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Abstract: Dissolved inorganic carbon isotope composition (δ13CDIC), together with major ion
concentrations were measured in the Mun River and its tributaries in March 2018 to constrain the
origins and cycling of dissolved inorganic carbon. In the surface water samples, the DIC content
ranged from 185 to 5897 µmol/L (average of 1376 µmol/L), and the δ13CDIC of surface water ranged
from −19.6%� to −2.7%�. In spite of the high variability in DIC concentrations and partial pressure of
carbon dioxide (pCO2), the δ13CDIC values of the groundwater were relatively consistent, with a mean
value of −16.9 ± 1.4%� (n = 9). Spatial changes occurred in the direction and magnitude of CO2 flux
through water-air interface (FCO2). In the dry season, fluxes varied from −6 to 1826 mmol/(m2

·d) with
an average of 240 mmol/(m2

·d). In addition to the dominant control on hydrochemistry and dissolved
inorganic carbon isotope composition by the rock weathering, the impacts from anthropogenic
activities were also observed in the Mun River, especially higher DIC concentration of waste water
from urban activities. These human disturbances may affect the accurate estimate contributions of
carbon dioxide from tropical rivers to the atmospheric carbon budgets.

Keywords: stable carbon isotope; major elements; dissolved inorganic carbon; agriculture; Mun River
Basin; Northeast Thailand

1. Introduction

The global estimate of atmospheric carbon dioxide exchange shows that the amount of carbon
dioxide exchanged in the tropics is huge and cannot be ignored [1]. At present, because of the role of
atmospheric carbon dioxide in controlling global climate change, the process of controlling carbon
in and out of inland water is receiving special attention [2–5]. As an important part of inland water,
river, and groundwater are the key to the hydrogeology of the upper crust and the surface of the
earth [6–10]. Many scholars have begun to undertake systematic research on rivers, especially the
conversion transfer of CO2 among the lithosphere, hydrosphere, and the atmosphere systems [5,11–15].
However, the special connection between hydrological and biogeochemical processes regulating carbon
dioxide fluxes in above systems is still unclear. Some studies have shown that dissolved inorganic
carbon (DIC) accounts for about 50% of global carbon fluxes transported by the rivers [16]. In addition,
a huge amount of DIC is not only transported by the river into the ocean, but also released into the
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atmosphere [17–20]. An updated estimate of global CO2 evasion to the atmosphere from inland waters
is about 2.1 Pg C/year [1]. Thus, both vertical and lateral transports of DIC via rivers should be
further understood.

The DIC in river water mainly originates from the following processes of CO2 exchange with the
atmosphere, inflow of soil CO2 through groundwater, biological respiration in the river, and dissolution
of carbonate rocks [21]. Moreover, human factors also affect all aspects of the carbon cycle in a river. For
instance, flow regulation and damming affect the basic hydraulic characteristics of the river (water flow
velocity and mixing characteristics), and cut off the river’s connection with adjacent areas. Frequent
exchange between groundwater and river water increases the risk of water pollution, because possible
contaminants from human activities could be carried into the groundwater. High contents of organic
carbon in waste water can lead to mass microbial growth, which make groundwater is unsuitable for
residents. Understanding the DIC cycle in rivers and streams helps in predicting the behavior of the
river system in case of contamination, and in assessing the possible contaminating effect of the river
water on groundwater.

The Mun River, in northeast Thailand, has a considerable amount of population and agriculture,
therefore, the risk of such contamination is also elevated. Groundwater in the area is used as drinking
water and irrigation water. For all these reasons, the Mun River is an ideal example of a vulnerable
river system characterized by significant human activity. Under the right conditions, the carbon
isotope of DIC (δ13CDIC) can be an effective tool, and it is helpful to understand the biogeochemical
reactions processes in surface water and groundwater. Correlation of variations in δ13CDIC with major
ion chemistry, the partial pressure of carbon dioxide (pCO2), and calcite saturation indexes (CSI) may
provide evidence for such processes.

The objective of this study was to discriminate various DIC sources, especially anthropogenic
sources in a tropical agricultural river using isotopic and chemical tracers. For this, this paper combines
δ13C values of DIC and hydrochemistry to constrain the origins and cycling of DIC in the Mun River of
Northeast Thailand. This study characterizes DIC sources and interactions in a tropical agricultural
river system, and thus helping to increase the overall understanding of the global carbon cycle and the
links among the lithosphere, hydrosphere, and the atmosphere.

2. Materials and Methods

2.1. Study Area

The study area and sample sites were described in detail by the authors of references [22,23].
Briefly, the Mun River lies in the northeast of Thailand between latitudes 14◦ N to 16◦ N and longitudes
101◦30′ E to 105◦30′ E (Figure 1a), the total area is 71,060 square kilometers. It is one of the right
tributaries of the Mekong River [24,25]. Thailand is a traditional agricultural country, and agriculture
is the largest sector of the economy. Arable land (70.8%) is the main land use type in the study area
and others such as forest land (13.5%), grassland (5.3%), urban (including industrial and residential)
areas (6.4%), and water body (4.0%) make up a very small percentage (Figure 1b). Most of the arable
land (about 75%) in the Mun River Basin is devoted to paddy fields [26]. The study area is mainly
occupied by clastic sedimentary rocks of Mesozoic and Quaternary sediments (Figure 1c). Quaternary
sediments are mainly semi-consolidated and unconsolidated sediments. There is a small amount of
volcanic rock in the south of the basin. Nevertheless, the sum of all limestones is less than 1% of the
bedrock geology of the Mun River basin. Thailand has a population of 67 million, of which one third
lives in the Northeast, but this area contributes only 10% to the national GDP [27]. The river or stream
flows through several urban centers, where the wastewater is not adequately treated. According to
government statistics, the population in the study area is mainly concentrated in the middle reaches,
and the distribution range is 37 to 601 persons/km2 with an average of 150 persons/km2 in the whole
basin (Figure 1d).
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Figure 1. Maps of the Mun River Basin created by using ArcGIS software. (a) The hydrographic 
network with sampling sites and (b) land uses in the Mun river basin; (c) lithology of the Mun river 
basin; (d) density of population at district level (persons per square kilometer). 

The climate of the basin is under the influence of southwest monsoon from mid-May to mid-
October and northeast monsoon from mid-October to mid-February. From mid-February to mid-
May, this is the transitional period from the southwest to northeast monsoons. The average annual 
precipitation is 1308 mm with an increasing trend from upstream (1035 mm) to downstream (1616 
mm), and the precipitation in the southwest monsoon season (rainy season) accounts for 85.2% of the 
annual precipitation (Figure 2a). The average monthly temperature throughout the basin ranges from 
23.6 °C in January to 30.7 °C in April. The average annual runoff and annual suspended sediment 
(SS) at the M.11B hydrological station located at outlet of the Mun River are 2.6 × 1010 m3 and 1.1 × 108 
t (Figure 2a,b) (Royal Irrigation Department Thailand, http://hydro-4.rid.go.th). 

 
Figure 2. (a) Monthly distribution of precipitation (1957 to 2017) and air temperature (1981 to 2016). 
(b) Multiyear (2010–2018) average runoff and daily discharge in gauging station (M.11B) at the outlet 
of the basin. (c) Multiyear (2010–2018) average suspended sediment (SS) and daily suspended 
sediment in gauging station (M.11B) at the outlet of the basin. 

Figure 1. Maps of the Mun River Basin created by using ArcGIS software. (a) The hydrographic
network with sampling sites and (b) land uses in the Mun river basin; (c) lithology of the Mun river
basin; (d) density of population at district level (persons per square kilometer).

The climate of the basin is under the influence of southwest monsoon from mid-May to mid-October
and northeast monsoon from mid-October to mid-February. From mid-February to mid-May, this is
the transitional period from the southwest to northeast monsoons. The average annual precipitation
is 1308 mm with an increasing trend from upstream (1035 mm) to downstream (1616 mm), and
the precipitation in the southwest monsoon season (rainy season) accounts for 85.2% of the annual
precipitation (Figure 2a). The average monthly temperature throughout the basin ranges from 23.6 ◦C
in January to 30.7 ◦C in April. The average annual runoff and annual suspended sediment (SS) at
the M.11B hydrological station located at outlet of the Mun River are 2.6 × 1010 m3 and 1.1 × 108 t
(Figure 2a,b) (Royal Irrigation Department Thailand, http://hydro-4.rid.go.th).
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Figure 2. (a) Monthly distribution of precipitation (1957 to 2017) and air temperature (1981 to 2016).
(b) Multiyear (2010–2018) average runoff and daily discharge in gauging station (M.11B) at the outlet of
the basin. (c) Multiyear (2010–2018) average suspended sediment (SS) and daily suspended sediment
in gauging station (M.11B) at the outlet of the basin.
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2.2. Water Sampling and Analysis

All samples in this study were collected in March of 2018. Fifty-six surface water and 2 wastewater
samples from the Mun river basin were collected in previous washed containers. One of the wastewater
samples (W2) was collected from a sewage pipe in the Khorat Province. Another waste sample was
(W1) taken from a rice field where compound fertilizer was added. For comparison, 2 river water
samples (S40 and S57) from 2 nearby rivers (Chi and Mekong River) were collected for analysis. In
addition, 10 groundwater samples were collected and analyzed in March. The groundwaters were
sampled from an existing pumping water well, and depths of this wells ranged from 5 to 30 m. At
the sampling points, temperature (T), electrical conductivity (EC), pH, total dissolved solids (TDS),
dissolved oxygen (DO), and oxidation reduction potential (ORP) of the water samples were measured
using a handheld multi-parameter water meter (YSI Inc., Yellow Springs, OH, USA). Alkalinity was
determined on site using a pure HCl titration before filtration. Collected water samples filtered through
the cellulose acetate member (Millipore, 0.22 µm), then all samples were stored in pre-cleaned HDPE
(high-density polyethylene) bottles.

Major cations (Mg2+, Mg2+, K+ and Na+) were analyzed by ICP-OES (Optima 5300DV, PerkinElmer
Inc., Waltham, MA, USA), and anions (SO2−

4 , Cl− and NO−3 ) were analyzed using ionic chromatography
(Dionex 1100, Sunnyvale, CA, USA) in the Institute of Geographic Sciences and Nature Resources Research,
Chinese Academy of Sciences (CAS). Total dissolved inorganic carbon (DIC) in the river included CO2(aq),
H2CO3, HCO−3 , and CO2−

3 [17]. Carbon has 2 stables isotopes (12C and13C), and ratios of these isotopes
were reported in 10 percentiles relative to the standard Vienna Pee Dee Belemnite (VPDB). The
measurements of 13C/12CDIC were conducted using a Thermo Fisher Scientific Isotope Gas Ratio Mass
Spectrometer (MAT 252) located in the state key laboratory of environmental geochemistry in Guiyang.
Following standard methods [28,29], about a 10 mL sample was injected into glass bottles with 1mL
85% H3PO4. Then generated CO2 was extracted into a vacuum line in the laboratory at 50 ◦C, while
stirring for 10 min. Finally, the CO2 was transferred cryogenically into a tube for isotope measurement,
where δ13C (%�) = [(13C/12C) sample/(13C/12C) VPDB − 1] × 1000. Routine δ13CDIC measurements have
an overall precision of ± 0.1%�.

In this study, the DIC content, calcite saturation indexes (CSI) and the partial pressure of carbon
dioxide (pCO2) were calculated from the major ion concentrations, water temperature, alkalinity, and
pH using the program PHREEQC version 2.2. In the program, CSI was calculated using the equation:
CSI = Log (IAP/K). In the equation, K is the equilibrium constant of the calcite dissolution reaction and
IAP is the ion activity product. If CSI >0, the mineral was supersaturated to the aqueous solution and
may deposit calcite or dolomite; if CSI = 0, the mineral and the aqueous solution were in equilibrium;
and if CSI <0, the mineral was not saturated to the aqueous solution.

2.3. Data Processing

The map of land use (Figure 1b) was derived from the Ministry of Natural Resource and
Environment of Thailand. The geology map (Figure 1c) was based on the “Geological Map of Thailand”
(1:250,000); hydrological and geochemical parameters were analyzed by Microsoft Excel (Microsoft,
Redmond, WA, USA) and Sigma Plot 12.5 software. In this paper, figures were drawn using Adobe
Illustrator CC 2015.3.

3. Results

3.1. Geochemistry of the Mun River Water

The physical–chemical parameters of the river water and carbon isotope composition of the
dissolved inorganic carbon (δ13CDIC) are listed in the Supplementary material. Surface river water
(Mun, Chi, and Mekong River) displayed a temperature range from 24.0 to 33.0 ◦C (average, 28.6 ◦C)
with pH ranging from 6.1 to 8.5 (average, 7.4). Groundwaters were cooler (24.0 to 24.9 ◦C), and have a
lower pH (4.7 to 7.3, average 6.5) compared with the surface water. Measured TDS in the field showed
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significant spatial variations from 15 to 1502 mg/L (average, 297 mg/L). From upstream to downstream,
TDS increased first and then decreased due to the import of the Chi River and peak appeared in the
middle reaches. In the main channel, EC had similar spatial variation characteristics with TDS and
from 23 µS/cm to 2452 µS/cm. Compared with TDS and EC, ORP and DO showed small spatial changes.
The observed ORP values in most of samples (average of 165 mV) were positive except from one urban
waste sample (W2) in the upstream. Urban sewage contained the lowest DO value (1.6 mg/L) of the
whole sample. Groundwaters had higher TDS values (36 to 1359 mg/L, average of 598 mg/L) and EC
value (47 to 3166 µS/cm, average of 1093 µS/cm). However, ORP and DO in the groundwaters were
similar to the surface waters.

The major ions of surface water and groundwaters were plotted in Figure 3. The average content
(µmol/L) of the major ions was in the order of Na+ > Ca2+ > Mg2+ > K+ for the cations and Cl− >

HCO−3 > SO2−
4 > NO−3 for the anions in the surface water samples. The plots indicate that most of the

surface and groundwater samples were dominated by Na+ for cations and Cl− or HCO−3 for anions.
The concentration of other cations such as Mg2+ and Ca2+ was less than 20% of the sum of the major
cations. For anions, the sum of SO2−

4 and NO−3 only contributes about 15% of the total anions in the
surface and groundwater samples.
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3.2. DIC System and δ13CDIC Values

In the surface water samples, the DIC content ranged from 185 to 5897 µmol/L (average as
1376 µmol/L). In most of the samples, bicarbonate was the main component of DIC, accounting for
about 82% of DIC, and the rest was mainly composed of dissolved carbon dioxide as they were more
acidic samples. Urban domestic sewage contained abnormally high DIC (7397 µmol/L), and HCO−3
was the dominant species (92.4%). Compared with the average of surface water in the same period,
farmland water showed lower DIC concentration (632 µmol/L). Chi and Mekong had similar DIC
concentrations 1297 µmol/L and 1669 µmol/L, respectively. In groundwaters, the concentrations of
DIC (1669 to 17,551 µmol/L, average 8793 µmol/L) were significantly higher than surface water. In
most samples, the partial pressure of CO2 (pCO2) was above the atmospheric level (400 ppm). The
CSI results of the most of samples were below zero, indicating that the water was undersaturated
with CaCO3.

http://www.eanet.asia
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The carbon isotopic compositions (δ13CDIC) of the surface water ranged from −19.6%� to −2.7%�

in the dry season. Chi and Mekong had similar δ13CDIC values to Mun River. Urban sewage and
farmland water from rice field did not show abnormal carbon isotope values (−11.4%� and −13.8%�,
respectively). Although the DIC concentration and carbon dioxide partial pressure pCO2 varied greatly,
the δ13CDIC values of groundwater samples were relatively consistent, and the average value was
−16.9 ± 1.4%� (n = 9) except from G1 (δ13CDIC = −9.3%�).

4. Discussion

4.1. Sources of Groundwater DIC

In the Mun River, pCO2 values in groundwater were generally higher, more than 10,000 µatm.
Groundwater recharge may be the main source of DIC in the surface water, especially in the dry season.
Carbonate dissolution mainly occurs in groundwater by reaction with H2CO3 produced from CO2 in
the soil rather than the atmosphere [30]. Soil CO2 is mainly derived from the respiration of microbial
and plant, a minor amount of atmospheric CO2 (δ13C = −8%�) may be mixed in the shallow layer of
the soil [30]. Respiration is a chemical process in which an organism oxidizes and decomposes organic
matter in cells and produces energy, at the same time producing carbon dioxide (respired CO2) with
approximately the same δ13C value to soil organic matter [31]. In the study area, the soil organic carbon
(SOC) had δ13C values of −28%� to −25%� (unpublished data), this SOC isotopic range reflects C3
photosynthesis, probably by rice. Most studies have found that due to the different molecular diffusion
rates of 13CO2 and 12CO2, δ13C values of soil CO2 is higher than of the organic matter, which is about
4%� enrichment [32–34], the δ13C values of carbon dioxide from the oxidation of soil organic matter
with δ13C (−28%� to −25%�) will be −24%� to −21%� (average, −22%�). Zhao, et al. [35] have reported
that the average soil pH value is 6 in the Mun River Basin, thus the predominant carbon species in soil
water is carbonic acid [16].

Moreover, the dissolution of soil CO2 into soil water produces a further fractionation about 1%� at
25 ◦C [17]. Thus, the predicted δ13CDIC of the soil water were −23%� to −20%� at pH = 6 and 25 ◦C.
Based on the above discussion, it can be inferred that the δ13C values of HCO−3 from silicate weathering
with soil CO2 would range from −23%� to −20%�, which was lower than the measured average value
(−16.9 ± 1.4%�) of groundwater. Because δ13C of carbonate is almost equal to zero, thus weathering
of such carbonates with CO2 from soil would produce a positive δ13CDIC of −11%� compared with
soil CO2. The expected δ13CDIC in the process of carbonate weathering was higher than the measured
amount. Most of the groundwater samples had δ13CDIC values in the range −19.0%� to −15.1%�, it
shows that the DIC in these groundwaters was mainly derived both from the weathering of silicates
and carbonates (Figure 4). In addition, the concentration of carbon dioxide in the soil zone was much
higher than the atmosphere and groundwater. Under open system, the δ13CDIC values of groundwater
will tend to more negative due to continued isotopic exchange with carbon dioxide in the soil.
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4.2. Rock Weathering Versus the δ13CDIC Values

Chemical weathering of silicates and carbonates is a key process for the carbon cycling at the
Earth’s surface [36–40]. Chemical weathering is the major source of elements delivered by rivers to
the oceans [41]. Carbonic acid usually accelerates silicate weathering, for instance, the incongruent
dissolution of sodium feldspar to clay kaolinite by carbonic acid:

2NaAlSi3O8(s) + 9H2O + 2H2CO3(aq) = Al2Si2O5(OH)4(s) + 2Na+(aq)+2HCO−3 +4H4SiO4(aq) (1)

As discussed previously, the carbonic acid is most likely to be produced in the soil, where pCO2

values are much higher than the atmosphere [6,17,20]. Thus, the δ13CDIC values in reaction (1) is similar
to the estimated value of carbonic acid (−23%� to −20%�). However, carbonate weathering is much
faster than silicate weathering under the same conditions. Consequently, even in many carbonate-poor
catchments and minor carbonate mineral weathering may also occur [42–44]:

CaCO3 + H2O + CO2(aq) = Ca2+(aq)+2HCO−3 (aq) (2)

There is only a small amount of carbonate in the upper reaches of the Mun River, these marine
carbonates probably have δ13CDIC values close to 0%�. Weathering of such carbonate via reaction (2)
would produce DIC with a δ13CDIC value of −12%� to −10%�. These predicted δ13CDIC values are
matched to the value of δ13CDIC in the dry season. Although H2CO3 weathering is common, it is
not the only one. Anthropogenic acid (sulfuric and nitric acid) also actively participates in the rock
weathering process [7,45–47]. For example, anthropogenic emissions of SO2 from coal combustion will
produces H2SO4 that can then accelerate carbonate weathering:

CaCO3 + H2SO4 = 2Ca2+(aq)+2HCO−3 (aq)+SO2−
4 (3)

In this case, all carbon produced is derived from the carbonate and the δ13CDIC value is similar
to the carbonate minerals. Based on the above discussion, DIC from different weathering processes
in the Mun River were plotted in Figure 5. Most water samples deviate from the three end-member
mixing region and towards the silicate weathering by sulfuric and nitric acid area. Acid rain accelerates
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rock weathering and the role of the anthropogenic sourced acid (sulfuric and nitric acid) on silicate
weathering is not negligible in the Mun River Basin.Int. J. Environ. Res. Public Health 2019, 16, x 8 of 14 
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4.3. Carbon Isotopic Composition of Anthropogenic DIC

As one of the important agricultural production areas and population gathering place in Thailand,
the chemistry of the Mun River water could be significantly impacted by human activities [8,48].
TDS reflects both the different lithologies drained by the river but also can be influenced by human
activities on the water quality [6]. Higher TDS were mainly found in the middle reaches, which may
be related to the dense population in the middle reaches. In addition, K+, Na+, Cl−, NO−3 , and SO2−

4
are usually related to agricultural fertilizers, animal waste, and sewage in the river. If we focus on
the mainstream, we can observe a sharp increase in Cl−, NO−3 , and SO2−

4 concentration in the middle
of the river and this increase can mainly be related to the fertilizers used for agriculture. The case
of chlorine is also characteristic but less obvious due to the contribution of evaporites dissolution in
the study area. Calcium, Mg2+, and HCO−3 are conventionally considered to be insensitive to human
pollution [9]. To assess the impact of the urban and agricultural wastewater on river water, the waste
water samples were collected from sewage pipe in Khorat Province and the rice field. Figure 6a shows
the relationships between the molar ratios NO−3 /Na+, SO2−

4 /Na+ for the river waters. Two wastewater
samples were characterized by low NO−3 /Na+ concentrations, and the values were approximately
0. The SO2−

4 may originate from various sources, such as oxidation of sulfides, the dissolution of
gypsum, and acid deposition [41]. Higher DIC concentrations (7397 µmol/L) and medium δ13CDIC

value (−11.4%�) were found in the urban sewage sample (Figure 6b), and this large amount of untreated
sewage discharged from rural areas may have a huge impact on concentrations of DIC and δ13CDIC.
Shin, et al. [49] reported that δ13CDIC values of detergents measured in three streams in a South Korean
study ranged from −12.0 to −6.5%�. Therefore, in urban streams, detergent may be an important source
of river water DIC.
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4.4. DIC Evasion from the River System

Carbon dioxide will spread out of the river through the water-air interface when the pCO2 in the
river water is greater than the partial pressure of carbon dioxide in the surrounding atmosphere. With the
loss of CO2, the isotopic composition of the remaining DIC has changed accordingly [15]. In this study,
carbon dioxide fluxes through the water-air interface were estimated using the following equation:

FCO2 = k × (Cwater − Cair) (4)

where FCO2 is the CO2 flux through the water-air interface, k is the gas transfer velocity (cm/h), Cwater

and Cair is the CO2 concentration in the water and air, respectively. Cwater and Cair are typically
calculated from the CO2 solubility, KH (mol/m·atm), and the partial pressure of CO2 (pCO2, µatm) in
the water (pCO2w) and air (pCO2a), respectively (i.e., Cw,a = KH × pCO2w,a). Positive values of FCO2

represent fluxes from the water to air, and negative FCO2 values indicate CO2 invasion from air to
water. The atmospheric CO2 concentration 445 ppmv was used here, and K is a temperature-dependent
Schmidt number (ScT) for fresh water [13]:

k = k600 × (ScT/600) − 0.5 (5)

With
ScT = 1911.1 − 118.11T + 3.4527T2

− 0.04132T3 (6)

where T is the in-situ water temperature (◦C), and k600 is the K for CO2 at 20 ◦C in freshwater. For
small streams, we use k600 = 13.82 + 0.35w, where w is the water flow rate (cm/s). For the main channel
(width >100 m), we use k600 = 4.46 + 7.11 × −u10. Where −u10 is the wind speed 10 m above rivers.
Due to the lack of in-situ wind speed data, here the wind speed data of the nearest meteorological
department were used to approximately replace the wind speed 10 m above the rivers.

Spatial changes occur in the direction and magnitude of FCO2 (Figure 7). The source region
generally had high carbon dioxide flux. The evasion fluxes for the source region in this study show
that the evasion of carbon from tropical rivers is not to be ignored. In the dry season, fluxes varied
from −6 to 1826 mmol/(m2

·d) with an average of 240 mmol/(m2
·d). FCO2 values from the Mun River

are similar to values from other tropic rivers (Table 1). The observed spatial differences, combined
with the changes in other rivers around the world, indicate that carbon dioxide evasion in tropical
rivers is huge but there are also large uncertainties.
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Table 1. The average pCO2 and CO2 evasion flux of the Mun River and other rivers around the world.

River Location Climate DIC mmol/L pCO2 µatm k cm/h FCO2 mmol/(m2
·d) References

Mun Thailand Tropic 1.4 4392 10 240 This study
Lower Mekong East Asia Tropic 1.6 1090 26 195 [5]

Sinamay French Tropic - - - 30–461 [50]
Amazon Brazil Tropic - 4350 10 189.0 [15]
Amazon Brazil Tropic - 3320 15 345.2 [51]
Nanpan China Subtropics 2.8 2644 8 194 [52]
Beipan China Subtropics 2.6 1287 8 78 [52]
Xijiang China Subtropics 1.6 2600 8–15 189–356 [53]
Yangtza China Subtropics 1.7 1297 - 14.2 [19]

Longchuan China Subtropics 1.1–4.6 1230–2100 - 74–156 [54]
Ottawa Canada Temperate 0.05–3 1200 4 80.8 [17]
Hudson USA Temperate - 1125 4 16–s37 [18]

Mississippi USA Temperate 0.5 1335 - 270 [2]

5. Conclusions

Most of the surface and groundwater samples were dominated by Na+ and HCO−3 . The
concentration of other cations (such as Mg2+ and Ca2+) is less than 50% of the sum of the major cations.
For anions, the sum of SO2−

4 , Cl−, and NO−3 only contributes about 45% of the total anions in all the
samples. In the surface water samples, the DIC content ranged from 185 to 5897 µmol/L (average
1376 µmol/L) in the Mun River. In most of the samples, bicarbonate was the main component of DIC,
accounting for about 82% of DIC, and the rest is mainly composed of dissolved carbon dioxide due to it
containing more acidic samples. Urban domestic sewage contains abnormally high DIC (7397 µmol/L),
and HCO−3 was the dominant species (92.4%).

The carbon isotopic compositions (δ13CDIC) of surface water ranged from −19.6%� to −2.7%�.
Urban sewage and farmland water did not show abnormal carbon isotope values (−11.4%� and
−13.8%�, respectively). In spite of the high variability in DIC concentrations and pCO2, the δ13CDIC

values of the groundwater were relatively consistent, with a mean value of −16.9 ± 1.4%� (n = 9).
Spatial changes occured in the direction and magnitude of FCO2. In the dry season, fluxes varied from
−6 to 1826 mmol/(m2

·d) with an average of 240 mmol/(m2
·d). In addition to the dominant control

on hydrochemistry and dissolved inorganic carbon isotope composition by the rock weathering, the
impacts from anthropogenic activities were also observed in the Mun River, especially higher DIC
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concentration of waste water from urban activities. These human disturbances may affect accurate
estimate contributions of carbon dioxide from tropical rivers to the atmospheric carbon budgets.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/16/18/3410/s1,
Table S1: The physical–chemical parameters and major ions concentration in the Mun River, Table S2: DIC system
and carbon isotope composition of surface water and groundwater.
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