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Abstract: Floods not only provide a large amount of water resources, but they also cause serious
disasters. Although there have been numerous hydrological studies on flood processes, most of these
investigations were based on rainfall-type floods in plain areas. Few studies have examined high
temporal resolution snowmelt floods in high-altitude mountainous areas. The Soil Water Assessment
Tool (SWAT) model is a typical semi-distributed, hydrological model widely used in runoff and water
quality simulations. The degree-day factor method used in SWAT utilizes only the average daily
temperature as the criterion of snow melting and ignores the influence of accumulated temperature.
Therefore, the influence of accumulated temperature on snowmelt was added by increasing the
discriminating conditions of rain and snow, making that more suitable for the simulation of snowmelt
processes in high-altitude mountainous areas. On the basis of the daily scale, the simulation of the
flood process was modeled on an hourly scale. This research compared the results before and after
the modification and revealed that the peak error decreased by 77% and the time error was reduced
from ±11 h to ±1 h. This study provides an important reference for flood simulation and forecasting
in mountainous areas.

Keywords: sub-daily; flood processes; accumulated temperature (AT); degree-day factor; SWAT

1. Introduction

Flooding is one of the most common and feared natural disasters around the world. The losses
caused by floods account for approximately 40% of the losses of all natural disasters [1]. The destructive
power of floods causes great losses to peoples’ lives and their property security. Based on the source
of the flood, flooding can be classified as either rainfall, snowmelt, or mixed floods [2–7]. In flat
plain areas, since there is no water supply from melting snow and melting ice, the water originates
primarily from rainfall and the flooding in these areas is mainly rainfall flooding [2,5]. In high-altitude,
mountainous areas, however, perennial snow cover and glacier cover often lead to snowmelt and
mixed floods [8]. Today, under the influence of climate change and an increasing population, the losses
and hazards caused by mountain torrents are becoming increasingly prominent and serious. Given
this situation, it is an urgent responsibility of government departments to ensure the safety of residents
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and property when floods occur [1,9]. Therefore, there is a crucial need for flood disaster simulation
and prevention models to be developed and improved. The premise of the accurate prediction of flood
events, however, is to study different types of flood processes [10]. Hence, the simulation of flood
processes under high temporal resolution is becoming extremely important [11].

With this emphasis on flood process simulation, various models have been modified and applied
to flood simulation [12–17], including empirical models, physically-based models, conceptual models,
semi-distributed and distributed hydrological models. The computational formulas of these models
cover complex energy conservation, degree-day factor methods, and water balance methods [18–21].
Although these models are accepted for various reasons, including their simple structure [22], high
computational efficiency, and smaller data requirements, they all insufficiently account for the
spatial heterogeneity of catchment areas and the impact of complex terrain. Therefore, more and
more distributed and semi-distributed hydrological models have been applied to flood process
simulation [23–25]. The TOPMODEL was first used for flood simulation. The variable infiltration
capacity (VIC) model was also used to flood process simulations [26,27]. The Xin’anjiang (XAJ) model
was the first hydrological model developed in China and used for flood simulation, which achieved
a high accuracy in the Huaihe River Basin. Many other models have achieved varying results in
flood simulation, such as the storm water management model (SWMM), hydrological, MIKE Systeme
Hydrologique Europeen (MIKE SHE) [28], and the MARINE event-based model [29–31]. To make the
simulation of evaporation more accurate under conditions of low relative humidity, low temperature,
and strong winds, a mass and energy balance snowmelt point model was developed by Herrero et al.
using a new atmospheric emissivity expression [32]. The fast all-season soil strength (FASST) model
was applied to calculate the amount of snowmelt in the alpine regions of China by Yu et al. [33]. They
found that many parameters had to be evaluated when appraising and verifying this method, which
led to a huge workload. This problem was finally solved by combining the FASST model with the soil
water assessment tool (SWAT) model [34–36].

The SWAT model [37–39] is a typical physically-based distributed hydrological model [40,41]. To
calculate total surface runoff and snowmelt, the Soil Conservation Service (SCS) runoff curve number
method and the degree-day factor method were used [35,42,43]. The SWAT model can be integrated
perfectly with a geographic information system (GIS), which demonstrates its great advantages and
applicability in flood process simulation. In addition, the model offers significant advantages in runoff

simulation, water quality simulation, and sediment migration. When the original SWAT model was
applied to the runoff simulation in high-altitude mountainous areas, however, some shortcomings
emerged. As a condition for the occurrence of snowmelt, the original degree-day factor method
simply compared the threshold value of snowmelt temperature with the average daily temperature,
ignoring the influence of accumulated temperature. Because the accumulation of temperature has a
more pronounced effect on snowmelt in high-altitude mountainous areas, it is more reasonable to use
the accumulated temperature threshold as the snowmelt condition. At the same time, when there is
discrimination among precipitation types, the original model is also inadequate. Some researchers
improved the model after recognizing these shortcomings. Meng et al. built an algorithm that used
elevation to yield distribution temperature and precipitation changes with elevation [44]. Luo et al.
added an ice-melting module to the SWAT model [45]. These improvements, however, were also based
on the traditional method.

When simulating flood processes, the accuracy of the model on the daily scale is important.
For snowmelt flood types in mountainous areas with snow cover, the daily scale cannot meet the
accuracy requirements of flood process simulation. Therefore, it is necessary to simulate the flood
processes on a finer time scale. The SWAT model can provide a runoff simulation on a sub-daily
scale [38,46,47], a daily timescale for continuous simulations and a sub-daily timescale for event-based
flood simulation. The dimensionless unit hydrograph (UH) method was employed in the SWAT
model exhibits a triangular shape [48–50]. When the precipitation data are input into the model, the
daily precipitation is mainly used to simulate and represent the surface runoff, and it is continuous.
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However, the input of precipitation data on the hourly or even minute scales is mainly used to simulate
a flood process, which does not require continuous simulation and shortens the calculation time of the
model. Dan et al. improved the event-based SWAT model by using a sub-daily scale, thereby greatly
improving the simulation results [47]. Zheng et al. improved the model algorithm to run the SWAT
model on a sub-daily, or even sub-hourly, time scale, which created a continuous simulation with higher
time precision. At present, sub-daily simulations have primarily been applied to the study of rainfall
flooding. These simulations are seldom used in snowmelt floods in high-altitude mountainous areas;
therefore, this study provides a reference for related research in this area. On the basis of the existing
flood process research, and in light of the deficiencies in snowmelt flood simulations in mountainous
areas, the original SWAT model was modified and simulations were conducted on daily and hourly
scales. By increasing the ability to determine the type of precipitation, the precipitation classification
involved in this model calculation was more accurate. When calculating snowmelt, the effect of
accumulated temperature on snow melting was fully considered, which modified the snow melting
threshold. Using the daily scale as the basis of our simulation, the sub-daily scale was simulated and
compared to the expression of the modified model. This modified the performance of the model for
the snowmelt flood process in high-altitude mountainous areas. Based on the existing research, the
SWAT model is modified to make it more suitable for high altitude mountain areas. The simulation
of flood process under high time resolution is realized, which can provide a new understanding of
the mechanism of flood occurrence and the induced factors, establish a research basis for future flood
forecasting, and provide technical support for flood prevention.

2. Study Area and Data

2.1. Study Area

One of the areas in China with a high incidence of flooding, and where significant flood events
occur every year, is Xinjiang. China is a vast country with complex topography and large climate
differences [22,51]. Western China contains numerous high mountains, and many of the sources of
large rivers are located in these mountains. In these mid- to high-latitude regions, snowmelt provides
80% of the runoff [52] and rich water resources at the same time [53–55]. As such, it relieves pressure
on all kinds of water needs to a certain extent [45,56]. Although snowmelt provides water resources,
it also causes flood disasters. According to previous research, mountain torrents account for 70% of
the casualties and more than 50% of the economic losses caused by floods [57–60]. The region’s many
mountainous areas and the complex terrain in Xinjiang [61–63] also contribute to the distinctive climatic
conditions and hydrological events. In high-altitude mountainous areas with scarce vegetation, snow
falls more in the winter and precipitation is reduced in the spring [64]. With the general temperature
increase in the spring, surface temperatures increase rapidly, snow begins to melt, and river runoff

increases, resulting in snowmelt floods [65,66]. As night falls, however, the temperature drops, and
the process of snow melting decreases or even stops [67]. This situation has resulted in the unique
snow-melting floods, characteristic of the mountainous areas of Xinjiang, which have been identified as
a “one peak, one day” phenomenon [68,69]. This study took place at the Tizinafu River Basin (TRB) in
Xinjiang, China which was the research area. It provides a scientific reference for subsequent research
on the further improvement of flood simulation accuracy.

The Tizinafu River Basin (TRB) (Figure 1) is situated in the western part of China and the
southwestern part of Xinjiang. The Keerake Daban and Yanggai Daban were located on the northern
slopes of the Kunlun Mountains and also the source of the Tizinafu River. The total length of the basin
is about 335 km and the area of the basin is approximately 5600 km2. The TRB is located in the Kunlun
Mountains, and features limited vegetation, numerous mountainous areas, and large fluctuations in
altitude, ranging from 1476–6320 m. The lower-elevation plain area has reduced precipitation, while
the mountainous area is affected by a microclimate, and precipitation is a little more than that in the
plain area. The average daily precipitation and temperature in the basin from 2011–2014 were 6.71 ◦C
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and 0.6 mm, respectively. The average temperature in the basin is 3.28 ◦C in spring, 15.1 ◦C in summer,
12.34 ◦C in autumn and −2.47 ◦C in winter.
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Figure 1. Topography and sites distribution of the Tizinafu River Basin (TRB), Kunlun Mountains,
West China.

The TRB features a large area of snow and glaciers in the high-elevation regions, which explains
why snowmelt floods often occur in this basin. From May–September, the TRB normally experiences a
high incidence of floods. Due to the limited vegetation and numerous rocks, as temperatures rise each
May, the surface temperature increases rapidly. As a result, the snowmelt and runoff supply to the
river increase rapidly as well, frequently leading to flooding [70]. In addition, summer precipitation
commonly triggers floods. From October–February (known as the dry season), the temperature drops,
snowfall increases in mountainous areas, snow melting stops, and the rivers dry up. During the
research period, the average snow-cover area during the snow-melting season was 103.47 km2 and
that area of the non-snowmelt season was 717.81 km2. According to the analysis and statistics of the
observed hydrological data, the annual average runoff of the TRB was about 35.22 m3/s.

2.2. Materials

The SWAT model was constructed to utilize many basic input data to simulate the hydrological
process. The model was calibrated and verified using measured data, including (Digital Elevation
Model) DEM base data, soil-type data, surface cover-type data, and meteorological data. In this study,
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the basic DEM data with a spatial resolution of 30 m was adopted from the(Shuttle Radar Topography
Mission) SRTM official website (http://srtm.csi.cgiar.org/). The soil type data also had a 30-m resolution
and was downloaded from the China Soil Category Data Network (https://geodata.pku.edu.cn/). The
30-m resolution land use and land cover (LUCC) data were obtained from the visual interpretation
of imagery (https://www.usgs.gov/products/data-and-tools/real-time-data/remote-land-sensing-and-
landsat). The precipitation event data and flood event statistics were obtained from the statistical
yearbooks of relevant local departments. The MODA10A2 (2013–2014) is the important snow product
and the model input data, which were obtained from the corresponding temperature threshold.

The meteorological and hydrological data obtained and used in this study were from the Momoke,
Xihexiu, and Kudi meteorological stations, and the Jiangka hydrological station. As shown in Figure 1,
the three meteorological stations were located at elevations of 1863 m, 2826 m, and 3067 m, respectively.
The observational data from the meteorological stations used in this study began with the establishment
of the stations in 2010, continuing until 2019. The data included both daily-scale data and minute-level
data, including maximum temperature data, minimum temperature data, wind speed and direction
data, air humidity data, soil humidity data, surface radiation data, and other important meteorological
data that were significant for model building and calibration. According to the calculation and
statistics of the temperature data observed at the three meteorological stations, the daily maximum,
minimum, and average temperatures of the basin during the research period were 13.36 ◦C, 0.89 ◦C,
and 7.13 ◦C, respectively.

3. Methods

On the basis of the original model, the effect of the accumulated temperature on snow melting
was fully considered. The daily accumulated temperature was calculated according to the temperature
integral method and the influence of this factor was then added to the model calculation. The runoff

result was simulated and compared on a daily scale, and the model simulation’s results were evaluated
according to the Nash–Sutcliffe efficiency (NSE), determination coefficient (R2), and percent bias
(PBIAS). Based on the daily scale, the simulation results for flood processes under high temporal
resolution were obtained from the hourly scale simulation.

3.1. Modification of Sub-Daily Flood Process Simulation

In this study, the modification of the original SWAT model was primarily focused on two points.
First, was the new added determination of precipitation type, and second was the modified degree-day
factor based on the traditional one. Both the determination of precipitation type and the calculation of
snowmelt amount cannot be separated from the influence of energy. Actually, temperature was the
most important factor affecting energy accumulation and dissipation. Therefore, it was reasonable to
modify the snowmelt module by calculating the accumulated temperature and adding it to the model.

This study’s research ideas are illustrated in Figure 2, including the establishment of the daily
model, modification of the snowmelt module (red box), and simulation of hourly flood events. First,
the daily scale model was established, and the snowmelt module was modified. Then, after calibration
and verification of the daily scale model, the daily scale was reduced to the hourly scale for additional
calibration and verification. The precipitation types were determined and separated by increasing the
cumulative temperature determination conditions (Section 3.2) and calculating each type separately.
When the precipitation type was snowfall, it was added to the snow cover for the snow-melting
calculation. When determining the conditions of snowmelt occurrence, the calculation of snowmelt
can be carried out only when the temperature exceeds the set threshold by increasing the maximum
temperature and accumulated temperature. In this way, the discharge simulation based on the daily
scale was completed. On this basis, the sub-daily scale simulation was carried out in order to realize
the simulation study of flood processes on the hourly scale driven by hourly precipitation data, by
increasing the time scale of rainfall data, the calculation step of the model is increased to the hour scale,

http://srtm.csi.cgiar.org/
https://geodata.pku.edu.cn/
https://www.usgs.gov/products/data-and-tools/real-time-data/remote-land-sensing-and-landsat
https://www.usgs.gov/products/data-and-tools/real-time-data/remote-land-sensing-and-landsat
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and the calculation of snowmelt is increased from the day scale to the hour scale, thereby improving
the accuracy of the flood process simulation under a high time resolution.
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3.2. Calculation of Accumulated Temperature

In the original model, a simple comparison of the average temperature with the temperature
threshold was applied for the determination of precipitation type [66]. This approach had a certain
rationality in plain areas, but when applied to high-altitude mountainous areas, its accuracy was
questionable. In addition, the mountainous areas were generally affected by various microclimates;
therefore, the method of determining precipitation type simply on the basis of daily temperature
required improvement.

Usually, the ambient temperature rises in the morning, reaches a maximum at midday, and
then slowly declines. The general trend of change can be approximated as a sinusoidal curve.
Figure 3 compares this diurnal variation of measured temperature with the simulated approximate
sinusoidal curve.

In terms of maximum and minimum temperature variations, there are three cases of temperature
variations throughout the year, as shown in Figure 4. Curve T1 is the case in which the maximum
and minimum daily temperature is greater than 0 ◦C; in the case of T2, the maximum temperature
is >0 ◦C, but the minimum temperature is <0 ◦C; the curve labelled T3 illustrates the case in which
the maximum temperature is <0 ◦C. Actually, when the influence of accumulated temperature on
precipitation morphology and snowmelt is considered, the calculated accumulated temperature will
only be meaningful when the temperature is >0 ◦C. Therefore, when the accumulated temperature
was calculated, only the T1 and T2 curves were considered, and the 24 h of the day were represented
by the 0–π radians.
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The temperature at different times of day can be calculated by the following formula:

Tday = (Tmx − Tmn) sin t + Tmn 0 ≤ t ≤ π (1)

the formula for calculating the accumulated temperature was as follows:

T =


∫ π

0 (Tmx − Tmn) sin t + Tmn dt, t ∈ (0,π)∫ π−sin−1( −Tmn
Tmx−Tmn )

sin−1( −Tmn
Tmx−Tmn )

Tmx sin tdt, t ∈
(
sin−1( −Tmn

Tmx−Tmn

)
,π− sin−1( −Tmn

Tmx−Tmn
))

, (2)

When the temperature change was curve T1, the formula for calculating the accumulated
temperature was the first formula of the Formula (2); when the temperature change was curve T2, the
accumulated temperature was the second one of the Formula (2).

Where Tday is the temperature at different times, T is the daily accumulated temperature, Tmx is
the daily maximum temperature, Tmn is the daily minimum temperature, t is the radian corresponding
to the moment of the day, and sin−1( −Tmn

Tmx−Tmn
), π− sin−1( −Tmn

Tmx−Tmn
) are the radians corresponding to 0 °C,

which were gotten by making Formula (1) zero.
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3.3. Calibration, Validation and Sensitivity

The sequential uncertainty fitting (SUFI-2) [71–74] algorithm of the Soil and Water Assessment Tool
Calibration and Uncertainty Procedure (SWAT-CUP) [73,75] was applied for the parameter calibration,
model validation, and parameter sensitivity analysis [76–80]. During the simulation of the model,
2011–2012 was taken as the warm-up time, 2013 as the calibration period, and 2014 as the verification
period. The NSE, R2, and PBIAS were applied to evaluate the simulation results.

The NSE was mainly utilized to evaluate the fitting level between the modelling simulation values
and the observations. The range was from −∞ to 1. The closer to 1, the better. For the convenience
of evaluation, the model’s performance was divided into four grades: “unsatisfactory”(NSE ≤ 0.5),
“satisfactory” (0.5 < NSE ≤ 0.65), “good” (0.65 < NSE ≤ 0.75) or “very good” (0.75 < NSE ≤ 1.0),
respectively [81]. The method for calculating the NSE value was as follows:

NSE = 1−

∑n
i=1

(
Qobs,i −Qsim,i

)2

∑n
i=1

(
Qobs,i −Qobs,i

)2 (3)

R2 =


∑n

i=1(Qsim,i −Qsim,i)
(
Qobs,i −Qobs,i

)
√∑n

i=1 (Qsim,i −Qsim,i)
2 ∑n

i=1

(
Qobs,i −Qobs,i

)2


2

(4)
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The value of R2 was calculated using Formula (4). Similar to NSE, the closer the value of R2 was
to 1, the simulation results were better. The PBIAS value evaluated the relationship between simulated
values and measured values, and determined whether they were overestimated or underestimated. A
PBIAS value was greater than 0, which indicates a model underestimation bias; PBIAS < 0 indicates a
model overestimation bias. The value of PBIAS was obtained from Formula (5).

PBIAS =

∑n
i=1(Qsim,i −Qobs,i)∑n

i=1 Qobs,i
× 100 (5)

As with NSE, PBIAS was converted into four levels to evaluate simulation performance. The
simulation performance was classified as either “unsatisfactory” (±25% ≤ PBIAS), “satisfactory” (±15%
≤ PBIAS < ±25%), “good” (±10% ≤ PBIAS < ±15%), “very good” (PBIAS < ±10%), respectively. Qobs,i
was the ith day observation (m3/s); Qsim,i was the ith day model simulated discharge (m3/s); Qsim,i and
Qobs,i were the average simulation and observations (m3/s), respectively; and n was the total number of
the observations.

Sensitivity analysis was employed to determine how the model parameters influenced the
simulation results [82]. The sequential uncertainty fitting (SUFI-2) algorithm [82] was applied, which
considered many uncertainties, including the input data, model structure, parameters, and observations,
in order to obtain the sensitivity results in this study. The global sensitivity was the main method used
to conduct the sensitivity analysis. The T-states and p-values of the parameters were used before and
after improving the statistical model to obtain parameter sensitivity [78–80,83]. The global sensitivity
method was applied for sensitivity analysis. During the calibration process, this method was used to
test the sample with a T-state hypothesis; compared with the critical value, the larger the better. The
p-value was the p probability value corresponding to the t-test value in Table 1; the p-value reflected
the significance of the T-state. In this method, the T-state was used as the sensitivity reference. The
greater the absolute value of the T-state, the higher the sensitivity. At the same time, the p-value was
used to indicate the significance of the T-state. The closer the p-value of the parameter was to 0, the
greater its significance.

Table 1. Important parameters in the model calibration process.

Parameter Description Lower
Bound

Upper
Bound

Daily
Simulation
Calibrated

Value

Sub-Daily
Simulation
Calibrated

Value

CN2 SCS runoff curve number 35 98 72.8 68.98

ALPHA_BF Base flow alpha factor (days) 0 1 0.16 0.15

GW_DELAY Groundwater delay (days) 0 500 216.6 223.72

GWQMN
Threshold depth of water in the

shallow aquifer required for return
flow to occur (mm)

0 5000 742.7 713.68

SHALLST Initial depth of water in the shallow
aquifer (mm) 0 50000 4926 4835

GW_REVAP Groundwater “revamp” coefficient 0.02 0.2 0.05 0.04

SOL_K Saturated hydraulic conductivity 0 2000 830.1 826.54

SOL_AWC Available water capacity of the
soil layer 0 1 0.33 0.28

SFTMP Snowfall temperature −20 20 3.24 3.05

SMTMP Snowmelt base temperature −20 20 2.97 2.76
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Table 1. Cont.

Parameter Description Lower
Bound

Upper
Bound

Daily
Simulation
Calibrated

Value

Sub-Daily
Simulation
Calibrated

Value

SMFMX Maximum melt rate for snow during
the year 0 20 7.87 7.65

SMFMN Minimum melt rate for snow during
the year 0 20 9.49 8.86

TIMP Snow pack temperature lag factor 0 1 0.54 0.53

SNOCOVMX Minimum snow water content that
corresponds to 100% snow cover 0 500 66.1 65.1

SURLAG Surface runoff lag time 0.05 24 11.17 11.02

PLAPS Precipitation lapse rate −20 20 21 19

TLAPS Temperature lapse rate −10 10 −7.31 −7.8

CH_N1 Manning’s “n” value for the
tributary channels 0.01 30 5.77 5.87

CH_K1 Effective hydraulic conductivity in
tributary channel alluvium 0 300 299.45 279.34

OV_N Manning’s “n” value for
overland flow 0.01 30 11.63 11.54

ESCO Soil evaporation compensation factor 0 1 0.37 0.36

EPCO Plant uptake compensation factor 0 1 0.37 0.35

CH_N2 Manning’s “n” value for the
main channel −0.01 0.3 0.02 0.02

CH_K2 Effective hydraulic conductivity in
main channel alluvium −0.01 500 49.53 48.75

SNO_SUB Initial snow water content 0 150 95.43 98.37

SFTMP_accu Snowfall accumulated temperature 0 40 24 26

SMTMP_accu Snowmelt base
accumulated temperature 0 40 18 19

4. Results

4.1. Effects of Parameters on the Modified Daily and Sub-Daily Models

To analyze the changes and effects of parameters on the simulations, the original and newly
added model parameters were calibrated, as shown in Table 1. From the model parameter library, an
additional 25 sensitive parameters were selected to participate in the calibration of the model and
two new parameters were added: Snowfall accumulated temperature (SFTMP_accu) and snowmelt
accumulated temperature (SMTMP_accu). On the basis of the snowfall and melting temperatures in the
original model, the accumulated temperature method was applied for the accumulated temperature
range. From the calculations, the range of the snowfall accumulated temperature and snowmelt
accumulated temperature were determined to be 0–40 ◦C. When calibrating the parameters of the
model on both the daily and sub-daily scales, some parameters exhibited significant changes. For
example, the SCS runoff curve number (CN2), the threshold depth of water in the shallow aquifer
required for return flow to occur (GWQMN), the groundwater delay (GW_DELAY) and the initial
depth of water in the shallow aquifer (SHALLST), precipitation lapse rate (PLAPS), and effective
hydraulic conductivity in tributary channel alluvium (CH_K1) varied by more than three during the
calibration process, which may have been due to the difference in the hydrological simulation process
between the sub-daily model and the daily model. The SHALLST parameter changed as much as
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91 mm. The remaining parameters displayed little change. Some parameters remain unchanged, such
as Manning’s “n” value for the main channel (CH_N2). The new parameter SFTMP_accu changed
from 24 on the daily scale to 26 on the hourly scale, while the corresponding SMTMP_accu change was
from 18 to 19. In general, the parameters with large variations were considered influence the sub-daily
model simulation significantly.

Thirty parameters were selected to participate in the calibration of the model. In order to obtain
the sensitivity information of each parameter in the model, the model was simulated 1000 times to
obtain the sensitivity information of the parameters. The global sensitivity analysis method is adopted
in this study. There are detailed results regarding T-states and p-values for global sensitivity shown
in Table 2. There were many parameters show high sensitivity, the T-states of effective hydraulic
conductivity in main channel alluvium (CH_K2) was 51.75 and the p-values was 0.00, that means
CH_K2 was the most sensitive parameter. In addition, the parameters related to snow melting, such as
PLAPS, SMTMP, maximum melt rate for snow during the year (SMFMX), minimum melt rate for snow
during the year (SMFMN), SFTMP, temperature lapse rate (TLAPS) also had high sensitivity. The new
added parameters, SMTMP_accu, SFTMP_accu T-states values were 26.23 and −4.96 respectively, and
they also had high sensitivity.

Table 2. The parameter information for global sensitivity.

Parameter Name T-States p-Value

CH_K2 51.75 0.00
PLAPS 21.82 0.00

LAT_TTIME 29.93 0.00
SMTMP_accu 26.23 0.00

SMTMP 22.23 0.00
SMFMX 10.90 0.01
SMFMN 8.24 0.03
SOL_K 5.20 0.03

SOL_AWC 2.09 0.04
ESCO 1.52 0.13

SURLAG 1.41 0.16
TIMP 1.30 0.20

SNO_SUB 1.01 0.31
EPCO 0.54 0.59

REVAPMN 0.43 0.67
GWQMN 0.25 0.80
SMFMN 0.24 0.81

RCHRG_DP(Deep aquifer percolation
fraction) 0.17 0.86

CH_N2 0.05 0.96
CH_N1 0.00 1.00

SNOCOVMX −0.08 0.94
SHALLST −0.76 0.45

GW_REVAP −1.33 0.18
GW_DELAY −1.76 0.08

CN2 −1.79 0.08
OV_N −2.70 0.05
CH_K1 −3.19 0.05
SFTMP −4.01 0.05

SFTMP_accu −4.96 0.04
TLAPS −5.31 0.02

ALPHA_BF −6.13 0.00

4.2. Daily Simulation Results

In order to demonstrate the effect of the simulation results before and after the model modification,
the simulation results of the calibration (2013) and validation (2014) period models were compared
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with the measured data. To highlight the performance of different flood types before and after the
model modification, the precipitation data and runoff data were analyzed using superposition. As
shown in Figure 5, the precipitation in the TRB was primarily concentrated from April–September.
For the March calibration, there was less precipitation, but the runoff showed a sudden increase. The
original model simulated this event too early. At the same time, there was a large deviation in the size
of the runoff. The modified model, however, simulated the event in both time and flow more accurate.
In the summer, which was dominated by rainfall-type floods and mixed floods [11], the original model
was usually inaccurate in its simulation of flood peaks. Although the modified model shifted some of
the simulated flood processes earlier, its performance of flood peaks was better than the original model.
During the verification period, the advantage of the modified model for the flood process simulation
was more evident. Although the original model guaranteed the value of runoff to a certain extent, its
performance accuracy for the flood peaks was poor. Unlike the original model, the modified model
was better able to distinguish flood processes, and its flood peak performance was more accurate. The
modified model was also superior to the original model in the simulation of the base flow.
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Figure 5. Simulation results of the model on the daily scale: (a) Represents the comparison of
precipitation, simulation, and observation during the calibration period; (b) represents the comparison
of precipitation, simulation, and observation during the validation period.

The simulation results were compared before and after model modification; the simulation
accuracy is presented in Table 3. The respective NSE values increased from 0.71 and 0.64 in the
calibration and validation periods to 0.75 and 0.69, and from 0.66 to 0.7 in the overall study period
(2013–2014). When R2 was used for precision evaluation, the model’s regular performance was not as
apparent, but in the validation and study periods, the R2 values rose from 0.75 to 0.81 and from 0.8 to
0.84, respectively. The simulation results of the original model did not perform well in the evaluation
index of PBIAS. The model improved from −18.04 to 2.89 in the validation period and from 7.3 to 6.79
in the overall study period.

Table 3. The results of daily calibration and validation for TRB, Kunlun Mountains, West China.

Period
NSE R2 PBIAS (%)

Original Modified Original Modified Original Modified

Calibration (2013) 0.71 0.75 0.89 0.89 5.79 7.3
Validation (2014) 0.64 0.69 0.75 0.81 −18.04 2.89

Overall (2013–2014) 0.66 0.7 0.8 0.84 7.3 6.79

4.3. Sub-Daily Simulation Results

On the basis of the daily scale, the hourly scale simulation was also carried out. The highlight
of this study was the development of high temporal resolution flood process simulation. Therefore,
during the high flood season (May–September), a relatively obvious flood process for each month
was selected to demonstrate the simulated effect of the modified model. The flood process simulation
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results during the calibration are shown in Figure 6. The duration of the flood processes generally
lasted about one day. In May, the original model simulated the flood peak process too early, and the
simulation of the peak also had a large error. The improved model simulated the flood peak process
more accurately, with higher temporal and magnitude accuracy.Int. J. Environ. Res. Public Health 2019, 16, x FOR PEER REVIEW 13 of 24 
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During the validation period (Figure 7), the modified model also performed well in the flood
process simulation. For the flood simulation processes in May, the original model did not shift
the simulation of the flood processes late enough, although the simulation of the flood peak was
reasonable. In the simulation of the flood simulation processes in June, the original model significantly
underestimated the flood magnitude, and the flood peak again appeared ahead of schedule. The
performance of the modified model was consistent with the measured data, however, the simulation of
the flood peak value was more accurate. For the flood simulation process in July, the original model
significantly overestimated the flood peak and performed poorly in terms of temporal accuracy. The
modified model was closer to the measured flood peak magnitude and was more temporally accurate
than the original model. The original model simulation exhibited both a significant underestimation
and a significant time advancement of the flood peak in August. These inaccuracies, however, did
not exist in the modified model. Although the August peak was slightly overestimated, it was more
accurate in comparison. For the September flood simulation processes, there was a sharp increase in
discharge and an expanded flood time. For these reasons, the simulation of the original model was
unsatisfactory, both in terms of the simulation of flood process and flood peak. Performance of the
modified model, however, was more accurate.
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In order to compare the model’s performance of flood peak value and time of occurrence before
and after model modification, the flood peak values and time errors of the model simulation were
calculated and compiled. The flood peak error was obtained by subtracting the simulated value from
the measured value, while the time error primarily involved comparing the simulated and measured
times at which the flood peaks appeared. During the calibration period, the model simulation
underestimated the flood peak. In the flood event of 19 May, the simulation error of the original model
was 12.52 m3/s, and the time error was 11 h ahead. After model modification, the peak error was
reduced to 2.4 m3/s, and the time error was improved to one hour. On 25 June, the flood peak error of
the original model was 69.39 m3/s, whereas that of the improved model was only 4.85 m3/s. In terms
of the time error, the simulation error of the original model was five hours ahead, while that of the
modified model was 0 h, i.e., it was exactly right. On 4 July, the time of the flood peak of the original
model was more accurate, but the error of the peak value of the simulation was larger. Following
model improvement, the flood peak error decreased from 87.58 m3/s to 8.54 m3/s. On 4 August, the
original model’s flood peak error was as high as 107.29 m3/s, but the improved model’s error was
reduced to 32.77 m3/s, and the time error was reduced from four hours to one hour. For the flood
processes on 7 September, the original model error was 23.41 m3/s, but the simulation error of the
improved model was overestimated by only 0.92 m3/s, and the time of the flood peak was consistent
with the observed value.

During the verification period, the flood peak simulation of the model was more overestimated
than that of the calibration period. On 21 May, the flood peak error of the original model was −5.9 m3/s
while that of the modified model was −7.65 m3/s. Although the accuracy of the original model was
higher than that of the modified model, the modified model was consistent with the measured data in
terms of time. On 10 June, the flood peak error of the original model was 49.14 m3/s, exhibiting a large
underestimation. The modified model decreased the error to 4.24 m3/s, and the time accuracy also
improved from two hours to consistent with the measured data. On 8 July, the simulation error of the
original model reached its maximum, which was −451.5 m3/s, displaying a serious overestimation.
After modification, the error decreased to only −8.56 m3/s. In terms of time accuracy, the original
model exhibited a premature flood peak for this event, while the improved model increased the time
accuracy from four hours to two hours. On 15 August, the modified model effectively improved the
flood peak temporal error from 11 h to 0, and the error of the peak value decreased from 39.84 m3/s to
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12.58 m3/s. On 8 September, the modified model decreased the error of the flood peak from 70.77 m3/s
to 10.43 m3/s and significantly delayed the peak time.

In order to reflect the effect of model modification, all of the flood events from April–September
were statistically verified and compared using the measured data. For the 2013 calibration period, there
were a total of 14 flood events: Two in April, one in May, four in June, three in July, three in August,
and one in September. For the 2014 validation period, there were a total of 12 flood events: Two in
May, three in June, two in July, four in August, and one in September. The performance of the original
model simulation is presented in Figure 8. Figure 8a shows that the flood events were significantly
underestimated when compared with the measured values. The simulation results of the modified
model were closer to the measured values, and the simulation accuracy was significantly improved
temporally. Figure 8b compares the simulation results for the validation period. The accuracy of the
modified model’s simulation results was somewhat improved, with the simulation results closer to the
actual observations.
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5. Discussion

5.1. Model Modification

The snowmelt module of the original model was calculated primarily with the degree day factor
method. The daily average temperature was the only simple snowmelt determination condition [84].
Snowmelt events occur when the temperature exceeds a set threshold. If the average daily temperature
is used to determine the type of precipitation and snowmelt conditions, the model will have significant
limitations [6,85–87]. The precipitation in mountainous areas is influenced by both topography and
microclimates [88]. If the average daily temperature is used to determine the type of precipitation, it
will produce an error. Similarly, this situation exists in the calculation of snowmelt. In mountainous
areas, accumulated temperature is an indispensable parameter for the calculation of precipitation
patterns and snowmelt [89,90]. Therefore, it is necessary to improve the traditional day-factor method
in order to enhance the performance of the accumulated temperature’s influence on precipitation type
and snowmelt.

Following model modification, the average accuracy of the determination of precipitation patterns
was as high as 86.88%. This demonstrates that the introduction of accumulated temperature restriction
conditions effectively improved the accuracy of the model input data. Simulations on a daily scale
revealed that the contribution of snowmelt to runoff calculated by the modified model increased by
approximately 10% compared with the original model. This is mainly because the original model only



Int. J. Environ. Res. Public Health 2019, 16, 3118 16 of 24

uses the daily average temperature as the criterion of snow melting, but when the temperature changes
greatly in a day, the phenomenon of snow melting will also be caused by long-term temperature
accumulation, but the daily average temperature at this time may not reach the temperature of snow
melting conditions, the traditional method cannot recognize the situation of snow melting.

The sub-daily simulation was based on the daily scale. Therefore, better daily simulation results
were guaranteed through model modifications. For the runoff simulation in mountainous areas, the
accurate calculation of snowmelt could improve the simulation accuracy of flood processes, especially
during the spring season with high incidence of snowmelt floods. The original model did not perform
well in the calculation of snowmelt, but after modifications, the calculation of the amount of snowmelt
improved greatly (22.84%). In spring, the daily temperature changes rapidly and the temperature is
lower. At noon, the temperature rises rapidly, which has a direct effect on snow melting and is easy
to cause floods. However, the daily average temperature is the average value of a day. Through the
average, the actual situation of higher temperature at noon is neglected, which has an impact on the
calculation of snow melting, which can be effectively improved by model modification.

5.2. Model Performance

Flood types can generally be divided into rainfall, snowmelt, and mixed floods [4,6,7,91]. Mixed
floods are usually accompanied by snowmelt and precipitation, both of which contribute to the
flood events [88]. Therefore, it can be said that flood events are generally triggered by both rainfall
and snowmelt [66]. In the detailed study of flood processes, an appropriate time scale should be
selected. When selecting the scale, many factors, such as precipitation, geographic characteristics, and
topography, should be taken into account. The TRB is located in the Kunlun Mountains and receives
less precipitation, especially in spring. Therefore, when studying the flood processes, the main time
scale was one hour. In the hourly scale simulation, the model was first calibrated on the daily scale,
and thus required the simulation accuracy of the daily scale model.

The simulation results were analyzed on a daily scale using precipitation data, as shown in
Figure 5. The precipitation increased significantly beginning in April, and the corresponding runoff

also increased significantly in calibration time. In March, runoff had also increased, although there was
no significant precipitation at that time. Combined with the topography of the basin, it was determined
that the runoff supply in March originated primarily from snowmelt. By modifying the day-degree
factor and increasing the accumulated temperature condition, simulation runoff suddenly increased,
becoming closer to the measured data, and indicating the existence of a snowmelt flood. The modified
model was closer to the observations both in terms of the simulation of base flow as well as peak flow.
In summer, when there was more precipitation, more flood events were affected by the precipitation
events. The original model was not ideal for the simulation of flood processes and peak flow, while
the modified model was more accurate. After September, both precipitation and runoff decreased,
mainly because mountain temperatures were lower and snowmelt gradually disappeared; therefore,
the runoff recharge gradually diminished.

The modified model performed better during the validation period and was similar to that of the
calibration period. During this period, the original model did not accurately simulate flood processes,
especially the number and size of flood peaks. When heavy precipitation events occurred, the flood
peak process was not apparent in the original model’s simulation. The modified model, however,
performed better in terms of the timing and size of flood peaks. Notably, in May, when snowmelt was
the main runoff recharge, the simulation of snowmelt flooding was more accurate. After September,
since the runoff recharge source gradually decreased and disappeared, the runoff simulation exhibited
a decreasing trend. In this respect, the modified model was more accurate. This is mainly due to
the addition of the accumulated temperature and maximum temperature constraints, which avoided
the unrealistic snowmelt amount calculated using average temperature in the original model. This
reduced the unrealistic snowmelt replenishment to the runoff, thus yielding results that were closer to
the observations.
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During both the validation and calibration periods, the modified model provided a better
simulation of runoff and flood processes than the original model. Although the overall simulation was
better, some details were deficient. For example, certain lag phenomena existed in the simulation of
the individual flood processes, which may have been related to such factors as data accuracy and soil
interception [47,92].

The TRB has special climatic and geographic features, such as little vegetation and numerous rocks.
When the sun rises, the surface temperature increases rapidly. When the sun sets, the temperature
drops quickly. Therefore, the temperature difference between day and night is relatively large, which
also causes a special snowmelt phenomenon in the mountainous area—i.e., the “one day, one peak”
phenomenon [64,66,93]. As the temperature increases during the day, the snow slowly begins to
melt, and the recharge to the river gradually increases, resulting in snowmelt flooding. At night,
the temperature drops sharply, the melting snow gradually decreases or even stops, and freezing
sometimes occurs. This process usually lasts for about 24–28 h. Therefore, the best time scale for
studying the flood processes in the Kunlun Mountains is one hour. Using the daily scale as the starting
point, few hourly scale studies have been conducted. As a result, demand is high for these data and
models. Therefore, this sub-daily (i.e., hourly) flood processes study was carried out on the basis of the
daily scale. During the flood processes from May–September, the most obvious event for each month
was selected for analysis.

For simulations on a sub-daily scale, the simulation results before and after modification are
presented in Figures 6 and 7, respectively. Starting in early May, snowmelt increased and gradually
entered a period of high flood incidence. The more obvious and larger flood events from each month
were selected for simulation comparison. The flood processes usually lasted for about one day. The
river runoff gradually increased beginning at around 8 a.m., mainly because as the sun rose, the
temperature also gradually rose, and the snow began to melt into the river. River runoff continued to
increase until about 4 p.m., when the runoff reached its maximum value and the flood peak occurred.
The flood peak flow reached its maximum value at this time. After that, as the temperature and
accumulated temperature gradually decreased, the amount of snowmelt and the runoff gradually
decreased. This short-duration phenomenon is generally considered to be a complete flood event,
and is more affected by temperature. In 2013, the comparison of flood peak values for five months
revealed that the values in May and September were relatively small, whereas those that occurred
from June–August were relatively large. The relatively low temperatures in May and September had a
certain impact on snowmelt. During the summer months from June–August, the temperatures in the
mountainous areas are relatively high during the day, which may increase the amount of snowmelt.
The maximum peak flow of 283 m3/s occurred in August. Combined with the influence analysis
of accumulated temperature, the monthly average value in August was 53.77 ◦C, which was the
maximum for the months in the study period. During the validation period, the maximum peak flow
of 272 m3/s occurred in July, whereas the accumulated temperature in July was 54.25 °C, which was
also the maximum value. The size of the flood peak was greatly affected by accumulated temperature
under certain conditions through its influence on the amount of snowmelt.

Tables 4 and 5 compare the model’s performance before and after modification on the sub-daily
scale, respectively. The necessity of model modification was analyzed using the peak flow error and
time error of each flood peak. During calibration, the flood peak error on the hourly scale was greatly
reduced by the modification. The biggest improvement in the accuracy was achieved in May, when the
flood peak accuracy improved by 96.07% and the time error was reduced from 11 h to one hour. This
period had a high occurrence of snowmelt flooding, and fully illustrates the importance of the model
improvement for flood process simulations at high time resolution. During the validation period, the
biggest improvement in flood peak accuracy was achieved in July, with an increase of 98.1%. The
biggest improvement in time accuracy came in August, when it increased by 11 h. Both the flood peak
value and time accuracy were greatly improved by the model modification, which provided a new
way to simulate flood processes and established a foundation for flood forecasting.



Int. J. Environ. Res. Public Health 2019, 16, 3118 18 of 24

Table 4. Simulation results of flood peak before and after model modification during the
calibration period.

Date Original Flood Peak
Error (m3

·s−1)
Modified Flood Peak

Error (m3
·s−1)

Original Flood Peak
Time Error (h)

Modified Flood
Peak Time Error (h)

19 May 2013 12.52 2.4 11 1
25 June 2013 69.39 4.85 5 0
4 July 2013 87.58 8.54 −1 −1

4 August 2013 107.29 32.77 4 −1
7 September 2013 23.41 −0.92 1 0

Table 5. Simulation results of flood peak before and after model modification during the
validation period.

Date Original Flood Peak
Error (m3

·s−1)
Modified Flood Peak

Error (m3
·s−1)

Original Flood Peak
Time Error (h)

Modified Flood
Peak Time Error (h)

21 May 2014 −5.9 −7.65 2 0
10 June 2014 49.14 4.24 2 0
8 July 2014 −451.5 −8.56 4 −2

15 August 2014 39.84 −12.58 11 0
8 September 2014 70.77 10.43 −8 −2

So as to clearly illustrate the modification results of the model, the peak flow values of flood events
simulated by both models were contrasted to the observations, as shown in Figure 8. By comparing the
spatial relationship between the simulated value of the model and the measured line, the simulation
effect of the model can be judged. It was found that the effect of the modified model was overt, and the
simulated values of the improved model were closer to the measured values. During the validation
period, although the effect was not as obvious as that seen during calibration, a certain improvement
was found. This may be related to the calibration of parameters and the accuracy of data.

5.3. Sensitivity and Uncertainty Analysis

In the original model, the top 10 sensitive parameters were CH_K2, theLateral flow travel
time (LAT_TIME), SMFMX, minimum snow water content that corresponds to 100% snow cover
(SNOCOVMX), TLAPS, CH_K1, Snow pack temperature lag factor (TIMP), Groundwater “revamp”
coefficient (GW_REVAP), Manning’s “n” value for overland flow (OV_N), and base flow alpha factor
(days) (ALPHA_BF). In the modified model, the top 10 sensitive parameters were LAT_TIME, PLAPS,
CH_K2, ALPHA_BF, SFTMP, TLAPS, SMTMP_accu, SMFMX, soil evaporation compensation factor
(ESCO), and SFTMP_accu. Thus, the sensitivity of the modified model was different from that of the
original model, and the newly added parameters (SMTMP_accu, SFTMP_accu) in the modified model
also exhibited more sensitivity. During the sub-daily model simulation based on the original daily
model, the top 10 sensitive parameters were PLAPS, LAT_TIME, available water capacity of the soil
layer (SOL_AWC), CH_K2, SNOCOVMX, saturated hydraulic conductivity (SOL_K), RCHRG-DP,
SMFMX, TLAPS, and CH_K1. In addition, for the sub-daily model based on the modified daily model
simulation, the top 10 sensitive parameters were PLAPS, TLAPS, CH_K1, SFTMP, CN2, SMTMP_accu,
SMFMX, SFTMP_accu, SMTMP, and TIMP. After analyzing the parameter sensitivity before and after
model modification, it was found that the sensitivities of parameters related to snowmelt were greatly
improved after model modification, including those of PLAPS, TLAPS, SFTMP, SMTMP_accu, SMFMX,
SFTMP_accu, and SMTMP. The TRB experiences significant snowfall and contains many high-altitude
mountainous areas. Therefore, snowmelt provides greater recharge to the river channel, reflecting the
necessity for and rationality of the model improvement. When the model calibration was corrected,
the optimal parameter combination was more consistent with the actual situation of the basin and was
also more convincing, as confirmed by the model simulation results.

When the SWAT model has been used to conduct relevant research on hydrological processes, the
uncertainties of the simulation results have been divided into three types: The uncertainty of model
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structure, the uncertainty of parameters, and the uncertainty of input data [94]. Some studies [95–101]
have shown that the uncertainties of the simulation results mainly stem from the model parameters
uncertainty and the input data during the flood period. Throughout the study period, the uncertainty
of the model structure and the input data could not be ignored.

6. Conclusions

On the basis of the original SWAT model, this study modified the traditional day-factor method
for calculating snowmelt and added the temperature condition on precipitation morphology and
snowmelt conditions. As a result of these modifications, the simulation accuracy of the model on
a daily scale significantly improved, especially in the spring, when snowmelt runoff was the main
source of replenishment. As a result, the simulation of the snowmelt flooding process in spring was
more obvious and accurate than that of the original model, thus compensating for the original model’s
shortcomings in the simulation of snowmelt flooding.

As a result of these improvements, the NSE value increased from 0.71 to 0.75 of the calibration
period, and in the validation period it increased from 0.64 to 0.69. During the overall study period, the
NSE value increased from 0.66 to 0.7, the R2 value increased from 0.8 to 0.84, and the PBIAS changed
from 7.3 to 6.79, the phenomenon of model underestimation has been improved. In addition, when
the modified model was adopted to improve the snowmelt calculation, snowmelt volume increased
by 22.84% and the contribution to the channel volume increased by 10%. During the spring, which
had less precipitation and for which snowmelt was the main channel recharge, the model’s simulation
accuracy was improved and the simulation of snowmelt flooding was more prominent in the overall
simulation of the flood event processes.

The highlight of this study was the sub-daily scale flood process simulation performed on the
basis of the daily scale, along with the analysis of the model’s performance on the hourly scale before
and after modification. From the simulation and comparison of flood events, it was found that both the
magnitudes and times of the flood peaks appearing at the hourly scale of the modified model have been
greatly improved, also proving that the flood process simulation at a high time resolution was more
accurate following model modification. The results also revealed that it is feasible to simulate flood
processes on a daily or sub-daily scale with high temporal resolution by modifying the day-degree
factor technique, thus providing a new reference method for flood process simulations. This study
encourages new ideas for the investigation of flood process changes at a high time resolution and
provides a new flood-forecasting method. This work is of great significance in the attempt to save lives
and ensure the safety of property through flood relief and natural disaster prevention.
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11. Halagan, T.; Kováčik, T.; Trúchly, P.; Binder, A. Syn Flood Attack Detection and Type Distinguishing
Mechanism Based on Counting Bloom Filter. In Proceedings of the Information and Communication
Technology-Eurasia Conference, Daejeon, Korea, 4–7 October 2015; pp. 30–39.

12. Tian, Y.; Peterslidard, C.D.; Eylander, J.B.; Joyce, R.J.; Huffman, G.J.; Adler, R.F.; Hsu, K.; Turk, F.J.; Garcia, M.;
Zeng, J. Parameter values for snowmelt runoff modelling. J. Hydrol. 2009, 84, 197–219.

13. Anderson, E.A. A point of energy and mass balance model of snow cover. NOAA Tech. Rep. Nws 1976, 19,
1–150.

14. He, Z.H.; Parajka, J.; Tian, F.Q.; Blöschl, G. Estimating degree-day factors from MODIS for snowmelt runoff

modeling. Hydrol. Earth Syst. Sci. 2014, 11, 4773–4789. [CrossRef]
15. Jones, H.G.; Sochanska, W.; Stein, J.; Roberge, J.; Plamondon, A.P.; Charette, J.Y. Snowmelt in A Boreal Forest

Site: An Integrated Model of Meltwater Quality (SNOQUAL1); Springer: Berlin/Heidelberg, Germany, 1986;
pp. 1485–1493.

16. Larson, L.; Singh, V.P.; Frevert, D. National Weather Service River Forecast System (NWSRFS); NOAA: Silver
Spring, MA, USA, 2002; pp. 657–703.

17. Shimamura, Y.; Izumi, T.; Matsuyama, H. Remote sensing of areal distribution of snow cover and snow water
resources in mountains based on synchronous observations of Landsat-7 Satellite: A case study around the
Joetsu border of Niigata prefecture in Japan. Suimon Mizu Shigen Gakkaishi J. Jpn. Soc. Hydrol. Water Resour.
2005, 18, 411–423. [CrossRef]

18. Herrero, J.; Polo, M.J.; Moñino, A.; Losada, M.A. An energy balance snowmelt model in a Mediterranean site.
J. Hydrol. 2009, 371, 98–107. [CrossRef]

19. Anderton, S.P.; White, S.M.; Alvera, B. Micro-scale spatial variability and the timing of snow melt runoff in a
high mountain catchment. J. Hydrol. 2002, 268, 158–176. [CrossRef]

20. Snauffer, A.M.; Hsieh, W.W.; Cannon, A.J. Comparison of Gridded Snow Water Equivalent Products with in
Situ Measurements in British Columbia, Canada. J. Hydrol. 2016, 541, 714–726. [CrossRef]

21. Dziubanski, D.; Franz, K. Assimilation of AMSR-E snow water equivalent data in a spatially-lumped snow
model. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016.

22. Liang, G.; He, B.; Ma, M.; Chang, Q.; Li, Q.; Ke, Z.; Yang, H. A comprehensive flash flood defense system in
China: Overview, achievements, and outlook. Nat. Hazards 2018, 92, 727–740.

23. Bakir, M.; Zhang, X. GIS-based hydrological modelling: a comparative study of HEC-HMS and the Xinanjiang
model. Int. Assoc. Hydrol. Sci. Int. Water Resour. Assoc. Conf. 2008, 319, 124–133.

24. Grillakis, M.G.; Tsanis, I.K.; Koutroulis, A.G. Application of the HBV hydrological model in a flash flood
case in Slovenia. Nat. Hazards Earth Syst. Sci. 2010, 10, 2713–2725. [CrossRef]

25. Wöhling, T.; Lennartz, F.; Zappa, M. Technical Note: Updating procedure for flood forecasting with
conceptual HBV-type models. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 783–788. [CrossRef]

http://dx.doi.org/10.1016/S1001-0742(09)60195-9
http://dx.doi.org/10.1007/s00477-002-0104-6
http://dx.doi.org/10.1002/2016WR019535
http://dx.doi.org/10.1002/2015WR017326
http://dx.doi.org/10.1016/j.wace.2016.10.001
http://dx.doi.org/10.1080/02626667.2014.909596
http://dx.doi.org/10.1016/j.jhydrol.2010.05.041
http://dx.doi.org/10.5194/hess-18-4773-2014
http://dx.doi.org/10.3178/jjshwr.18.411
http://dx.doi.org/10.1016/j.jhydrol.2009.03.021
http://dx.doi.org/10.1016/S0022-1694(02)00179-8
http://dx.doi.org/10.1016/j.jhydrol.2016.07.027
http://dx.doi.org/10.5194/nhess-10-2713-2010
http://dx.doi.org/10.5194/hess-10-783-2006


Int. J. Environ. Res. Public Health 2019, 16, 3118 21 of 24

26. Yigzaw, W.; Hossain, F.; Kalyanapu, A. Impact of Artificial Reservoir Size and Land Use/Land Cover Patterns
on Probable Maximum Precipitation and Flood: Case of Folsom Dam on the American River. J. Hydrol. Eng.
2012, 18, 1180–1190. [CrossRef]

27. Wu, H.; Adler, R.F.; Tian, Y.; Huffman, G.J.; Li, H.; Wang, J.J. Real-time global flood estimation using
satellite-based precipitation and a coupled land surface and routing model. Water Resour. Res. 2014, 50,
2693–2717. [CrossRef]

28. Abbott, M.B.; Bathurst, J.C.; Cunge, J.A.; O’Connell, P.E.; Rasmussen, J. An introduction to the
European Hydrological System Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy
of a physically-based, distributed modelling system. J. Hydrol. 1986, 87, 45–59. [CrossRef]

29. Ramly, S.; Tahir, W. Application of HEC-GeoHMS and HEC-HMS as Rainfall–Runoff Model for Flood
Simulation. In ISFRAM 2015; Springer: Singapore, 2016.

30. Liu, J.; Chen, X.; Zhang, J.; Flury, M. Coupling the Xinanjiang model to a kinematic flow model based on
digital drainage networks for flood forecasting. Hydrol. Process. 2010, 23, 1337–1348. [CrossRef]

31. Leon, L.F.; Kouwen, N.; Farquhar, G.J.; Soulis, E.D. Nonpoint Source Pollution: A Distributed Water Quality
Modeling Approach. Water Res. 2001, 35, 997–1007. [CrossRef]

32. Feng, T.; Feng, S. An Energy Balance Snowmelt Model for Application at a Continental Alpine Site. Procedia
Eng. 2012, 37, 208–213. [CrossRef]

33. Yu, W.; Zhao, Y.; Nan, Z.; Li, S. Improvement of Snowmelt Implementation in the SWAT Hydrologic Model.
Acta Ecol. Sin. 2013, 33, 6992–7001.

34. Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed
modelling. Hydrol. Process. 2005, 19, 563–572. [CrossRef]

35. Fontaine, T.A.; Cruickshank, T.S.; Arnold, J.G.; Hotchkiss, R.H. Development of a snowfall–snowmelt routine
for mountainous terrain for the soil water assessment tool (SWAT). J. Hydrol. 2002, 262, 209–223. [CrossRef]

36. Xu, C.; Chen, Y.; Hamid, Y.; Tashpolat, T.; Chen, Y.; Ge, H.; Li, W. Long-term change of seasonal snow
cover and its effects on river runoff in the Tarim River basin, northwestern China. Hydrol. Process. 2010, 23,
2045–2055. [CrossRef]

37. Schuol, J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Estimation of freshwater availability in the West African
sub-continent using the SWAT hydrologic model. J. Hydrol. 2008, 352, 30–49. [CrossRef]

38. Yang, X.; Liu, Q.; He, Y.; Luo, X.; Zhang, X. Comparison of daily and sub-daily SWAT models for daily
streamflow simulation in the Upper Huai River Basin of China. Stoch. Environ. Res. Risk Assess. 2015, 30,
959–972. [CrossRef]

39. Ghoraba, S.M. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model.
Alex. Eng. J. 2015, 54, 583–594. [CrossRef]

40. Braud, I.; Roux, H.; Anquetin, S.; Maubourguet, M.M.; Manus, C.; Viallet, P.; Dartus, D. The use of distributed
hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes. J.
Hydrol. 2010, 394, 162–181. [CrossRef]

41. Vincendon, B.; Ducrocq, V.; Saulnier, G.-M.; Bouilloud, L.; Chancibault, K.; Habets, F.; Noilhan, J. Benefit
of coupling the ISBA land surface model with a TOPMODEL hydrological model version dedicated to
Mediterranean flash-floods. J. Hydrol. 2010, 394, 256–266. [CrossRef]

42. Fuka, D.R.; Easton, Z.M.; Brooks, E.S.; Boll, J.; Steenhuis, T.S.; Walter, M.T. A Simple Process-Based Snowmelt
Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model. JAWRA J. Am. Water
Resour. Assoc. 2012, 48, 1151–1161. [CrossRef]

43. Green, C.H.; Griensven, A.V. Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale
watersheds. Environ. Model. Softw. 2008, 23, 422–434. [CrossRef]

44. Meng, X.; Ji, X.; Liu, Z.; Xiao, J.; Chen, X.; Wang, F. Research on Improvement and Application of Snowmelt
Module in SWAT. J. Nat. Resour. 2014, 29, 528–539.

45. Luo, Y.; Arnold, J.; Liu, S.; Wang, X.; Chen, X. Inclusion of glacier processes for distributed hydrological
modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. J. Hydrol.
2013, 477, 72–85. [CrossRef]

46. Li, D.; Qu, S.; Shi, P.; Chen, X.; Xue, F.; Gou, J.; Zhang, W. Development and Integration of Sub-Daily Flood
Modelling Capability within the SWAT Model and a Comparison with XAJ Model. Water 2018, 10, 1263.
[CrossRef]

http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000722
http://dx.doi.org/10.1002/2013WR014710
http://dx.doi.org/10.1016/0022-1694(86)90114-9
http://dx.doi.org/10.1002/hyp.7255
http://dx.doi.org/10.1016/S0043-1354(00)00336-5
http://dx.doi.org/10.1016/j.proeng.2012.04.228
http://dx.doi.org/10.1002/hyp.5611
http://dx.doi.org/10.1016/S0022-1694(02)00029-X
http://dx.doi.org/10.1002/hyp.7334
http://dx.doi.org/10.1016/j.jhydrol.2007.12.025
http://dx.doi.org/10.1007/s00477-015-1099-0
http://dx.doi.org/10.1016/j.aej.2015.05.018
http://dx.doi.org/10.1016/j.jhydrol.2010.03.033
http://dx.doi.org/10.1016/j.jhydrol.2010.04.012
http://dx.doi.org/10.1111/j.1752-1688.2012.00680.x
http://dx.doi.org/10.1016/j.envsoft.2007.06.002
http://dx.doi.org/10.1016/j.jhydrol.2012.11.005
http://dx.doi.org/10.3390/w10091263


Int. J. Environ. Res. Public Health 2019, 16, 3118 22 of 24

47. Yu, D.; Xie, P.; Dong, X.; Hu, X.; Liu, J.; Li, Y.; Peng, T.; Ma, H.; Wang, K.; Xu, S. Improvement of the SWAT
model for event-based flood simulation on a sub-daily timescale. Hydrol. Earth Syst. Sci. 2018, 22, 5001–5019.
[CrossRef]

48. Maharjan, G.R.; Park, Y.S.; Kim, N.W.; Dong, S.S.; Choi, J.W.; Hyun, G.W.; Jeon, J.H.; Yong, S.O.; Lim, K.J.
Evaluation of SWAT sub-daily runoff estimation at small agricultural watershed in Korea. Front. Environ.
Sci. Eng. 2013, 7, 109–119. [CrossRef]

49. Bassam, S.; Ren, J. Simulating Daily and Sub-Daily Water Flow in Large, Semi-arid Watershed Using SWAT:
A Case Study of Nueces River Basin, Texas. In Proceedings of the AGU Fall Meeting, San Francisco, CA,
USA, 14–18 December 2015.

50. Her, Y.; Jeong, J. SWAT+ versus SWAT2012: Comparison of sub-daily urban runoff simulations. Trans.
ASABE 2018, 61, 1287–1295. [CrossRef]

51. Zhang, J.; Zhou, C.; Xu, K.; Watanabe, M. Flood disaster monitoring and evaluation in China. Glob. Environ.
Chang. Part B Environ. Hazards 2002, 4, 33–43. [CrossRef]

52. Maidment, D.R. Developing a spatially distributed unit hydrograph by using GIS. Unkn. J. 1993, 12, 181–192.
53. Gascoin, S.; Kinnard, C.; Ponce, R.; Lhermitte, S. Glacier contribution to streamflow in two headwaters of the

Huasco River, Dry Andes of Chile. Cryosphere Discuss. 2010, 4, 1099–1113. [CrossRef]
54. Pelto, M.S. Quantifying Glacier Runoff Contribution to Nooksack River, WA in 2013-15. In Proceedings of

the AGU Fall Meeting, San Francisco, CA, USA, 14–18 December 2015.
55. Swick, M. Partitioning the Contribution of Light Absorbing Aerosols to Snow and Glacier Melt Using a

Novel Hyperspectral Microscopy Method. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA,
11–15 December 2017.

56. Hock, R.; Rees, G.; Williams, M.W.; Ramirez, E. Contribution from glaciers and snow cover to runoff from
mountains in different climates. Hydrol. Process. 2010, 20, 2089–2090. [CrossRef]

57. Li, X.; Ma, Y.; Sun, Y.H.; Gong, H.; Li, X. Flood Hazard Assessment in Pakistan at Grid Scale. J. Geo-Inf. Sci.
2013, 15, 314–320. [CrossRef]

58. Jian, L.; Gong, H.; Li, X.; Zhao, W.; Hu, Z. Design and Development of Flood/Waterlogging Disaster Risk
Model Based on ArcObjects. GEO-Inf. Sci. 2009, 11, 376–381.

59. Chen, G. Chinese Mountain Development Report; The Commercial Press: Beijing, China, 2010.
60. Zhao, G.; Pang, B.; Xu, Z.; Wang, Z.; Shi, R. Assessment on the hazard of flash flood disasters in China. J.

Hydraul. Eng. 2016, 47, 1133–1142.
61. Flynn, K.F. Evaluation of SWAT for sediment prediction in a mountainous snowmelt-dominated catchment.

Trans. ASABE 2011, 54, 113–122. [CrossRef]
62. Kim, S.B.; Shin, H.J.; Park, M.; Kim, S.J. Assessment of future climate change impacts on snowmelt and

stream water quality for a mountainous high-elevation watershed using SWAT. Paddy Water Environ. 2015,
13, 557–569. [CrossRef]

63. Millares, A.; Polo, M.J.; Moñino, A.; Herrero, J.; Losada, M.A. Bedload dynamics and associated snowmelt
influence in mountainous and semiarid alluvial rivers. Geomorphology 2014, 206, 330–342. [CrossRef]

64. Rapant, P.; Inspektor, T.; Kolejka, J.; Batelková, K.; Zapletalová, J.; Kirchner, K.; Krejčí, T. Early warning
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