route sub-projects, which transfer water from the upper,
middle, and lower reaches of the Yangtze River in Southern China, respectively [22]. The central route
project will transfer 13 billion m3/a of water from the river to solve the water shortage problem in more
than 20 large- and medium-sized cities, including Beijing, Tianjin, and Shijiazhuang, and help improve
the ecological environment and agricultural water use along the related regions [23,24]. The research
area of this study is concentrated in Danjiang, located in South Shaanxi Province, which is the water
source area of the central route project. The water quality of this river affects the quality of the water
in the region of focus directly [25]. In recent years water quality deterioration has been reported
frequently due to fast development of non-point source pollution, contributed by rapid economic
development that intensified agricultural activities and aggravated soil erosion in the upper reaches of
the studied area [26–29]. In particular, the concentration of total nitrogen and phosphorus exceeded
the Chinese Surface Water Quality Level II, and the reason would be closely associated with the
agricultural non-point source pollution in the Danjiang River Basin [30–32]. Therefore, investigation
and understanding of the process of nitrogen and phosphorus loss and their influencing factors in the
water source area of the Danjiang River would be very helpful in eliminating agricultural non-point
source nitrogen and phosphorus pollution.

A number of studies have investigated the relationship between nitrogen and phosphorus loss and
rainfall runoff by considering the effect of slope, soil type, and crop coverage through indoor and field
rainfall experiment [33–42]. Nevertheless, the effects of different agricultural crops, tillage measures
on onsite runoff, and nitrogen and phosphorus loss under field conditions have rarely been studied.
The purposes of this study are to analyze the process of nitrogen and phosphorus loss for different
crops (corn, peanut, and soybean) using different tillage measures, to elucidate the characteristics of
nutrient loss and migration for different crops and tillage measures, and to subsequently interpret
the effect of different crops and tillage measures on nutrient loss. The results could be used to control
the loss of nutrients from slopes, and provide some basis for reducing the output of non-point source
pollutants from the “source” and, thus, decrease the pollution load on the water environment.

2. Materials and Experimental Designs

2.1. Study Area

The study area is located in Yingwugou watershed in Shangnan County, Shanxi Province,
China and covers an area of 1.87 km2, which is in the water source area of the middle route of the
South-to–North Water Diversion Project (see Figure 1). The water diversion project seeks to promote
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Northern China’s economic growth by relaxing water constraints in a region now facing severe water
shortage. The watershed was selected as: (1) it is the region with the most serious soil erosion in
the whole water source area; (2) the climatic and landscape of the watershed reflect the general
characteristics of this water source area; (3) the soil and slope conditions in this watershed are suitable
for growing local crops, e.g., peanut, corn, and soybean. We performed the experiments under different
crop types and tillage measures. The climate of the studied area is of typical Monsoon-influenced
humid subtropical climate. The watershed has a mean annual temperature of 14 ◦C and a mean annual
precipitation of 803.2 mm. The seasonal distribution of precipitation is highly uneven throughout the
year with more than 60% of the annual precipitation occurs in wet seasons (from June to September).
The primary landform type of the watershed is the rocky mountain and the elevation ranges from 470 m
to 600 m above sea level (a.s.l.). The soil type of the watershed is dominated by yellow-brown soil and
sandy loam, and the thickness of the soil layer ranges from 20–70 cm. Slope land is an important source
of food and cash crops in the study watershed due to a small number of flatlands. Common food and
cash crops include corn, peanuts, soybeans, and tea trees.
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Figure 1. Location of the study area.

2.2. Experimental Design

2.2.1. Plot Scale Slope Type

The experiments were conducted at the plot scale using the artificial rainfall simulator
(see Figure 2a), and each runoff plot had similar soil and slope characteristics, with a length of
10 m, a width of 2 m and a slope of 10◦ (see Figure 2b).

The experiment was divided into the following two types: different crop types and different tillage
measures. The former covers included peanut monoculture (PL), corn monoculture (CL), bare land
(upper slope) mixed with peanut monoculture (lower slope) (BP), corn and peanut intercropping (TCP),
corn and soybean intercropping (TCS), and the latter included downslope ridge cultivation (BS) slope,
and straw-mulched (SC). Bare land (BL) was used as the control (Table 1).
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Table 1. Design of crop types and tillage measures for artificial rainfall experiments.

Symbol Crop or Tillage Slope
Type

Rainfall Intensity Soil Total Nitrogen Soil Total Phosphorus Crop Coverage Crop Types and Tillage
Measures(mm/min) (g/kg) (g/kg) (%)

BL Bare land 1.20 0.72 1.11 0 Established after crop
harvest

PL Peanut 1.13 0.78 1.10 92 Crop spacing: 0.3 × 0.4 m

CL Corn 1.07 0.77 0.83 15 Crop spacing: 1.0 × 0.5 m

BP
Bare land (upper slope)

mixed with peanut (lower
slope)

1.14 0.87 1.04 80

Peanuts were removed
from the upper section of

the slope to establish a bare
land, whereas peanuts
were preserved on the

lower section of the slope

TCP Corn mixed with peanut
intercropping 1.14 0.87 1.14 80 Crop spacing: 0.1 × 0.5 m

and (corn)

TCS Corn mixed with soybean
intercropping 1.12 0.65 0.94 55

0.2 × 0.1 m (peanut)
(peanut and corn were

intercropped)

BS Downslope ridge
cultivation 1.20 0.77 1.22 0 Crop spacing: 0.1 × 0.5 m

(corn) and

SC Straw-mulched bare land 1.20 0.78 0.97 75 0.3 × 0.3 m (soybean)
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2.2.2. Experimental design and methods

Detailed procedures of artificial rainfall experiments are provided in Figure 3. A downward-oriented
nozzle was adopted to simulate rainfall with an uniformity more than 85%. The designed rainfall
intensity was 1.2 mm/min, with a duration of 60 min. These parameters were selected by taking reference
from Yingwugou watershed, which is located in the middle of the Danjiang River watershed. The actual
rainfall intensity was detected during the experiment. During the initial ten minutes of the simulated
rainfall, the surface runoff was collected every 2 min. Afterward, the runoff of the experimental plot
was collected every 5 min by using plastic buckets for measurement. The runoff flows into the plastic
buckets by a collecting tank at the bottom end of the slope. Runoff nutrient indicators, including the
total nitrogen (TN), nitrate nitrogen (NO−3 –N), ammonium nitrogen (NH+

4 –N), total phosphorus (TP)
and dissolved phosphorus (DP), were determined using an automatic intermittent chemical analyzer
(ADA, CleverChem200, Hamburg, Hamburg state, Germany).

The nitrogen and phosphorus losses of runoff were calculated as follows [43]:

m(t) = c(t) × r(t) (1)

where m(t) is the nutrient loss of the runoff at time (t), mg/min; c(t) is the nutrient concentration of the
runoff at time (t), mg/L; r(t) is the amount of runoff at time (t), L/min; and t is the runoff time, min.

The intensities of nitrogen and phosphorus losses were calculated using the following formula [36]:

NRL =

n∑
i=1

m(t)

A× 100
(2)

PRL =

n∑
i=1

m(t)

A× 100
(3)

where NRL is the loss of total nitrogen per unit area. PRL is the loss of total phosphorus per unit area.
A is the area of the runoff plot, m2.
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3. Results and Discussion

3.1. Runoff Process

Figure 4 presents different characteristics of the runoff procedure under different crop types. It is
shown that during the early stage of a rainfall, the runoff of all the eight crop types increased with an
increase in rainfall duration. The increases in the runoff rates of CL(Figure 4b), BL (Figure 4d) and
SC (Figure 4f) were significantly higher than those of PL (Figure 4a) and TCP (Figure 4e). During
rainfall, the runoff rates of all crops fluctuated but to different extents. After the rainfall was stopped,
the runoff rates of all crops decreased rapidly, except for the case of BS. The runoff of other crops was
characterized with an increase-steady-decrease trend with the increase in rainfall duration, while BS
exhibited a 33-min runoff lag time, which would be due to the change in surface roughness caused
by planting BS. After runoff began, BS also exhibited a runoff process that was similar to those of
other crops.
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The runoff of different slopes followed in the order of BL > CL > SC > TCS > BS > BP > PL
> TCP and was determined to be 195.4 L, 182.1 L, 146.7 L, 98.7 L, 76.8 L, 54.9 L, 23.4 L, and 11.9 L,
respectively. BL had the maximum runoff, and the runoff of CL, SC, TCS, BS, BP, PL, and TCP was 93%,
75%, 51%, 39%, 28%, 12%, and 6% of BL, respectively. The runoff of TCP and PL was 6% and 12% of BL,
respectively. The crop coverage of the two slopes was greater than 80%, which indicated that high crop
coverage could delay the formation of surface runoff, prolong the runoff retention time and increase
water infiltration. The runoff of CL was 93% of that of BL. The similar runoff between CL and BL might
be due to the following two factors: firstly, the crop spacing of corn was relatively large and the crop
coverage was only 15%; secondly, the corn was at the jointing stage and the plant was small at the time
of the experiment. The runoff of BP and PL was 28% and 12% of that of BL, respectively, indicating
that crop coverage in the lower part of the slope was a relatively effective measure to reduce runoff.

In the intercropping of different types of crops, TCP and TCS had different effects on runoff.
The runoff of TCP and TCS was 6% and 51% of that of BL, respectively, indicating that TCP was more
effective in reducing runoff than TCS. In addition to higher crop coverage, the planting density of TCP
was also higher than that of TCS, indicating that intercropping high and low density crops, combined
with a cross planting method and appropriate crop spacing, could more effectively delay the formation
of surface runoff

The runoff of SC was also approximately that of BL, which would be due to the fact that the
rainfall experiment of SC was performed after the rainfall experiment of BL. After the BL experiment,
the BL surface formed a crust. Straw was then added to cover 75% of the surface, thus creating the
experimental SC plot. The combination of soil crust and high straw coverage generated underlying
surface conditions that were conducive to the formation of runoff, resulting in a high surface runoff

of SC.

3.2. Nitrogen Loss Process

3.2.1. Variation of Total Nitrogen Concentration

The variation of the TN, NO−3 –N and NH+
4 –N on different slopes are shown in Figure 5.

TN concentrations on all eight slopes generally increase with an increase in the runoff duration,
but with different extents. The TN concentrations of TCP and BL increased from 10.11 mg/L and
10.41 mg/L at the early stage of runoff to 14.69 mg/L and 14.38 mg/L at the end of runoff, respectively.
Different slopes had different initial runoff TN concentrations and different concentration increments,
indicating that the runoff conditions on different slopes had different effects on the analysis of soil
nutrients. BP had the highest average runoff TN concentration of 14.23 mg/L, whereas TCS had the
lowest concentration of 3.99 mg/L. The BP runoff flowed easily across BL, promoting a quick analysis
of soil nutrients, whereas the peanut coverage on the lower part of the slope prolonged the runoff lag
time, allowing soil nitrogen to dissolve into the runoff and leading to an increased TN concentration
for BP.



Int. J. Environ. Res. Public Health 2019, 16, 3442 9 of 17

Int. J. Environ. Res. Public Health 2019, 16, x 8 of 16 

 

nitrogen was affected by factors such as the soil clay content and its adsorption capability of 
ammonium nitrogen. Furthermore, the decrease in the ammonium nitrogen concentration was much 
less than the TN and NO- 

3–N concentrations because ammonium nitrate can be easily converted to 
nitrate nitrogen by soil nitrifying bacteria.  

  

  

  

  
Figure 5. The variation of the TN, NO- 

3–N, and NH+ 
4 –N under different crop types. Figure 5. The variation of the TN, NO−3 –N, and NH+

4 –N under different crop types.

3.2.2. Variation of Nitrate Concentration

NO−3 –N concentration in runoff exhibited a similar variation pattern as that of TN, gradually
increasing with an increase in runoff duration. Crops with high coverage and intercropping prevented
water flow and prolonged the contact time of runoff and soil solutes, which resulted in a higher nitrate
concentration than other treatments. Runoff nitrate concentrations were also associated with the soil
background content; for example, due to the low soil background values, TCS will have a low runoff

nitrate concentration.
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3.2.3. Variation of Ammonium Nitrogen Concentration

Unlike the TN and NO−3 –N concentrations, the NH+
4 –N concentration exhibited an initial increase

followed by an decrease trend with the increase in runoff duration and an overall decreasing trend.
The ammonium ions of ammonium nitrogen are positively charged, allowing them to be easily absorbed
onto soil particles. Therefore, the migration process of ammonium nitrogen was affected by factors such
as the soil clay content and its adsorption capability of ammonium nitrogen. Furthermore, the decrease
in the ammonium nitrogen concentration was much less than the TN and NO−3 –N concentrations
because ammonium nitrate can be easily converted to nitrate nitrogen by soil nitrifying bacteria.

The dissolved nitrogen in runoff primarily included nitrate nitrogen (NO−3 –N) and ammonium
nitrogen (NH+

4 –N). The average NO−3 –N concentrations were 41, 46, 49, 71, 99, 103, and 186 times higher
than the average NH+

4 –N concentrations for PL, TCP, BP, TCS, SC, BL, BS, and CL, respectively. The loss
of NO−3 –N in runoff accounts for 54.4%–78.9% of the loss of TN in runoff (Table 2), indicating that the
loss of NO−3 –N was the primary form of nitrogen loss in runoff.

Table 2. Characteristics of nitrogen loss in runoff under different crop types.

Symbol NO−3 –N NH+
4 –N TN

Loss (mg) Account for TN
(%) Loss (mg) Account for

TN (%) Loss (mg) NRL (kg/hm2)

PL 213.7 65.4 1.3 0.4 326.9 0.163
CL 1680.9 78.9 61.7 2.9 2129.2 1.065
BP 440.8 57.6 3.9 0.5 765.1 0.383
BL 1292.9 54.4 26.1 1.1 2375.0 1.188

TCP 93.8 64.3 0.8 0.6 145.9 0.073
TCS 284.1 71.8 3.7 0.9 395.9 0.198
BS 683.8 67.0 16.2 1.6 1023.6 0.512
SC 1115.5 61.3 22.9 1.3 1818.4 0.909

As described above, under different crop coverage and tillage measures, TN and NO−3 –N
concentrations during rainfall exhibited an increasing trend, whereas the NH+

4 –N concentration first
increased and then decreased and was characterized with an overall decreasing trend. In the early
stages of runoff, the initial concentrations of TN, NO−3 –N and NH+

4 –N were only slightly different.
Since different slopes had different levels of runoff, the increments of the TN, NO−3 –N, and NH+

4 –N
concentrations in runoff were different. The increments of the TN concentrations on TCP and BL slopes
can be as much as 4 mg/L. However, TCP and BL have significantly different levels of runoff, their
TN losses were 145.9 mg and 2375.0 mg, respectively, the TN loss of BL being 16.3 times that of TCP.
At the end of runoff, the level of nitrogen loss of TCP and TCS continued to fluctuate, whereas those of
PL, CL, BP, BL, BS and SC was relatively stable, and the TN loss was 0.163, 1.065, 0.331, 1.188, 0.512,
and 0.909 kg/hm2, respectively. This result can be used as a export coefficient for estimating the loss of
nitrogen from these slope measures at the watershed scale.

3.3. The Process of Phosphorus Loss

The variation patterns of TP and DP concentrations in runoff on different slope types are depicted
in Figure 6. The TP concentrations on all slopes exhibited an overall fluctuating and decreasing trend,
with some localized peak concentrations. The TP concentrations on CL, BP, BL, TCP, TCS, and BS
decreased from 0.09 mg/L, 0.25 mg/L, 0.20 mg/L, 0.25 mg/L, 0.10 mg/L, and 0.38 mg/L at the early
stage of runoff to 0.05 mg/L, 0.18 mg/L, 0.15 mg/L, 0.09 mg/L, 0.05 mg/L, and 0.16 mg/L at the end of
runoff, respectively, showing phosphorus loss with runoff is a process of reduction. Different crop
covers and tillage measures resulted in different initial TP concentrations. Total phosphorous (TP)
concentrations in PL and SC increased from 14.55 mg/L and 12.66 mg/L at the early stage of runoff to
14.56 mg/L and 13.29 mg/L at the end of runoff, with a 0.01 mg/L and 0.63 mg/L increment, respectively.
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The variation trend of the DP concentration in runoff was consistent with that of TP, but its change
process was more gradual than that of TP. The variation trends of the TP and DP concentrations for
BS and BL were approximately the same. Since BL has no crop coverage and no tillage measures,
runoff can easily interact with the soil; and the TP and DP concentrations in the runoff of BL fluctuated
more than those in the other slope types.

The loss of DP accounted for 42.2%–98.3% of the loss of TP on the eight slopes (Table 3), indicating
that DP was the primary form of runoff phosphorus loss, except for in the TCS and CL slope type.
Intercropping and high crop coverage had a relatively strong regulation effect on phosphorus loss.
SC and BP exhibited a similar amount of phosphorus loss. The intensity of TP loss decreased in the
order of: BL > BS > SC > CL > BP > PL > TCS > TCP. BL had the greatest TP loss of 0.016 kg/hm2,
whereas TCP had the least TP loss of 0.001 kg/hm2. This result can be used as a export coefficient for
estimating the loss of phosphorus from these slope measures at watershed scale.

Table 3. Characteristics of phosphorus loss in runoff under different crope types.

Symbol DP TP

Loss(mg) Account for TP (%) Loss(mg) PRL (kg/hm2)

PL 3.7 88.1 4.2 0.002
CL 5.1 42.9 11.9 0.006
BP 9.2 90.2 10.2 0.005
BL 29.6 94.6 31.3 0.016

TCP 1.1 57.9 1.9 0.001
TCS 1.9 42.2 4.5 0.002
BS 16.9 98.3 17.2 0.009
SC 8.7 67.4 12.9 0.006

3.4. Analysis of Runoff and Nutrient Loss

A box-plot of the runoff intensity, TN and TP concentration were plotted to further analyze
the association of runoff and nitrogen and phosphorus loss under different crop types and tillage
measures [44]. The results showed that there were significant differences between the length of the slope
(normal data), the position of the small box (mean value) and the position of the beard (anomaly) of the
eight slopes, which indicated that there were significant different in runoff intensity, TN concentration
and TP concentration.

The average runoff intensity followed the order TCP < PL < BP < TC < BS < SC < BL < CL
(Figure 7). TCP had the smallest runoff intensity of 0.2 L/min. Due to the strong fluctuation at the early
stage and the end of runoff, the runoff intensity of CL was greater than BL at 4.78 L/min. From the
position of the beard, the runoff of CL was shown to have the largest fluctuation range, whereas those
of TCP exhibited the smallest fluctuation range.

The average concentration of TN followed the order BP > PL > BS > SC > TC > TC > TCS
(Figure 8a), and those of TP followed the order BS > BP > PL > BL > TCP > SC > CL > TCS (Figure 8b),
demonstrating the obvious differences between the two concentrations. The distributions of the nutrient
concentrations and the runoff intensity were also different, indicating that the nutrient concentrations
were affected not only by runoff intensity but also correlated with the soil nutrient background,
crop types and tillage measures. The TN and TP concentrations for TCS were the lowest of all slope
types, which correlated with the low soil background value. The TN and TP concentrations for CL
were the second lowest of all slope types, which correlated with the strong runoff intensity. BL and BS
had exposed surfaces and high TN and TP concentrations as a result of rain splash and runoff wash.
The crop type of PL was 92%, the highest level among the eight slope types. The high TN and TP
concentrations of PL were due to the results fo low runoff intensity, shallow root systems, and poor
nutrient retention capability. Compared with runoff intensity, the ranges in nutrient concentration
levels for each slope were less, indicating that runoff can only carry a limited amount of nutrients.
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3.5. The Regulation Effect of Slope Measures on Nitrogen and Phosphorus Loss

Runoff was the primary driving force for the displacement and transportation of surface soil.
Therefore, the key to managing soil erosion was to control runoff. If runoff can be reasonably controlled,
soil erosion can be managed and limited to a minimum [45]. The effects of different crop types and
tillage measures on the runoff loss of nitrogen and phosphorus were analyzed by using indicators such
as runoff reduction benefit and nitrogen and phosphorus reduction benefit. The formulas for each
indicator are as follows [38,46]:

RRB =
Rb −Rv

Rb
× 100% (4)

TNRB =
TRb − TRv

TRb
× 100% (5)

NNRB =
NRb −NRv

NRb
× 100% (6)
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ANRB =
ANb −ANv

ANb
× 100% (7)

TPRB =
TPb − TPv

TPb
× 100% (8)

DPRB =
DPb −DPv

DPb
× 100% (9)

where Rb is the runoff loss of BL and Rv is the runoff loss under slope types. TRb is the total nitrogen
loss in runoff of BL and TRv is total nitrogen loss in runoff under crop types or tillage measures. RRB is
reducing runoff benefits, TNRB is reducing total nitrogen benefits, NNRB is reducing nitrate nitrogen
benefits, ANRB is reducing ammonium nitrogen benefits, TPRB is reducing total phosphorus benefits,
DPRB is reducing dissolved phosphorus benefits. The results are shown in Table 4.

Table 4. Relationship between cumulative runoff and sediment yield under different crop types.

Reduction Rate (%) TCP PL TCS BP BS SC CL

RRB 93.9 88.0 49.6 72.4 60.8 25.0 6.9
TNRB 93.9 86.2 83.3 67.8 56.9 23.4 10.3
NNRB 92.7 83.5 78.0 65.9 47.1 13.7 −30.0
ANRB 96.8 94.9 85.8 85.0 37.8 12.3 −136.0
TPRB 96.6 86.5 85.6 67.5 45.2 58.8 54.3
DPRB 93.7 87.5 93.7 68.9 43.0 70.7 79.3

Compared with BL, the reduction rates of runoff and nitrogen and phosphorus loss of TCP were
the highest (>92% for each). The reduction rates of PL were the second highest. The CL slope type had
the lowest reduction rates, with NO−3 –N and NH+

4 –N losses that were even greater than those of BL.
According to the above analysis, the reduction rates of BS were greater than those of SC. Compared
with BL, the surface area of BS increased by 20%–30%, which enlarged the rainfall area and prolonged
the runoff retention time. For short rainfall durations, the runoff of BS was small which induced the
small loss of nitrogen. SC had a longer runoff duration for the same duration of rainfall, and the soil
nitrogen loss was large due to its high runoff. In addition, except for TCS, all types of nitrogen reduction
benefits were consistent with runoff, confirming that soil nitrogen loss was dominated by runoff loss;
the regulation of slope conditions regulated nitrogen loss primarily by regulating runoff. The high
nitrogen reduction rate of TCS was primarily due to soybean nitrogen fixation. The experimental
results showed that the nitrogen harvest index, nitrogen use efficiency and absorption efficiency of the
TCS model were significantly higher than those of the soybean monoculture.

The CL slope type had relatively large runoff levels, high runoff intensity and average nitrogen
and phosphorus concentrations, which indicated a limited effect in regulating runoff and nitrogen and
phosphorus loss. The crop type of the CL slope was only 15%. Furthermore, corn was a high-stem crop,
which facilitated an increase in the kinetic energy of raindrops intercepted by corn leaves falling to the
soil surface. Corn leaves collect rainfall to form runoff causing rill erosion. therefore, enhanced the
soil erosion and baipromoted the dissolution loss of soil nutrients. The runoff may contain a amount
of nutrients with the soil erosion. This leads to the runoff NO−3 –N and NH+

4 –N losses of CL maybe
greater than the BL which was used as a reference. Therefore, the NNRB and ANRB of CL are negative.

The reduction rates of TP and DP varied greatly among the eight slopes. Although the phosphorus
loss on the slope was dominated by DP, the rate of phosphorus loss was different from that of
runoff, indicating that particulate phosphorus had a particular effect on the runoff loss of phosphorus.
However, under crop coverage, the amount of sediment was much smaller than that of runoff; therefore,
phosphorus loss was predominantly for DP. Overall, crop types had only a slightly better regulating
effect on runoff nutrient loss than from BS and SC tillage measures.
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4. Conclusions

In this study, the field experiment demonstrated the runoff process and the loss of nitrogen
and phosphorus on eight slopes and analyzed the effects of different crops and tillage measures on
nutrient loss.

(1) Based on BL, the runoff of the CL, SC, TCS, BS, BP, PL, and TCP slope types were 93%, 75%,
51%, 39%, 28%, 12%, and 6% of the those of the bare land, respectively. The results showed that the
crop coverage increasing and crop interplanting can effectively regulate surface runoff and sediment
yield, and the effect on sediment regulation was more obvious than that on surface runoff.

(2) The concentration of total nitrogen and nitrate nitrogen increased under different crop types
and tillage measures, while the concentration of ammonium nitrogen increased first and then decreased,
and the overall concentration of ammonium nitrogen decreased. Before the end of runoff, the total
nitrogen, nitrate nitrogen, and ammonium nitrogen in TCP and TCS were still in the fluctuation
process, while the concentrations of total nitrogen, nitrate nitrogen, and ammonium nitrogen in surface
runoff of PL, CL, BP, BL, BS, and SC basically reached a stable state, in which the total nitrogen loss
intensity was 0.163, 1.065, 0.383, 1.188, 0.512, and 0.909 kg/hm2, and the corresponding TP loss intensity
was 0.002, 0.006, 0.005, 0.016, 0.009, 0.006 kg/hm2, respectively. The nitrogen and phosphorus output
coefficient of slope farmland can be inferred from the loss intensity and the area of slope farmland.

(3) In terms of efficiency on water and sediment reduction, corn and peanuts interplanted (TCP)
was the most effective for water, sediment nitrogen and phosphorus reduction (>92%), comparing with
BL. The runoff and sediment reduction and nitrogen and phosphorus reduction rates of single cropping
corn was the lowest. By the corn and soybean interplanting mode (TCS), the water reduction rate
was 49.6% and the sand reduction rate was 73.8%, which indicated that the sand reduction efficiency
was more obvious than the water. The reduction rate of nitrogen and phosphorus by TCS was also
between 78.0% and 93.7%. Under straw mulch condition, the water reduction rate was 25%, but the
sand reduction rate was 90.7%. Therefore, the runoff, sediment, nitrogen and phosphorus loss of
slope farmland can be regulated according to the benefits of reducing water, sediment, nitrogen,
and phosphorus by different crop types and tillage measures.
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