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Abstract: The applications of artificial intelligence (AI) in aiding clinical decision-making and
management of stroke and heart diseases have become increasingly common in recent years, thanks
in part to technological advancements and the heightened interest of the research and medical
community. This study aims to provide a comprehensive picture of global trends and developments
of AI applications relating to stroke and heart diseases, identifying research gaps and suggesting future
directions for research and policy-making. A novel analysis approach that combined bibliometrics
analysis with a more complex analysis of abstract content using exploratory factor analysis and Latent
Dirichlet allocation, which uncovered emerging research domains and topics, was adopted. Data
were extracted from the Web of Science database. Results showed topics with the most compelling
growth to be AI for big data analysis, robotic prosthesis, robotics-assisted stroke rehabilitation,
and minimally invasive surgery. The study also found an emerging landscape of research that was
centered on population-specific and early detection of stroke and heart disease. Application of AI
in health behavior tracking and improvement as well as the use of robotics in medical diagnostics
and prognostication have also been found to attract significant research attention. In light of these
findings, it is suggested that the currently under-researched issues of data management, AI model
reliability, as well as validation of its clinical utility, need to be further explored in future research and
policy decisions to maximize the benefits of AI applications in stroke and heart diseases.

Keywords: artificial intelligence; cerebrovascular; heart diseases; bibliometrics; scientometrics

1. Introduction

Cardiovascular disease, which includes heart diseases and stroke, [1] accounts for 366 million
healthy life years lost across all age groups and genders. Individually, ischemic heart disease and

Int. J. Environ. Res. Public Health 2019, 16, 2699; doi:10.3390/ijerph16152699 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0001-7827-8449
https://orcid.org/0000-0002-7931-2116
https://orcid.org/0000-0002-2451-5290
https://orcid.org/0000-0001-9629-4493
http://www.mdpi.com/1660-4601/16/15/2699?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph16152699
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2019, 16, 2699 2 of 14

stroke are two of the five leading causes of healthy years lost globally. [2] The physiological, social
and psychological impact of these cardiovascular diseases vary across populations and individuals.
Fortunately, there is an array of treatment options available, but timely diagnosis, appropriate
interpretation of investigation results and apt patient selection for the various intervention methods
are essential.

Artificial intelligence (AI) has been a disruptive innovation in the world of health and medicine.
Not only has it been applied for medical research, but AI can also provide algorithmic solutions in
clinical settings to aid in the diagnosis, prognosis, treatment and visual pattern recognition software in
fields such as radiology to aid in the interpretation of imaging. Significant attention is now turning to
the potential of AI in the medical field. According to a 2019 bibliometric study, the number of studies
on AI applications in medicine has tripled in the past three years, with heart diseases and stroke as two
of the top three topics of interest [3].

Various techniques such as robotics, machine learning, and natural language processing have
been applied to the study of these cardiovascular diseases. Some cutting edge applications of
machine learning models include: predicting the presence of a high-risk plaque or an absence of
coronary atherosclerosis, using biomarkers in patients with suspected coronary artery disease [4],
selecting suitable elderly patients for endovascular therapy to reduce intracerebral hemorrhage after
thrombectomy [5], grading of coronary artery stenosis and extent of myocardial ischemia [6–10],
as well as stroke lesion outcome prediction [11–18]. Some authors have explored the potential of
image-based AI applications in the scoring of non-contrast computerized tomography scans [19,20] as
well as machine learning in the prediction of mortality in coronary artery disease and heart failure
patients based on echocardiography [21]. The potential for AI to aid in clinical decision-making and
management of stroke and heart diseases is manifold and ever expanding.

As this area of interest grows, it is important to understand the current research landscape and
trajectory. This study aims to appraise extant literature through bibliographic analysis to uncover
global trends and developments in the use of AI for stroke and heart disease.

2. Materials and Methods

2.1. Search Strategy

We searched and retrieved all papers published in the period from 1991 to 2018 related to artificial
intelligence in stroke and heart diseases on the Web of Science, which is an online database covering
the largest proportion of the peer-reviewed literature in this field. The full search strategy has been
presented elsewhere [3]. In this analysis, we selected all documents of the retrieved data on AIs that
related to stroke and heart diseases.

2.2. Data Extraction

We downloaded all data from the Web of Science (WoS) database in .txt format, including all paper
information such as authors’ names, paper title, journal name, keywords, institutional affiliations,
frequency of citation, subject category, and abstracts. All of these data were entered into a Microsoft
Excel file to check data error. A process of standardization was carried out by two researchers to bring
together the different names of an author. Subsequently, all downloaded data was filtered by excluding
papers which were: (1) not original articles and reviews, (2) not about stroke and heart diseases and
AIs, and (3) not in English. Any conflict was solved by discussion (Figure 1). The combined dataset
was transferred into Stata for further analysis.
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Figure 1. Paper selection process.

2.3. Data Analysis

Data were analyzed based on basic characteristics of publication (number of authors, publication
years, main category), keywords (most common keywords and co-occurrence keywords), citations,
usages (the number of times a paper is downloaded), and abstracts. After downloading and extracting
the data, we applied descriptive statistical analysis to calculate total citations by country and intercountry
collaboration. A network graph illustrated the connection among countries based on co-authorship,
along with an author keyword co-occurrence network and country network. VOSviewer (version
1.6.8, Center for Science and Technology, Leiden University, the Netherlands) was used to establish
a co-occurrence network and a country network. For content analysis of the abstracts, we applied
exploratory factor analysis with loading of 0.4 to identify research domains emerging from all content
of the abstracts. Haberman distance was utilized to identify the research topics that most frequently
co-occurred or were related to each other. Latent Dirichlet allocation (LDA) was used to classify
papers into corresponding topics [22–26]. The summary of analytical techniques for each data type is
presented in Table 1.
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Table 1. Analytical techniques and outcomes of each data type.

Type of Data Unit of Analysis Analytical
Methods Presentations of Results

Keywords, Countries Words Frequency of
co-occurrence Map of keywords clusters

Abstracts Words Exploratory
factors analyses

Top 50 constructed
research domains

Clustering map of the landscapes
constructed by these domains.

Abstracts Papers Latent Dirichlet
allocation 10 classifications of research topics

WoS classification of
research areas WoS research areas Haberman distance Dendrogram of

research disciplines

3. Results

There has been a rapid increase in the number of studies regarding the application of AI in stroke
and heart disease research during 1991–2018. In particular, the total number of papers published in the
last five years accounted for over 65% of the total papers for the whole period. More recently published
papers also have significantly higher total usage (the number of times a paper is downloaded) both
within the last six months and the last five years (Table 2).

Table 2. General characteristics of publications.

Year
Published

Total
Number
of Papers

Total
Citations

Mean Cite
Rate per Year

Total Usage
in the Last
6 Months

Total Usage
in the Last

5 Years

Mean Use
Rate in the

Last 6 Months

Mean Use
Rate in the
Last 5 Years

2018 358 345 0.96 1968 3289 5.50 1.84
2017 273 1571 2.88 903 4139 3.31 3.03
2016 157 1149 2.44 287 2542 1.83 3.24
2015 152 1720 2.83 196 2424 1.29 3.19
2014 131 1884 2.88 136 2193 1.04 3.35
2013 100 1725 2.88 75 1819 0.75 3.64
2012 80 1903 3.40 85 1480 1.06 3.70
2011 91 3086 4.24 128 1724 1.41 3.79
2010 64 1827 3.17 42 708 0.66 2.21
2009 54 2481 4.59 58 859 1.07 3.18
2008 44 1751 3.62 32 483 0.73 2.20
2007 39 2032 4.34 25 438 0.64 2.25
2006 39 1956 3.86 33 503 0.85 2.58
2005 15 694 3.30 10 136 0.67 1.81
2004 23 650 1.88 6 75 0.26 0.65
2003 21 1373 4.09 20 222 0.95 2.11
2002 13 243 1.10 5 27 0.38 0.42
2001 8 304 2.11 3 39 0.38 0.98
2000 8 672 4.42 9 89 1.13 2.23
1999 8 494 3.09 4 65 0.50 1.63
1998 3 26 0.41 1 1 0.33 0.07
1997 8 926 5.26 13 122 1.63 3.05
1995 3 25 0.35 0 3 0.00 0.20
1994 2 51 1.02 0 2 0.00 0.20
1993 3 51 0.65 0 2 0.00 0.13
1992 1 10 0.37 0 1 0.00 0.20
1991 2 4 0.07 0 2 0.00 0.20

In Table 3, we examined the study settings mentioned in the abstracts of publications. The highest
proportion of the studies were conducted in the United States (44.1%), much higher than that of
the second most popular country (Ireland at 10.2%). The top ten countries by study setting, which
accounted for over 80% of the total studies with available setting information, saw the domination
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of developed nations, except for India, which, on the other hand, is known for research strength in
information systems and healthcare.

Table 3. Number of papers by countries as study settings.

No. Country Settings Frequency % No. Country Frequency %

1 United States 108 44.1% 19 Czech 2 0.8%
2 Ireland 25 10.2% 20 France 2 0.8%
3 Italy 15 6.1% 21 Netherlands 2 0.8%
4 India 14 5.7% 22 Singapore 2 0.8%

5 Australia 9 3.7% 23 United Arab
Emirates 2 0.8%

6 Japan 8 3.3% 24 Antarctica 1 0.4%
7 Taiwan 6 2.4% 25 Brazil 1 0.4%
8 Spain 5 2.0% 26 Bulgaria 1 0.4%
9 United Kingdom 5 2.0% 27 Egypt 1 0.4%
10 Germany 4 1.6% 28 Greece 1 0.4%
11 Israel 4 1.6% 29 Jordan 1 0.4%
12 Switzerland 4 1.6% 30 Malaysia 1 0.4%
13 Iran 3 1.2% 31 Mexico 1 0.4%
14 Poland 3 1.2% 32 New Zealand 1 0.4%
15 Saudi Arabia 3 1.2% 33 Pakistan 1 0.4%
16 Austria 2 0.8% 34 Sweden 1 0.4%
17 Canada 2 0.8% 35 Tunisia 1 0.4%
18 China 2 0.8% 36 Turkey 1 0.4%

We analyzed paper keywords and abstracts and presented the network of keyword co-occurrence
of 200 of the most frequent keywords that appeared together at least five times (Figure 2). Several
major clusters can be seen from this network, showing how words that co-occur often appear under a
common broader topic. In particular, Cluster 1 (red) contains words relating to most common machine
learning techniques and models being applied in heart disease management; Cluster 2 (green) covers
the use of robotics in stroke rehabilitation; Cluster 3 (blue) refers to the application of AI in surgical
intervention for heart problems; and Cluster 4 (yellow) represents AI application in medicine and care
for heart disease.

Table 4 presents the results of the exploratory factor analysis of all abstracts’ contents. The most
common research domains regarding AI applications in stroke and heart diseases in 1991–2018 have
been rehabilitation and prediction of therapy outcome for stroke patients (for example, domain numbers
1, 5, 8, 11 in Table 3); machine learning techniques and models (for example, domain numbers 2 and 6);
surgical intervention for heart diseases (for example, domain numbers 3 and 12). The application of AI
in health behavior tracking/improvement has also been an emerging research domain within stroke
and heart diseases (for example, domain number 29). Figure 3 provides a visualization of the top
research domains listed in Table 4.
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Figure 2. Co-occurrence of the most frequent author’s keywords. Note: the colors of the nodes indicate principle components of the data structure; node size was scaled to 
keyword occurrences; the thickness of the lines was drawn based on the strength of the association between two keywords. (ANN: artificial neural network; EEG: 
electroencephalogram; HRV: heart rate variability; MRI: magnetic resonance imaging; SVM: support vector machine) 

Figure 2. Co-occurrence of the most frequent author’s keywords. Note: the colors of the nodes indicate principle components of the data structure; node size was
scaled to keyword occurrences; the thickness of the lines was drawn based on the strength of the association between two keywords. (ANN: artificial neural network;
EEG: electroencephalogram; HRV: heart rate variability; MRI: magnetic resonance imaging; SVM: support vector machine).
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Figure 3. Co-occurrence of the most frequent topics that emerged from the exploratory factor analysis of abstracts contents. (ANN: Artificial Neural Network; AUC: area 
under the curve; CHD: coronary heart disease; CT: computed tomography; ECG: electrocardiogram; HF: heart failure; HR: heart rate; HRV: heart rate variability; SVM: 
support vector machine)

Figure 3. Co-occurrence of the most frequent topics that emerged from the exploratory factor analysis of abstracts contents. (ANN: Artificial Neural Network; AUC:
area under the curve; CHD: coronary heart disease; CT: computed tomography; ECG: electrocardiogram; HF: heart failure; HR: heart rate; HRV: heart rate variability;
SVM: support vector machine).
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Table 4. Top 50 research domains that emerged from the exploratory factor analysis of all abstract content.

No. Name Keywords Eigen-Value Freq. % of Cases

1 Fugl-Meyer; upper
Fugl; meyer; upper; motor; rehabilitation; Fugl-Meyer

(FMA); limb; extremity; impairment; arm; reaching;
improvements; weeks; therapy; stroke

19.3 758 53.8%

2 Support vector;
machine (SVM)

Vector; svm; support; feature; classification; machine;
heart rate variability (HRV) 6.8 385 48.8%

3 Coronary artery
bypass; surgery

Bypass; surgery; postoperative; endoscopic; surgical;
invasive; procedures; left; underwent; coronary; times 4.8 273 33.3%

4 Blood pressure (BP) Pressure; blood; bp; tilt 3.8 63 10.8%

5 Flexion; joint Flexion; joint; elbow; passive; motion; movements;
healthy; range 3.4 244 34.1%

6 Neural network Neural; artificial; network; artificial neural network
(ANN); networks 3.3 256 27.8%

7 Predict Area under the curve (AUC); Rheumatoid factor (RF);
random; predicting; predictive; predict 3.2 134 22.6%

8 Gait; walking Gait; walking; lokomat; practice; phase; training 3.0 192 33.1%

9 Machine learning;
heart disease

Machine; learning; disease; accuracy; classification;
prediction; risk; heart 2.9 811 72.7%

10 Fuzzy; systems Fuzzy; systems; expert; decision; problem; medical 2.8 224 39.1%
11 Sensitivity Sensitivity; specificity; detection; predictive 2.6 137 21.3%
12 Mitral valve; repair Valve; mitral; repair; underwent 2.5 62 10.0%

13 Brain; hand Brain; hand; stimulation; plasticity; movements;
functional; brain-computer interfaces (BCI) 2.5 197 29.4%

14 Randomized
controlled; assisted

Controlled; randomized; assisted; conventional;
improvement; functional; efficacy; treatment 2.4 386 49.9%

15 Assistance; finger Assistance; finger; virtual; demonstrated; activities 2.4 106 19.7%
16 Image Images; image; computed tomography (CT); deep 2.4 58 10.2%
17 Observed; effects Observed; effects; week; post 2.3 129 23.4%
18 Sensor; healthcare Sensor; healthcare; monitoring; framework 2.1 73 15.5%

19 Complications;
respiratory Complications; respiratory; cardiac 2.1 88 17.6%

20 Exercise; subjects Exercise; subjects; peak; tilt 2.1 106 22.3%
21 State; applied State; applied; field 2.1 104 21.5%
22 Atrial Atrial; atrial fibrillation (AF); catheter; procedure 2.0 61 11.3%
23 Paper Paper; presents; proposed; experimental 2.0 243 39.4%
24 Space; terms Space; terms; values 2.0 62 13.4%

25 Coronary artery;
carotid Artery; coronary; carotid; myocardial; disease; risk 2.0 261 39.9%

26 Clinical Clinical; recent 2.0 160 37.5%
27 Conditions; future Conditions; future; tested; healthy 1.9 155 29.1%
28 Variables; models Variables; models; selected; develop; predict 1.9 167 30.5%

29 Physical activity;
wearable Physical; wearable; devices; activity; technology 1.9 185 32.0%

30 Chronic Chronic; combined; weeks; week 1.9 133 23.4%
31 Able; user Able; user; process; tested; wearable 1.8 135 25.2%

32 Diabetes; classifier Diabetes; classifier; ensemble; dataset; classifiers;
cancer; problems 1.8 147 23.1%

33 Muscle; guidance Muscle; guidance 1.8 29 6.8%
34 Parameters Parameters; error 1.8 72 16.8%
35 Validation Validation; cancer; lung 1.8 63 13.1%
36 Severe; visual Severe; visual; feedback 1.8 66 13.7%
37 Mortality; failure Mortality; failure; outcomes; myocardial; hospital 1.7 179 29.9%
38 Trained; set Trained; set; sets; validation 1.7 125 23.1%
39 Propose; terms Propose; terms; show 1.7 101 21.5%
40 End; task End; task; position; measured 1.7 124 24.2%
41 Robot Robots; robot; therapy; field; intensity 1.7 213 34.1%
42 Multiple; index Multiple; index; sleep; events 1.7 92 19.4%
43 Patterns Patterns; pattern; potential; duration 1.6 119 25.5%
44 Technique; diagnosis Technique; diagnosis; techniques 1.6 128 26.8%
45 Stroke Stroke 1.6 168 44.1%
46 Pre; post Pre; post; effective 1.6 117 22.6%
47 Quality Quality; life 1.6 70 15.0%
48 Provided; differences Provided; differences; acute 1.6 86 18.6%
49 Development; role Development; role; plasticity 1.6 76 16.3%

50
Electrocardiogram

(ECG); signals;
arrhythmia

Electrocardiogram (ECG); arrhythmia; database;
frequency; signals; normal; classifiers; cardiac 1.6 225 34.9%
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In Table 5, we present the research topics that were constructed using LDA. The labels of the topics
were manually annotated by scrutinizing the most frequent words and titles for each topic. Topics
with the highest volumes of publications included: (1) general reviews of AI-related techniques and
models for application in health studies (Topics 1 and 2 in Table 4); (2) AI application in cardiac surgery
(Topics 3 and 6); (3) robotics application in stroke rehabilitation (Topics 4 and 5); (4) AI assistance in
diagnosis/screening and other population-specific investigations (Topics 7–10). Interestingly, LDA
analysis of all paper contents has revealed an emerging research landscape of research that centered on
population-specific and early detection of stroke and heart diseases (enabled by AI advancements) that
otherwise would be overlooked by keyword and abstract analysis.

Table 5. Top 10 research topics classified by Latent Dirichlet allocation (LDA). AI = artificial intelligence.

Year Research Areas Frequency Percent

Topic 1 Reviews of AI and robotics in healthcare 234 15.9%
Topic 2 AI for big data analysis (genetics, metabolic studies) 217 14.8%
Topic 3 Robotically-assisted cardiac surgery 170 11.6%
Topic 4 Robotic prosthesis 167 11.4%
Topic 5 Robotics-assisted stroke rehabilitation 167 11.4%
Topic 6 Minimally invasive surgery 130 8.8%
Topic 7 AI for medical diagnostics 118 8.0%
Topic 8 AI for population identification 110 7.5%
Topic 9 AI-assisted biometric assessment 90 6.1%

Topic 10 AI interpretation of medical investigations 66 4.5%

The changes in research productivity over time is illustrated in Figure 4. It shows a significant
increase in the number of studies of all the most popular topics in the last five years, especially since
2016. The topics with the most compelling growth have been Topic 2 (AI for big data analysis),
Topic 4 (robotic prosthesis), Topic 5 (robotics-assisted stroke rehabilitation) and Topic 6 (minimally
invasive surgery).Int. J. Environ. Res. Public Health 2019, 16, x 10 of 15 
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Figure 4. Changes in applications of AI to stroke and heart disease research during 1991–2018.

We also attempted to analyze research clustering by the research areas classified by WoS. Figure 5
(dendrogram) shows how closely linked these areas are with regard to AI application in stroke and
heart diseases. The horizontal axis of the dendrogram represents the distance (Haberman distance) or
dissimilarity between research disciplines. The vertical axis represents the research disciplines based
on WoS classification. The smaller the distance, the closer the disciplines cluster together and the
higher their similarity. The most striking feature is possibly the connection between robotics and a



Int. J. Environ. Res. Public Health 2019, 16, 2699 10 of 14

range of aspects including medicine, care and other medical fields (for instance, oncology, geriatric,
genetics, etc.). The clustering of other research areas is similar to that found in the analysis of authors’
keywords, abstracts, and content; for example, cardiac surgery with AI/computer science.
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Another visualization of the clustering of research disciplines (based on WoS classification) can
be found in Figure S1. The main clusters include: (1) AI-enabled tools and models applied in heart
surgery; (2) AI-assisted applications (including neuroscience/neuroimaging) in stroke rehabilitation,
(3) multidisciplinary research (including biology/chemistry/ biophysics).

4. Discussion

The results of our study indicate a growing interest regarding the application of AI in the
management of stroke and heart disease. Such research has gained greater traction in recent years,
as evidenced by significantly higher indices of article publication and usage in the last five years.
Whilst there is a rapid increase in publications pertaining to AI in the management of stroke and heart
disease, this study, to the best of our knowledge, can be considered the first in providing a macroscopic
organizational framework of existing literature on the subject matter. The insight gained from this
endeavor will hopefully influence future developments and the direction of this field.

Advances in technology, infrastructure and knowledge have allowed information technology and
engineering to progress by leaps and bounds. Highly sophisticated, technologically advanced and
computationally demanding solutions are becoming increasingly practical and have allowed an era of
novel and innovative solutions. This development is exceptionally conducive for the growth of fields
like AI and likely accounts for the unprecedented expansion of scientific literature on AI in managing
stroke and heart disease (Table 2).

To date, the foci of progress has been centered on developed countries, most notably the US,
which contributes 44.1% of publications. This is not unexpected as the requirements for AI to flourish
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meaningfully are stringent and developing countries may need more time to develop such capabilities.
Over time, it will be interesting to see how the landscape evolves with greater involvement of countries
like India and China who contribute 5.7% and 0.8% of publications, respectively, despite being the
most populous countries in the world.

Our keyword analysis (Figure 2), exploratory factor analysis (Table 4) and LDA (Table 5) are
corroborative and identify machine learning and modeling, stroke rehabilitation, and cardiac surgery
as the most dominant research domains. Within each of these domains are topics of particular interest.
In machine learning and modeling, neural networks and support vector machines for medical diagnosis,
prognosis, and classification are most commonly mentioned and account for 26.1% of publications.
Machine learning allows virtual machines to learn from data, establishing relationships and improving
their capabilities autonomously without explicit programming [27]. With massive medical databases,
parameters, and outcomes, machine learning is perfectly suited for the task of sieving through data to
detect patterns that aid in the diagnosis of conditions like angina from clinical notes [28], predicting
mortality of intracerebral hemorrhage [29] or identifying heart failure patients from electronic medical
records [30]. In stroke rehabilitation, robotics for prosthesis or training in rehabilitation, as well as
prediction of recovery, is most frequently studied and accounts for 22.8% of publications. In cardiac
surgery, the main interest is in minimally invasive robotic surgery for valve repair or coronary artery
disease and accounts for 20.4% of publications. Principal component analysis displays a strong
relationship between AI, heart surgery and stroke, demonstrating the current development of the field.

Several trends were noted in the current study. Topics seeing the most compelling growth are that
of AI for big data analysis, robotic prosthesis, robotic-assisted stroke rehabilitation, and minimally
invasive surgery. The application of AI in health behavior tracking and improvement is also starting to
emerge in the management of stroke and heart disease. These trends are positive indicators that the
current hardware and software are becoming more able to support cutting edge projects that were
previously limited by technology [31]. The LDA of all papers’ content also suggests that there is an
emerging landscape of research that is centered on population-specific and early detection of stroke
and heart disease.

The rise of AI robotics and AI models in stroke and heart disease management has far-reaching
clinical implications that may be realized in the near future. As the current cutting-edge robotic
technology translates to the healthcare market, clinicians and patients alike will see an increase in
sophisticated surgical and rehabilitative technology. To patients, better neuro-prosthesis will allow
better function and quality of life improvements after cerebrovascular insult. To physiotherapists,
greater capabilities of robotic devices will mean better, faster, safer and more convenient rehabilitation.
For clinicians, the increase in the prevalence and capabilities of smart wearable devices may greatly
impact management guidelines of chronic cerebrovascular and heart diseases. To cardiac surgeons,
new robotic tools and surgical techniques will enable more minimally invasive approaches to surgical
heart disease. These extrapolations are modest, and it is reasonable to imagine the effects of AI robotics
as even more profound. AI models will have an equal if not greater impact on the future of stroke and
heart disease management. With greater refinement, these models may be powered to enable rapid
screening, diagnosis, and prognostication of stroke and cardiovascular disease. Its application will
allow early detection of disease, identification of high-risk populations and initiation of treatment.
Prognosticative tools will advise on the extent of recovery, allowing clinicians to set better rehabilitation
targets and manage expectations of patients and their families.

AI in healthcare faces a distinct set of challenges that transcend medical specialties. Themes
of particular relevance include data management, clinical utility, and reliability of models [32–34].
On the topic of data management, the use of health data to develop and validate models is a delicate
issue. AI models will require access to large databases of health records in order to function optimally.
This inadvertently exposes data management systems to a very real threat of compromised confidential
data. Developments to address this concern are not evident in the bibliometric analysis and could
represent an area which needs greater attention. The clinical utility and reliability of models is another
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issue which can be addressed further. To start, machine learning in AI models has an inherent trade-off

between the complexity of models and generalizability to new data sets [34,35]. Cerebrovascular and
cardiovascular disease also faces the challenge of finding large unbiased sources of phenotypic data for
disease characterization [35]. This problem of model reliability is most commonly addressed through
validation with independent datasets (Table 4; items 35 and 38) and it has enjoyed some success in
small populations [36–38]. However, it is noted that current state-of-the-art methods are still not robust
or accurate enough for large scale clinical application [12]. Improving data quality and expanding data
set sizes may alleviate these problems but perhaps a more useful direction would be to better translate
the clinical utility of these models in select populations. It is notable that, from current literature and
our bibliographic analysis, the clinical utility of AI approaches lack assessment and validation through
large-scale, prospective cohort studies [10]. Studies in this area are not difficult to conduct and may
offer immense practical value to clinicians.

While great effort has gone into conducting this bibliometric analysis through an intensive
summary of keywords and research patterns, there are some limitations of this study. This study
only included English papers and may underreport trends and studies of research conducted in other
languages. In addition, the publication type was restricted to peer-reviewed publications, and this
may influence the thoroughness of the analyzed results.

5. Conclusions

In conclusion, the findings of our study depict a recent sharp rise of research production on the
topic of AI application in the management of stroke and heart disease. The prevailing research themes
uncovered by our analysis demonstrated the growing utility of robotics in stroke rehabilitation, robotics
in cardiac surgery and AI models for medical diagnostics and prognostication. These developments
are clinically significant and will influence the future of stroke and heart disease management for
multiple stakeholders. On the other hand, the study found that issues of data management, AI model
reliability and validation of clinical utility of AI models have yet to be discussed extensively in the
existing literature. Thus, for AI applications to realize their full capabilities, the study suggested that
future research and policy decision-making processes should consider further exploring and resolving
these issues.
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