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Abstract: Cycling is a green, sustainable, and healthy choice for transportation that has been widely
advocated worldwide in recent years. It can also encourage the use of public transit by solving
the “last-mile” issue, because transit passengers can cycle to and from transit stations to achieve a
combination of speed and flexibility. Cycling as a transfer mode has been shown to be affected by
various built environment characteristics, such as the urban density, land-use mix, and destination
accessibility, that is, the ease with which cyclists can reach their destinations. However, cycling
destination accessibility is loosely defined in the literature and the methods of assessing cycling
accessibility is often assumed to be equivalent to walking accessibility using the same decay curves,
such as the negative exponential function, which ignores the competitive relationship between cycling
and walking within a short distance range around transit stations. In this study, we aim to fill the
above gap by measuring the cycling destination accessibility of metro station areas using data from
more than three million bicycle-metro transfer trips from a dockless bicycle-sharing program in
Shenzhen, China. We found that the frequency of bicycle-metro trips has a positive association with a
trip distance of 500 m or less and a negative association with a trip distance beyond 500 m. A new
cycling accessibility metric with a lognormal distribution decay curve was developed by considering
the distance decay characteristics and cycling’s competition with walking. The new accessibility
model outperformed the traditional model with an exponential decay function, or that without
a distance decay function, in predicting the frequency of bicycle-metro trips. Hence, to promote
bicycle-metro integration, urban planners and government agencies should carefully consider the
destination accessibility of metro station areas.
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1. Introduction

As an environmentally friendly transportation mode, cycling can reduce traffic congestion and
air pollution in urban areas [1,2]. It also attracts considerable research attention because of its low
cost, great flexibility, and moderate distance range [2,3]. It is feasible to incorporate cycling, especially
for transportation purposes, into urban residents’ daily routine. Half of global private vehicle trips
shorter than five km could be replaced by cycling trips of up to 15 min [4]. In addition, as an active
transportation mode, cycling can help cyclists achieve the recommended level of physical activity and
maintain their health; various health benefits associated with regular cycling have been identified,
including reducing body weight and the risk of obesity and type II diabetes and improving mental
health [5,6].
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Cycling can also promote the use of public transit, a concept often called bicycle-transit integration.
The trip distance between one’s home or office and a transit station is a major barrier to the promotion
of transit ridership in large cities [7,8]; a longer distance may encourage the use of a private vehicle
rather than transit [9]. Bicycle–transit integration can solve the “last-mile” issue, because cycling can
cover larger areas than walking to efficiently feed transit passengers to and from metro stations [9–12].
To promote both cycling and transit use, bicycle–transit integration has already been advocated by
many governments in both developed countries such as the United States, Australia, the Netherlands,
and Denmark and developing countries such as Brazil, Colombia, and China [13].

Understanding the effects of the built environment characteristics on cycling behaviors can help
policymakers to alter the built environment to promote bicycle–transit integration [14–16]. The cycling
destination accessibility of transit stations, which is defined as the degree to which a person can cycle
to her or his destination from a transit station or vice versa, is believed to be the primary determinant
of transit use [17]. Only in the presence of such accessibility will a user consider other factors such as
cost, comfort, or security [18]. However, cycling accessibility has received less attention than walking
accessibility. Some researchers tend to regard cycling accessibility and walking accessibility as the
same concept, often termed “active accessibility” or “non-motorized accessibility” [19,20], so the subtle
differences between the two concepts are often ignored.

Gravity-based measures are often used to assess both walking accessibility and cycling accessibility
due to their relative ease of calculation and interpretation [19–21]. Several cost decay functions
have been used as the impedance function in evaluating accessibility, such as threshold functions
(e.g., step function) and smooth cost decay functions (e.g., negative exponential, Box–Cox, or Tanner
functions) [22]. However, distance decay functions have been adopted from walking accessibility, and
their feasibility has yet to be rigorously tested.

In addition, studies have often relied on questionnaires or travel diaries to collect cycling trip
data; those methods have some inherent limitations, such as high cost, small sample size and study
area, and data inaccuracy due to recall bias. The emerging bicycle-sharing program equipped with
global position system (GPS) devices provides a big data source and research opportunity to scrutinize
cycling behaviors.

To address these research gaps, we assess cycling destination accessibility around metro stations
using cycling trip data from a large-scale bicycle-sharing program in Shenzhen, China. The distance
impedance is examined, and a corresponding decay function is proposed. The proposed accessibility
model is further compared with existing models in terms of the performance of modeling real cycling
usage. The relationships between the built environment and cycling trips to and from metro stations
are also discussed.

2. Literature Review

2.1. Built Environment and Cycling Behavior

Built environment characteristics have been recognized as significant determinants of cycling
trips to and from metro stations; these characteristics include the presence of cycling infrastructure,
urban density, land-use mix, street connectivity, destination accessibility, and aesthetics [9,23–25].

Urban density and land-use mix are both important indicators of cycling behaviors. It has been
shown that population density and destination density (e.g., job density, retail density, and business
density) have positive relationships with public bicycle use [26–29]. More facilities mean more chances
for people to choose to cycle. Similarly, the land-use mix is also important to encourage cycling [30,31].
For example, the presence of many daily living facilities (e.g., convenience stores, fast food restaurants,
and hospitals) in a residential area could increase cycling rates [32].

The presence of cycling infrastructure directly affects cycling behavior. Generally, the presence of
bicycle lanes contributes to a higher likelihood of cycling [32]. In particular, cyclists with low incomes
and those older than 30 years seem to be more sensitive to bicycle network connectivity [33]. Moreover,
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different types of bicycle trails, lanes, and paths may have different effects on cycling behavior [34].
On-road bicycle lanes with bicycle parking are more attractive to cyclists than off-road bicycle trails [35].
It should be noted that some researchers have found that the supply of bicycle lanes has a limited effect
or even no effect on the cycling rate [36].

Aesthetic factors are essential in encouraging cycling behavior, in addition to factors related
to urban density, the land-use mix, and the cycling infrastructure. Among the aesthetic factors,
the presence of urban greenness plays an important role in promoting cycling, because the presence of
urban greenness often gives cyclists a more pleasant experience [1,37–39].

Cycling destination accessibility reflects a person’s ability to reach destinations via cycling. It is
indirectly or directly covered in some built environment measures. For example, density and land-use
mix can be regarded as proxies for overall accessibly, because denser areas with mixed land use may
provide more cycling destinations within cycling distance. The distance to the closest facilities is an
explicit measure of accessibility. For transit riders who use cycling as a transfer mode, the distance
from their home to the transit station is an important factor [40,41]. The maximum cycling distance
between one’s home and a transit station ranges from 1.2 to 3.7 km [42,43].

2.2. Gravity-Based Cycling Accessibility

In addition to cycling accessibility based on a fixed distance threshold, studies often measure
dynamic accessibility on the basis of certain distance-decay functions [20]. Cycling demand is assumed
to be a compromise between the benefit gained from destination/activity opportunities and the cost to
reach them from a given origin. The formula is expressed as Equation (1).

Ai =
∑

a j f
(
ti, j

)
(1)

where Ai represents the accessibility to place i; aj denotes the activity in place j; ti,j represents the travel
impedance between place i and j, which can be considered as time, distance, or other cost; and f (ti,j) is
an impedance function that measures the spatial separation between i and j.

It should be noted that the key component of this formula is the definition of the impedance between
two locations. An array of distance-decay functions have been used in empirical studies. Prins, et al. [44]
applied an exponential distance-decay function to estimate shopping trips of older adults, based on
GPS data from the walking and cycling trips they generate. Iacono, Krizek and El-Geneidy [19] chose
a negative exponential distance-decay function based on the frequency distribution of trip lengths
among workplaces, shopping centers, schools, recreation facilities, and restaurants.

Walking accessibility and cycling accessibility are usually not distinguished from each other,
and the combination of the two is sometimes referred to as “active accessibility” or “non-motorized
accessibility”. Although walking and cycling share some common features, they also have marked
dissimilarities [45,46]. For example, both are human-powered modes that require a certain physical
capability. However, the travel speed and distance range of cycling exceed those of walking. Walking,
in turn, is more flexible than cycling and requires no special equipment. Previous studies have often
neglected the fact that walking and cycling opportunities may compete with each other when both are
available for short trips. Hence, people can choose one transport mode over the other according to
their willingness and cost. Therefore, we argue that distance-decay functions for cycling and walking
should be estimated separately.

2.3. Public Bicycle-Sharing Systems

Public bicycle-sharing systems have often been advocated to encourage both cycling and transit
use because transit passengers can cycle to and from the transit stations [47,48]. The bicycle-sharing
system, especially with free-floating bicycles, has recently expanded dramatically in China and other
countries. For example, the total number of free-floating bicycles in China surpassed 4 million by
March 2017 [49].
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Free-floating public bicycles allow users to access bicycles at nearly any location and avoid the
necessity of docking stations and kiosk machines used for docked bicycles [50]. More importantly,
cyclists’ behavior (e.g., the starting and ending location, route choice, and trip distance) can be
accurately recorded with built-in GPS devices. Given the large number of users of free-floating public
bicycles, these detailed cycling behavior data provide researchers with an attractive alternative to
explore the relationship between cycling and the built environment.

Previous studies have used cycling data from free-floating bicycle-sharing systems for the following
topics: Demand forecasting and bicycle redistribution issue, users’ travel patterns, and determinants of
the use of free-floating public bicycles. For example, Pal, Zhang and Kwon [50] analyzed the mobility
patterns and imbalance of free-floating bicycle-sharing systems by analyzing historical trip and weather
data to help the system operator to make better-informed decisions. Leonardo, et al. [51] forecasted the
trend for bicycle use in every zone of London and consequently enhanced the relocation procedure by
generating spatiotemporal clusters of the usage patterns of the available bicycles. Shen, Zhang and
Zhao [25] adopted spatial autoregressive models to analyze the spatiotemporal patterns of bicycle
use and explored the impact of the fleet size, the surrounding built environment, access to public
transportation, the bicycle infrastructure, and the weather conditions. Li, et al. [52] explored the
patterns of cycling behavior and found that free-floating bicycles were mainly used for short trips,
especially for short commuting trips to work or school.

Although the main function of free-floating public bicycles is to integrate with public transit
stations, especially metro stations, to solve the “last-mile” issue, few studies have examined cycling
transfer trips in metro station areas. Liu and Lin [53] addressed the influence of free-floating public
bicycles on the catchment areas of metro stations and explored the factors associated with the sizes
of bicycle catchment areas. To our knowledge, few studies have assessed cycling accessibility with
cycling data from a free-floating bicycle-sharing system.

2.4. Research Gaps and Our Research Objectives

In sum, two research gaps exist in cycling accessibility assessment. First, few studies have
distinguished cycling accessibility and walking accessibility. The methods of assessing cycling
accessibility were mainly adopted from methods of assessing walking accessibility. Walking and
cycling are both important modes of active transportation. However, cycling has a higher financial cost
and a different time cost (i.e., search for and unlock a bicycle) relative to walking, especially for short
trips. People prefer walking to cycling when the trip is short. Hence, competition between cycling and
walking exists within a certain distance threshold. The willingness to use cycling does not always
decrease as the distance increases. It is thus crucial to assess cycling accessibility.

Second, most studies have relied on survey data to assess cycling behavior, which is inefficient
and includes a limited number of participants and study areas [54]. Public bicycle-sharing systems can
collect enormous amounts of data on cycling behaviors from a vast number of participants. This new
data source gives researchers a chance to measure cycling accessibility on a large geographic scale.

In this study, we aim to fill these gaps by measuring the cycling destination accessibility of metro
station areas in Shenzhen, China. First, the specific distance-decay function was estimated with cycling
data from a dockless bicycle-sharing system. The performance of the proposed distance-decay function
was then compared with the existing distance-decay function in terms of fitting with the number of
cycling trips to and from metro stations. We also discuss the potential implications of our results for
the transportation planning process.

3. Materials and Methods

3.1. Study Area

Shenzhen is an emerging megacity in Guangdong Province in South China. It is also a “young” city
that underwent rapid urban development from a tiny fishing village in 1979 to a massive modern city
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with China’s Open-Door Policy. Due to its limited land resources and growing population, the metro
system and other types of public transportation have been intensively developed. By 2017, eight metro
lines had been built and opened, including 167 metro stations (Figure 1). All metro stations were
included in this study.
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3.2. Data Source

3.2.1. Cycling Data

Shenzhen’s first free-floating bicycle-sharing system began in October 2016. More than
890,000 bicycles have been put into service, and the number of registered users surpassed 20 million
in December 2017. The purpose of about 50% of trips is to commute to or from work or school [55].
More than 65% of public bicycles are distributed around metro stations, which suggests that cycling
serves as an effective feeder mode to the metro system.

We obtained cycling data for approximately 20 million trips from a large bicycle-sharing company.
The data consist of all cycling trips in Shenzhen over a 14-day period from 1 to 14 December 2017,
including the location (latitude, longitude) and the time stamps for the origin and destination of every
trip. The weather during that period was mild (sunny and 16 ◦C to 25 ◦C, a typical temperature except
summer), which allowed us to exclude the effects of weather on cycling.

Because we focused on cycling destination accessibility around metro stations, all bicycle-metro
transferring trips were selected from the original data. The data processing consisted of three steps:
Data cleaning, selection of bicycle-metro transferring trips, and assignment of these trips to each
metro station.

Cycling trips with missing trip information or an abnormal duration (<1 min or >30 min), speed
(>3 m/s), or distance (>5 km) were excluded. Because cycling trajectory and its distance were not
included in the original dataset, the cycling distance was inferred by Euclidean distance between
cycling starting point and ending point. If the starting point of trip n is A (Xb, Ya) and the ending point
is B (Xb, Yb), the cycling distance DA,B for this trip is shown as Equation (2).

DA,B =

√
(Xa −Xb)

2 + (Ya −Yb)
2 (2)
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The second step was the selection of bicycle-metro transferring trips (Figure 2). The cycling
trips whose origin or destination lay within 100 m of any metro station entrance were considered
bicycle-metro transferring trips. Finally, the selected trips were assigned to the nearest metro station,
and the number of trips is calculated for each station.
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3.2.2. Points of Interest (POIs)

A database of POIs was obtained from Baidu Map using an API interface in December 2017
(Baidu Inc., Beijing, China). The data consisted of six categories of facilities: Residential, commercial,
working, leisure, park, and public transportation POIs. The residential POIs consist of all residence
communities and urban villages. The working POIs contain all companies and industry zones.
The commercial POIs include shopping centers and malls. The park POIs consist of all kinds of parks
and famous scenic spots. The leisure POIs refer to sports facilities, cinemas, and theaters. The public
transportation POIs include bus stations. Those POIs represent the destinations or origins of cycling
trips that are closely related to our daily life around metro stations.

3.3. Distance-Decay Function

Distance decay is a transportation planning method used to model travel behaviors in cities.
Distance-decay functions are usually estimated from the distribution of sample data to represent
changes in people’s willingness to cycle as the trip distance increases. Exponential functions are usually
recommended for short trips as in Equation (3) [19].

P(d) = e−βd (3)

where P(d) is the cumulative percentage of trips with a distance of at least d or the value of the trip
distribution, and β is the distance-decay parameter to be estimated. The decay parameter indicates
the steepness of the decline in the percentage of trips of at least a given distance. The cumulative
distribution was used because people prefer shorter walking trips to longer trips. For example, if a
person can walk 500 m, he or she can also walk 300 m.

However, we argue that bicycle-metro transferring trips may differ from walking behavior.
The willingness to engage in metro-related cycling may increase within a certain distance threshold.
In this situation, the distance-decay function cannot accurately represent the change in people’s
willingness to cycle as the cycling distance increases.

To explore the new distance-decay function with the bicycle-metro trip data and test the accuracy
of our findings, we randomly selected 10% of the samples from the original bicycle-metro trip data for
fitting curves and used the remaining 90% of the data to check the fitting results. The distribution of
the frequency of bicycle-metro trips was plotted in 100 m distance bands up to 5000 m; the distribution
of standardized trips is shown in Figure 3. A lognormal distribution was found. As hypothesized,
the frequency of cycling trips increased within 500 m and decreased beyond 500 m. A logarithmic
normal distribution function was used to estimate the frequency of cycling trips. The distance-decay
function is as shown in Equation (4).
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f (x) = α
1

√
2πσx

e−
(ln x−µ)2

2σ2 (4)

where x is the cycling distance, and α, σ, and µ are the values of the parameters to be estimated,
which together determine the shape of the curve.
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An Excel spreadsheet with visual basic code was used to fit the curve. The dependent variable was
the number of trips in each distance interval. The distance values are taken by selecting the maximum
point of each distance interval.

3.4. Measuring Cycling Accessibility

Gravity-based measures are used in accessibility measures. We define each station’s cycling
accessibility as Equation (5).

Ai =
n∑

j=0

Oi, j f
(
di, j

)
(5)

where Ai represents the cycling accessibility of metro station i; di,j represents the distance of j facilities
around metro station i; Oi,j is the facility j in metro station i; and f (di,j) is the cycling distance-decay
function calculated in Equation (4), which represents the attenuated values that correspond to various
distances. The logic behind Equation (5) is the cumulative likelihood of cyclists reaching a variety of
facilities when considering the effect of distance impedance.

The distance between a variety of facilities and metro stations was calculated using the
nearest-facilities method in ArcGIS 10 (Esri Inc., Redlands, CA, USA). In addition, we excluded
any facilities beyond 2.5 km from the nearest metro station because the number of bicycle-metro trips
changes little beyond 2.5 km and 95% of bicycle-metro trips fall within this threshold.

3.5. Modeling the Number of Bicycle-Metro Trips with Proposed Cycling Accessibility Measure

According to existing evidence, cycling accessibility, cycling facilities, and aesthetic factors all
affect bicycle-metro integration (Figure 4) [9,23–25]. Cycling accessibility is believed to be the primary
determinant of transit use [17]. Six different daily aspects of cycling accessibility were selected in this
study: Residential accessibility, work accessibility, commercial accessibility, park accessibility, leisure
accessibility, and public transportation accessibility (Table 1). All of these facilities were important
destinations or origins connecting with metro stations by bicycles.
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Table 1. Independent Variables.

Dimensions of Built
Environment Indicators Variable Measurement

Cycling accessibility Residence
accessibility RA

The sum of the distances from all residence points of
interest (POI) within a 2.5 km buffer to the metro

station considering distance decay, as Equation (5)

Work
accessibility WA

The sum of the distances from all work POI within a
2.5 km buffer to the metro station considering distance

decay, as Equation (5)

Commercial
accessibility CA

The sum of the distances from all commercial POI
within a 2.5 km buffer to the metro station considering

distance decay, as Equation (5)

Park
accessibility PA

The sum of the distances from all park POI within a
2.5 km buffer to the metro station considering distance

decay, as Equation (5)

Leisure
accessibility LA

The sum of the distances from all leisure POI within a
2.5 km buffer to the metro station considering distance

decay, as Equation (5)

Public
transportation
accessibility

PTA
The sum of the distances from all public transportation

POI within a 2.5 km buffer to the metro station
considering distance decay, as Equation (5)

Cycling infrastructure Road
density RD Length of all roads divided by buffer area with a

2.5 km radius

Slope S The average slope in the 2.5 km buffer

Aesthetic Greenness G The average NDVI value in the 2.5 km buffer

In addition, cycling facilities are directly related to cycling. A low terrain slope and high road
density may have a positive effect on the cycling rate [56,57]. The road density is calculated as the
length of all roads in an area. Besides, aesthetic factors are essential in encouraging cycling behavior.
Urban greenness, as an aesthetics factor, may also affect the cycling rate [38]. The normalized difference
vegetation index (NDVI) was used to quantify the amount of vegetation with 10-m resolution satellite
imagery. It measures as Equation (6).

NDVI =
NIR−Red
NIR + Red

(6)
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where NIR represents the reflection value in near-infrared band, and Red represents the reflection
value of red band.

A regression model was used to model the bicycle-metro trips with all the independent variables
above, including variables of the proposed cycling accessibility, cycling infrastructure and aesthetic.
The remaining 90% of bicycle-metro trips which has been removed the 10% of samples of original
bicycle-metro trips used for the fitting curve were as the dependent variable. The regression formula is
shown by Equation (7).

Num = β0 + β1 ×RA + β2 ×WA + β3 ×CA + β4 × PA + β5 × LA + β6 × PTA + β7 ×RD
+β8 × S + β9 ×G + ε

(7)

where Num is the number of bicycle-metro trips; β0, β1, β2, β3, β4, β5, β6, β7, β8, β9 is the parameter to be
determined; and ε is the random variable.

To examine the performance of the proposed cycling accessibility with a lognormal distribution
function, three regression models with different measurements of cycling accessibility were built. Model
1 used accessibility without a distance-decay function, which means that the willingness of cycling to
facilities at different distances from metro stations had the same weight. Model 2 used accessibility
with an exponential distance-decay function [44]. The willingness of cycling to different facilities
decreased with the distance between facilities and metro stations. The distance-decay parameter has
been estimated to be 0.00041641, according to a previous study [44]. Model 3 used accessibility with
our logarithmic normal distribution function, which means that the willingness of cycling to facilities
increased with distance when it was less than 500 m, and then decreased with distance when it was
more than 500 m.

In the three models, the only difference is the way of calculating cycling accessibility (Table 2),
all other factors (e.g., cycling infrastructure and aesthetic) were the same across these models.

Table 2. Calculation of Cycling Accessibility in Three Models.

Model Calculation of Cycling Accessibility

Model 1 Ai = Oi, j

Model 2 Ai = Oi, j × di, j × e0.00041641

Model 3 Ai = Oi, j × α
1

√
2πσx

e−
(ln x−µ)2

2σ2

4. Results

4.1. Characteristics of Cycling Distance Decay

With the aid of our visual basic code, the parameters of logarithmic normal distribution decay
function were estimated (α = 10.369, σ = 0.685, and µ = 2.087), and the goodness of fitness for the
estimation is 0.99. The distance-decay function can be given as follows:

f
(
di, j

)
= 10.369

1
√

2π0.685di, j
e
−

(ln di, j−2.087)2

2(0.685)2 (8)

where di,j represents the distance between metro station i and destination j. The curve f (di,j) represents
the change in people’s willingness to cycle as the transferring distance increased. Observation of the
curve reveals that 500 m was an important turning point, that is, the most popular cycling distance
for transferring was 500 m. Within the range of 100 to 500 m, people’s willingness to ride gradually
increased as the distance increased. Their willingness then slowly decreased as the distance increased,
and it approached 0 at 5 km. The fitting curve was shown in Figure 3.
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4.2. Mapping Cycling Destination Accessibility

According to the logarithmic normal distribution decay function calculated above, the accessibility
was computed for the six types of facilities. The overall accessibility of each station is the sum of the
accessibility for the six types of facilities. The overall cycling accessibility of each station was visualized
in ArcGIS (Figure 5a), as was the total number of bicycle-metro trips (Figure 5b).
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We found that the metro stations in Nanshan, Futian, and Luohu districts had lower cycling
accessibility than the stations in Baoan, Longhua, and Longgang districts. Nanshan, Futian, and
Luohu districts, collectively referred to as the “Special Economic Zone” (SEZ), were developed earlier,
and Baoan, Longhua, and Longgang districts, located outside the SEZ, were developed later. Hence,
the metro stations and POIs in the SEZ are densely distributed, and the transferring distances are
relatively short. In this situation, people prefer to walk to connecting metro stations. In contrast, metro
stations and POIs outside the SEZ are sparse, and the transferring distances are relatively long. In this
situation, people prefer cycling as a transfer mode. In addition, some interchange metro stations, such
as Chegongmiao, Huaqiangbei, and Houhai stations, had greater accessibility. However, interchange
stations that link to high-speed rail stations, such as Shenzhenbei and Luohu, had lower accessibility.
The interchange stations have more passengers and more kinds of facilities than normal stations.
Hence, people can reach more facilities by cycling, and the bicycle-metro trips are longer, because the
passengers at high-speed rail stations mainly transfer within the stations or integrate with taxis and
buses. Thus, a variety of transfer options may affect the choice of cycling.

4.3. Regression Models

The regression results are shown in Table 3. The model with a logarithmic normal distribution
decay function (i.e., Model 3) had a greater association with the number of bicycle-metro trips
(R2 = 0.445) than the model without distance decay (R2 = 0.365) or the model with exponent decay
(R2 = 0.411). The results indicate that Model 3 can explain 44.5% of the variance in the number of
bicycle-metro trips.
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Table 3. Results of Regression Models.

Dimension of
Built Environme

Indicator
Model 1 Model 2 Model 3

B S.E. Sig B S.E. Sig B S.E. Sig

Destination
accessibility

Resident −4.80 14.47 0.74 −11.27 18.66 0.55 −25.90 18.71 0.17
Working 4.44 1.39 <0.01 6.48 2.01 0.00 7.88 2.34 <0.01

Commercial −47.25 55.93 0.40 −5.23 81.70 0.95 102.65 94.06 0.28
Park −110.31 308.58 0.72 −191.05 390.27 0.63 −328.41 402.30 0.42

Leisure 274.54 65.29 <0.01 366.97 85.36 0.00 396.27 94.02 <0.01
Public transport −0.54 9.02 0.95 6.03 12.30 0.63 12.89 13.90 0.36

Cycling
infrastructure

Road density 39.75 18.03 0.03 37.54 17.24 0.03 43.17 16.49 0.01
Slope −537.22 613.71 0.38 −576.88 589.06 0.33 −539.99 571.07 0.35

Aesthetic Greenness 12,375.89 30,664.02 0.69 13,895.52 29,635.42 0.64 12,119.36 28,622.08 0.67

Model fit
information

Adjusted R2 0.365 0.411 0.445
Error of std. estimate 9198.33 8857.83 8593.16

Significance p < 0.01 p < 0.01 p < 0.01

* B: Beta; * S.E.: Standard Error; * Sig: Significance.

In addition, the working accessibility and leisure accessibility were both significant at <0.01
level in the three models, which means that working accessibility and leisure accessibility were both
crucial factors influencing bicycle-metro integration. Road network density was also significant in all
the models.

5. Discussion

Cycling is a viable transfer mode to promote the use of public transit, and a policy of bicycle-transit
integration has been actively advocated by many governments in both developed and developing
countries. Destination accessibility is believed to be a critical factor that can facilitate or hinder
transit-transferring cycling behaviors. However, destination accessibility was not rigorously defined
in previous studies because walking and cycling behaviors were not distinguished. In this study,
we found a lognormal distribution decay curve for bicycle-metro trips of a large public bicycle-sharing
program in Shenzhen, China. The destination accessibility with a lognormal distribution distance-decay
function was proposed by considering the competition between cycling and walking within 500 m
around each metro station. Our new accessibility measure had greater associations with the number of
bicycle-metro trips than existing models. More specifically, this study has three major findings.

First, the superior performance of our new accessibility measure indicates that the distance decay
of bicycle-metro trips conforms to a lognormal distribution. The findings of this study differ from
those of previous studies that the distance decay of both cycling and walking trips fits an exponential
curve [21,44,58,59]. The difference may be explained by the data sources for the cycling trips. Previous
studies often collected cycling data with a survey or travel diary, which are subject to limitations in
sample size and site coverage. In contrast to previous studies, big data from more than three million
cycling trips from a dockless bicycle-sharing program were used in this study. The large sample size
gives us adequate detection power to delineate the distance-decay functions of bicycle-metro trips.

In addition, walking and cycling may compete as transfer modes to transit service within 500 m.
From the cycling distance-decay curve (Figure 3), we found an upward trend in the number of cycling
trips between 100 and 500 m, which indicates that the willingness to choose cycling as a transfer
mode to transit increases within this distance threshold. In contrast, previous studies suggested
that the willingness to walk always decreases as the distance increases. Hence, we infer that the
relationship between the choice of cycling or walking is competitive within 500 m of a metro station.
This competition can be explained by economic cost, time cost, and other factors regarding the use of
public bicycles. The bicycle-sharing program charges rent, and it may take time to locate a bicycle.
Therefore, for short trips within 500 m around a metro station, people tend to prefer walking to cycling
as a transfer mode. Thus, in the area within 500 m of a metro station, we recommend that greater
attention should be paid to the creation of a pedestrian-friendly environment.
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Second, the working POI accessibility, leisure POI accessibility, and road density are important
built environment indicators that affect bicycle-metro trips. Similar results were found in that the
availability of cycling infrastructure [31,60] and accessibility to jobs [61] can promote the use of cycling.
However, residential accessibility was not associated with the number of cycling trips in this study,
which is in contrast to previous findings [53]. This contrast may be due to the limitations of our
residential POI data. The residential POIs were represented by points regardless of the number
of residents or the size of the housing estate. For example, in Shenzhen, nearly 11 million people,
approximately half of the total population, live in 320 urban villages [62]. The building density in these
urban villages is higher and the living environment is poorer than in normal residence communities,
and many low-income groups live there. However, these urban villages were also represented by a
single POI, although some villages, such as Baishizhou, Xiasha, and Gangxia, accommodate more than
100,000 people. In this situation, the number of residents was misrepresented. Future studies should
consider the number of residents.

Third, the threshold of bicycle-metro trips was higher than that in previous studies. Most studies
used the 85th-percentile access distance to confirm the catchment area. In this paper, the 85th-percentile
distance of all bicycle-metro trips was about 1.5 km, which is not consistent with previous conclusions
generated by survey data. For example, the access distances to metro stations for cyclers in Beijing fall
mainly between 0.4 and 1.4 km, which is less than our finding [63].

However, the access distance above is commonly obtained from a self-reported distance or a
distance calculated from an algorithm-identified route with a reported origin/destination and stop
location, which may lead to an inaccurate result. This problem was improved in this study using the
bicycle-sharing big data. We defined the threshold of bicycle-metro trips in Shenzhen as about 2.5 km,
which covers 95% of cycling trips, because the number of bicycle-metro trips changed little beyond
2.5 km and 95% of bicycle-metro trips are within this threshold. The findings from this study have
important policy and planning implications; by providing a safe and comfortable cycling environment
and well-established public bicycle-sharing systems, we can promote bicycle–transit integration and
thus improve both cycling and transit usage in the 2.5-km transit-catchment area. Further validation
about the 2.5 km threshold is needed to confirm the generalizability of this finding.

This study has both strengths and limitations. We distinguished cycling and walking as transfer
modes to and from metro stations. The competition between cycling and walking within 500 m of metro
stations help us to develop a new cycling destination accessibility model with a lognormal distribution
decay curve. Furthermore, we used the big data from more than three million trips of a public dockless
bicycle-sharing program, which addressed many limitations of previous cycling data collected from
surveys or travel diaries, such as limited sample size and study area. The limitations of this study
arise mainly from the nature of the bicycle-sharing data and the lack of metro ridership data. First, we
cannot collect individual factors (e.g., age, gender, income), which prevent us from controlling for the
potential influence of those factors on cycling behavior. Second, the decision to cycle is affected by the
availability of public bicycles around metro stations. The tidal phenomenon of sharing bicycles (e.g., a
person may not find a bicycle during peak hours) may affect the number of bicycle-metro trips. Third,
the dataset does not include summer season data, hence we cannot understand the effect of weather
on cycling behavior. Forth, the metro ridership data is also an important factor affecting the cycling
transferring trips, which may lead a relatively weak explanation in the regression model. In addition,
we assume that the six types of facilities have the same distance-decay function and weight in the
accessibility model process. Although the geographic locations of the trip destination were collected,
the destinations of our data were uncertain (e.g., which POI was visited when multiple POIs were
located around the geographic locations of trip destinations). Future studies may combine various
data sources, such as travel diary and geocode public cycling-sharing data to address these issues.
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6. Conclusions

In this study, we measured cycling destination accessibility with the big data from more than
three million trips on a public bicycle-sharing system. We found that the distance-decay function
associated with cycle-metro trips conforms to a lognormal distribution. Most specifically, the frequency
of cycle-metro trips increases with distance within 500 m of a metro station and then decreases beyond
500 m. The pattern differs significantly from that of walking behavior. Our results also show that
our proposed destination accessibility model outperforms existing models in fitting the frequency
of cycle-metro trips. Furthermore, the optimal distance of bicycle-metro trips in Shenzhen is about
2.5 km, or around 15 min by bicycle. Hence, promotion of a policy of cycle-metro integration can
effectively extend metro service coverage areas 800 to 1500 m from metro stations. By proposing
robust and validated metrics for cycling destination accessibility, the findings of this study may
help policymakers and planners create a cycling-friendly built environment and thus lead to better
cycle–metro integration.
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