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Abstract: Background: Modern urban travel includes mixtures of transit options, which potentially
impact individual pollution exposures and health. This study aims to investigate variations
in traffic-related air pollution and noise levels experienced in traffic in Chengdu, China.
Methods: Real-time PM2.5, black carbon (BC), and noise levels were measured for four transportation
modes (car, bus, subway, and shared bike) on scripted routes in three types of neighborhoods
(urban core, developing neighborhood, and suburb). Each mode of transportation in each
neighborhood was sampled five times in summer and winter, respectively. After quality control,
mixed effect models were built for the three pollutants separately. Results: Air pollutants had
much higher concentrations in winter. Urban Core had the highest PM2.5 and BC concentrations
across seasons compared to the other neighborhoods. The mixed effect model indicated that car
commutes were associated with lower PM2.5 (−34.4 µg/m3; 95% CI: −47.5, −21.3), BC (−2016.4 ng/m3;
95% CI: −3383.8, −648.6), and noise (−9.3 dBA; 95% CI: −10.5, −8.0) levels compared with other
modes; subway commutes had lower PM2.5 (−11.9 µg/m3; 95% CI: 47.5, −21.3), but higher BC
(2349.6 ng/m3; 95% CI: 978.1, 3722.1) and noise (3.0 dBA; 95% CI: 1.7, 4.3) levels than the other
three modes of transportation. Conclusion: Personal exposure to air pollution and noise vary by
season, neighborhood, and transportation modes. Exposure models accounting for environmental,
meteorological, and behavioral factors, and duration of mixed mode commuting may be useful for
health studies of urban traffic microenvironments.
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1. Introduction

Urban mobility is changing. With economic growth and urbanization, individuals are no longer
constrained to a single transportation mode. Commuting can include private, public, and shared
options, physically active and non-active options, as well as combinations of mode types, such as
walking, bicycling, and trips by car, bus, light rail, and train. Changes in urban mobility can
potentially alter numerous population health determinants through physical activity levels, stress,
access to resources, transportation-related costs, and time, as well as exposures to air pollution, noise,
and other environmental stressors [1–4]. Moreover, the impacts associated with mobility changes may
differentially affect certain populations based on income and residential location [5–8]. Thus, access to
commute options is becoming an important environmental and social justice issue [9].
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Air pollution concentrations have been found to be disproportionately high in high-traffic cities
around the world. In cities such as Hong Kong [10], Montreal, Toronto, and Vancouver [11], and Los
Angeles [12], significantly higher pollutant exposures have been found in transport microenvironments.
The Multi-Ethnic Study of Atherosclerosis study reported that in-vehicle exposure contributed 24%
of participants’ ambient-source NO2 exposure on average in Winston-Salem and Los Angeles [13].
In a study from Europe, similar results have been found, where despite a small proportion of daily time
being routinely spent on intra-city transit (usually no more than 1.5–2 hours per day), commuters can
receive up to 30% of their inhaled daily dose of black carbon (BC), and approximately 12% of their
daily PM2.5 personal exposure during their regular journeys [14]. In light of these findings and the
absence of similar studies done in China, it is of great importance to estimate pollution exposures
during transportation for Chinese cities. Transportation is also the major source of noise in cities [15].
For example, the measured time-weighted noise levels for the subway in New York city reached
80 decibels (dBA) to 90 dBA, with peaks of 106 dBA [16]. Both air pollution and noise has been
related to various adverse health effects in humans. Previous studies document various adverse health
effects of air pollution, including respiratory disease, cardiovascular systems, and birth outcomes.
Also, excessive noise exposures has been related to annoyance, sleep disturbance, cardiovascular
diseases, mental disorder, and children’s cognition. Thus, transportation has significant effects on the
environment and health.

Personal pollution intake is related to commuting choices due to variations in exposure levels in
microenvironment, minute ventilations, as well as commuting time. For example, biking is oftentimes
recommended as an active commuting mode and non-emission choice. However, cyclists may
experience increased air pollution exposure because of their higher minute ventilation. To date,
available evidence linking pollution exposures and health effects for different commuting choices is
limited. Understanding the relationship between the choices commuters make and their exposures
may be key to reducing exposures by informing behavior and adapting urban infrastructure.

Chengdu is a megacity in the Sichuan Basin, southwest China, with a 2016 population of around
14 million. As the capital of Sichuan province, Chengdu is the only megacity in the western part of
China, with 72% of it being urbanized [17]. Located in the bottom of the Sichuan Basin, air pollution is
a major concern because the province suffers from acidic rain and frequent haze events due to low
wind speed and relatively high humidity [18]. The topography surrounding Chengdu, with Longquan
Mountain to the east and Qionglai Mountain to the west, hinders the dispersion of locally produced
pollutants and causes high levels of pollution, especially under certain weather conditions [19].

To date, a few studies have measured traffic-related air pollution in Beijing and Shanghai.
However, none of these have characterized the potential for differences in noise exposures by transit
mode and exposures between different commuting neighborhoods. With rapid development in recent
decades, Chengdu has been experiencing changes in urban mobility options as populations confront
traffic congestion. The city operates mature private and public transportation systems. Car ownership
and private car use have grown considerably. As one indicator of the growth, according to the Traffic
Management Bureau of the Public Security Ministry of China, the car ownership in Chengdu witnessed
a ten-fold increase in the last decade, reaching 4.94 million at the end of 2017, and second only to Beijing
in terms of mainland cities in China [20]. For public transportation, the Chengdu Public Transport
Group Co., Ltd., reported that Chengdu had a total of 668 bus routes, with more than 1.5 billion
passenger trips having been taken in 2017 [21]. The metro system, introduced in 2010, now includes
6 lines. The nearly 200-km length system served 2.14 million passenger trips on average per day in
2017 [22]. Shared bicycle use has also been booming in Chinese cities since its introduction in 2014.
Formerly called the “kingdom of bicycles,” Chengdu is a bike-friendly city because of its flat terrain.
With more than 1.3 million shared bikes in the city, Chengdu ranks first according to reports from
both Mobike and Ofo—two of the biggest companies in the Chinese shared bicycle market—with the
longest average distance of 2.3 km per ride and the highest riding index (a combined indicator of riding
distance and time per user) compared to other Chinese cities. Although the city has a large population
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and an extensive and complex traffic system, transit-related noise and air pollution exposures have not
been well characterized in Chengdu.

The current study aimed to characterize variations in personal traffic-related pollution exposures
(PM2.5, black carbon (BC), and noise) for different transportation modes and different neighborhoods
using scripted trips in summer and winter in Chengdu.

2. Methods

2.1. Neighborhood, Routes and Modes

Chengdu is the capital city of Sichuan province in Southwest China. The weather in the city
is humid (with annual average of relative humidity around 80%). The dominant wind direction in
Chengdu is Northeast, with daily average wind speed of 1.1 m/s to 1.6 m/s. Similar to other major cities
in China, Chengdu consists of five ring roads (from the inner city to the outside are named as the first
ring road, second ring road, and up to the fifth ring road) that divide the city in terms of land use and
population density. In Chinese cities, the oldest and densest areas of the city typically lie within the first
few ring roads, and the addition of ring roads over time reflect the growth of the city, with suburban
areas developed principally for residences or new businesses. From Chengdu’s city center to the
suburbs, three representative neighborhoods were chosen for comparison: a neighborhood in the
central city (Urban Core), one between the second and third ring road (Developing Neighborhood),
and another outside the fourth ring road (Suburb) (Figure 1). The Urban Core is the economic center
and traffic hub of the city, where shopping malls and office blocks are clustered. The Developing
Neighborhood is an example of a historically industrial area that was outside of the city, but is now
in transition from an area that previously supported a dismantled steel plant to a new residential
neighborhood. With high traffic flow on the second ring road, which is a major urban thoroughfare,
there are also several construction sites along the road, which reflects the development that is occurring
in this neighborhood. The selected Suburb is located in the center of Longquan district. It covers
the southeast suburban area of Chengdu, and is the east entrance to the city, with a population of
0.66 million in 2016. Although it is principally a residential area, truck traffic is not unusual during the
day, although trucks are not allowed to enter the third ring road between 7 am and 10 pm.
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Figure 1. Map of the three sampling neighborhoods in Chengdu City.

Four modes—car, bus, subway, and shared bike—were sampled within each neighborhood as
they represent the four main transportation options in Chengdu. One main travel route was chosen for
each of the three neighborhoods (three routes in total). The selection criteria for the routes considered:

(a) Identifying a route that was approximately 2–3 km in distance. To make each mode of
transportation feasible and based on the reported average distance per ride of the shared bike of
2.3 km [23], the three routes were designed to be no more than 3 km in distance.

(b) The four trip modes were possible for each route. To make the exposure measures comparable
between modes, and not entirely due to routing differences, all modes were ensured to be possible for
each route.

The final selected scripted routes were: in the Urban Core, a route from the People’s Park subway
station to the Chunxi Road subway station (2.4 km); in the Developing Neighborhood, a route from the
Tazishan Park subway station to the Dongda Road subway station (2.8 km); and in the chosen Suburb,
a route from the Longping Road subway station to the Longquan subway station (2.1 km).

2.2. Exposure Measurements

For each of the three neighborhood routes, trips were repeated by research staff in both
the summer (August 2017) and winter (December 2017) seasons. For each season, five trips
were conducted for each of the four modes (i.e., 20 trips in each season for each neighborhood
route; 5 trips × 4 modes × 2 seasons × 3 neighborhood routes = 120 trips in total). The trips in each
neighborhood included both weekdays and weekends, morning and afternoon, and rush hour as
well as off-peak hours. All the routes were travelled in both directions between 9 am and 4 pm.
In the summer and winter sampling campaigns, noise levels and air pollution concentrations were
simultaneously measured by portable monitors. For safety, and to make it easier to manage multiple
instruments, each trip was monitored by two to four researchers traveling together, carrying different
instruments. PM2.5 was measured by an optical particle counter, the Portable University of Washington



Int. J. Environ. Res. Public Health 2019, 16, 2539 5 of 16

Particle (PUWP) monitor (University of Washington, Seattle, WA, USA), which collects 12 readings
per minute (an estimate of PM2.5 mass concentration and particle count concentrations for 6 size bins
from 0.3 to 10 um based on the volume-fixed chamber); BC was monitored by the microAeth AE51
(AethLabs, San Francisco, CA, USA), set at a flow rate of 100 ml/min and time base of 30 seconds
(30 seconds per reading); and noise level was recorded by the NoisePro DLX Dosimeter (3M, St. Paul,
MN, USA), with 1-second measurements. Research staff also carried a Bluetooth GPS data logger BT
335 (GlobalSat, Chino, CA, USA) during each trip in order to record the start and end times and to
confirm the actual travel route for each trip. Before the monitoring campaign, the flow rate of AE
51 was checked, which was off by less than 1%. Thus, no additional flow calibration was performed
for the AE51. Additionally, before and after each trip, the NoisePro DLX dosimeter was calibrated
against the Quest QC-20 calibrator (3M, St. Paul, MN, USA). Clocks in all of the instruments were
synchronized before sampling campaigns, and inlets for the instruments were fixed on the shoulder
or the backpack strap of research staff to measure breathing zone concentrations. For subway trips,
exposures were delineated as the period from entering a subway station entrance to leaving the exit at
a subsequent station; and similarly, for each bus trip, from the arrival at the start bus station to the exit
at the subsequent end station. After each trip, measurements were immediately downloaded from
all instruments and safely archived as separate files for later data analyses. After the data extraction,
the BC data was checked for the flow, and both the PM2.5 and BC data was checked for zero readings
to detect any instrumental failure during the monitoring.

2.3. Statistical Analysis

Recorded data for PM2.5, BC, and noise levels for each trip were extracted from the raw data files in
each instrument. Multiple quality control measures were utilized to evaluate the raw data files to ensure
an acceptable level of data quality. First, an optimized noise-reduction algorithm (ONA) was used to
reduce noise in real-time BC data obtained, which accounts for changes in sensitivity of the measurement
related to changes in filter attenuation [24]. The ONA BC data were used in subsequent analyses.
Observations with missing values for any pollutant were also removed (25 missing data points for PM2.5,
208 missing data for BC, and no missing data for noise). PM2.5 measurements with corresponding
PM0.3 counts equal to 0 were considered unreliable and were removed (353 data points were removed
out of 16,543). Finally, PM2.5 measurements larger than 1,000 µg/m3 and BC measurements larger than
100,000 ng/m3 were considered outliers and were removed as well (18 outliers for PM2.5, and 6 outliers
for BC). After the quality control processes, 1-minute averages of PM2.5 were computed from the
PUWP monitor data. All of the exposure data were then stratified by season, neighborhood, mode of
transportation, days of the week (workdays/weekends), and hours of the day (data was grouped into
2-hour chunks as 9:00–10:59, 11:00–12:59, 13:00–14:59, 15:00–16:59, and 17:00–18:59) for descriptive
analysis. One-minute average data were collected for all three pollutants and merged for each minute
of sampling to calculate pairwise Spearman’s correlation coefficients.

With repeated measurements and different background pollutants levels in each trip, linear mixed
models were applied to explain variations in each traffic-related pollution by season, neighborhood,
and travel modes. Separate multivariable mixed effect regression models were estimated with each
single pollutant as the dependent variable (1-minute average PM2.5, 30-second BC, and 1-second
noise), with season, neighborhood, and mode as fixed effects independent variables, and with trip
as a random effect (random intercept). Days of the week (workdays and weekend) and hours of the
day (grouped into 2-hour chunks) were also added into models as fixed effects to adjust for various
pollutant distributions in different days and hours. Additional single-pollutant multivariable linear
mixed models were established to account for potential interactions between transportation modes
and different types of neighborhoods. All data processing and statistical analyses were performed in R
3.5.2 (http://www.R-project.org/) (R Foundation for Statistical Computing, Vienna, Austria).

http://www.R-project.org/
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3. Results

A time-series plot for PM2.5 and BC raw data (raw measurement before ONA smoothing) for
a single day is shown in Figure 2 and shows the variations in different exposures that commuters
experience as they transition between transportation modes within a multi-modal trip. Looking at some
of the demarcated modes (e.g., bus and subway), the exposures are not constant, but can vary during
an entire trip, and within modes of the trip. Also, the high levels of PM2.5 observed during lunch (not
during a trip) illustrates the potential importance of exposures that occur in other microenvironments,
and suggests that certain indoor microenvironments can contribute substantially to cumulative PM
exposure. Furthermore, the figure shows that the correlations that may exist between PM2.5 and
BC are not immediately obvious from a single day of monitoring, even with repeated measures.
Furthermore, it is noteworthy that the BC raw data measured by the aethalometer was noisy, with many
negative values. Thus, all the statistical analyses were based on ONA smoothed BC data.
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Descriptive statistics of the three pollutants based on all 120 trips across the summer and winter
seasons are summarized in Table 1. PM2.5 and BC had much higher concentrations (p < 0.05) in
the winter than the levels in summer (PM2.5 median: 123 vs. 33.6 µg/m3, BC median: 8916.5 vs.
1896.3 ng/m3); however, noise levels were slightly higher in the summer time (within and across
neighborhoods). In terms of the spatial distribution, the urban core neighborhood had the highest
median PM2.5 and BC concentrations across seasons. In the summer time, the suburban area had the
lowest PM2.5 and BC levels, while in the winter time, the lowest PM2.5 and BC levels were recorded
in the developing neighborhood. Noise levels were roughly the same in the three neighborhoods
(within and across seasons). Since days of the week and hours of the day have great impacts on the
distribution of pollutants, the data was also summarized by workday/weekend and hour of the day
as well (Table S1). All the pollutants (PM2.5, BC, and noise) had higher levels on weekends than
on workdays.
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Table 1. Summary of exposures during trips by season and neighborhood.

Pollutants
Urban Core Developing Neighborhood Suburb All Area

N 1 Median (Mean) 2 IQR (SD) 3 N 1 Median (Mean) 2 IQR (SD) 3 N 1 Median (Mean) 2 IQR (SD) 3 N 1 Median (Mean) 2 IQR (SD) 3

Summer
PM2.5 (µg/m3) 246 38.4 11.8 337 38.7 15.1 243 10.9 15.3 826 33.6 26.3

BC (ng/m3) 581 2408.5 3616.9 471 1891.8 3486.8 477 895.1 3039.8 1529 1896.3 3570.2
Noise (dBA) 20171 72.8 7.7 14551 72.6 6.0 14489 72.8 6.7 49211 72.7 6.9

Winter
PM2.5 (µg/m3) 370 178.2 79.8 289 91.0 25.0 185 157.0 97.5 844 123.0 98.0

BC (ng/m3) 1014 11979.0 8384.5 782 5139.0 4076.2 398 10227.0 6616.5 2194 8916.5 8348.2
Noise (dBA) 30291 72.3 6.3 23487 72.4 6.4 11953 72.8 7.5 65731 72.4 6.6

All Seasons
PM2.5 (µg/m3) 707 95.0 144.1 535 63.0 52.6 428 47.5 130.2 1670 57.0 90.9

BC (ng/m3) 1595 8585.5 10996.5 1253 4162.5 5380.5 875 5062.0 9243.7 3723 5917.0 8662.2
Noise (dBA) 50462 72.5 6.9 38038 72.5 6.2 26442 72.8 7.0 114942 72.6 6.7

Note: 1 N is the number of measurements for each pollutant. 2 For PM2.5 and BC, the median was recorded; for noise, the mean was recorded. 3 For PM2.5 and BC, the interquartile rang
(IQR) was recorded; for noise, the mean was recorded.

Table 2. Correlations between PM2.5, BC, and noise during trips by season and neighborhood.

Summer
Pollutants Urban Core Developing Neighborhood Suburb All Areas

PM2.5 BC Noise PM2.5 BC Noise PM2.5 BC Noise PM2.5 BC Noise
PM2.5 1 0.57 0.32 1 0.80 0.18 1 0.63 0.29 1 0.67 0.28

BC - 1 0.25 - 1 0.34 - 1 0.35 - 1 0.39
Noise - - 1 - - 1 - - 1 - - 1

Winter
Urban Core Developing Neighborhood Suburb All Areas

PM2.5 BC Noise PM2.5 BC Noise PM2.5 BC Noise PM2.5 BC Noise
PM2.5 1 0.51 0.03 1 0.12 −0.11 1 0.53 0.38 1 0.64 0.02

BC - 1 0.16 - 1 0.33 - 1 0.18 - 1 0.16
Noise - - 1 - - 1 - - 1 - - 1

All seasons
Urban Core Developing Neighborhood Suburb All Areas

PM2.5 BC Noise PM2.5 BC Noise PM2.5 BC Noise PM2.5 BC Noise
PM2.5 1 0.84 0.01 1 0.55 0.06 1 0.86 0.17 1 0.81 0.06

BC - 1 −0.05 - 1 0.29 - 1 0.20 - 1 0.12
Noise - - 1 - - 1 - - 1 - - 1
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Table 3. Summary of multivariable mixed effects model results.

Variables
PM2.5 (µg/m3) BC (ng/m3) Noise (dBA)

Estimate 95% CI SE Estimate 95% CI SE Estimate 95% CI SE

Intercept 51.7 37.8, 65.5 7.3 3834.5 2360.8, 5313.2 774.7 74.0 72.7, 75.2 0.6
Bike reference reference reference
Bus −8.1 −21.4, 5.2 7.0 −895.9 −2268.9, 476.5 723.8 1.8 * 0.5, 3.0 0.7

Car −34.4 * −47.5, −21.3 6.9 −2016.4 * −3383.8,
−648.6 719.9 −9.3 * −10.5, −8.0 0.6

Subway −11.9 −25.1, 1.3 7.0 2349.6 * 978.1, 3722.1 723.2 3.0 * 1.7, 4.3 0.7

Suburb reference reference reference
Urban core 18.8 * 6.5, 31.1 6.5 1939.4 * 650.8, 3219.3 676.5 0.0 −1.1, 1.2 0.6
Developing

Neighborhood 3.3 −9.1, 15.6 6.5 −114.1 −1407.3,
1177.6 680.5 0.3 −0.9, 1.5 0.6

Summer reference reference reference
Winter 110.9 * 108.3, 113.5 1.3 6251.6 * 5913.6, 6593.5 174.0 −1.3 * −1.3, −1.2 0.0

Note: * Statistically significant based on the 95% CI; all the multivariable models were adjusted for neighborhood, season, days of the week (weekends/workdays), and hours of the day.
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Table 2 summarizes the correlations between PM2.5, BC, and noise in different neighborhoods and
seasons. All of the pollutants were positively correlated with each other, except for PM2.5 and noise
measured in Developing Neighborhood in the winter time (ρ = −0.11) and BC and noise measurements
in the Urban Core across seasons (r = −0.05). PM2.5 and BC were strongly correlated with each
other in the urban core (r = 0.84) and suburban (r = 0.86) neighborhoods across seasons. PM2.5 and
BC had a slightly stronger correlation in the summer (ρ = 0.67) than in the winter (ρ = 0.64) across
neighborhoods. In general, noise had weak correlations (ρ <0.4) between PM2.5 and BC.

The three pollutants were observed to vary by modes of transportation (Table S2, Figure S1 in
the Supplementary Materials). In the summer, riding a car exposed people to the lowest median
PM2.5 (8.4 µg/m3), median BC (211.5 ng/m3), and mean noise levels (62.3 dBA), while riding a subway
was the most polluted mode of transportation for all three pollutants (median PM2.5: 39.4 µg/m3,
median BC: 7,809.4 ng/m3, mean noise: 76.1 dBA). In the winter time, biking had the highest median
PM2.5 (179.0 µg/m3) and median BC (10,979.5 ng/m3) concentrations compared with the other three
modes of transportation, while subway exposed people to the lowest median PM2.5 level (92.3 µg/m3),
and riding a bus was the least polluted modes in terms of BC concentration (median of 7575.0 ng/m3).
Riding a car and a subway still had the lowest (64.3 dBA) and highest (75.5 dBA) mean noise levels,
respectively, in the winter time.

Estimates from multivariable linear mixed models adjusted for weekends and workdays and hours
of the day are summarized in Table 3. Trips in the winter exposed travelers to higher PM2.5 and BC
concentrations and lower noise levels. Controlling for season and neighborhood, riding a car resulted
in lower PM2.5 exposures (−34.4 µg/m3; 95% CI: −47.5, −21.3), lower BC exposures (−2016.4 ng/m3;
95% CI: −3383.8, −648.6), and also decreased noise exposures (–9.3 dBA; 95% CI: −10.5, −8.0) compared
to biking. Riding a subway exposed commuters to increased BC (2349.6 ng/m3; 95% CI: 987.1, 3722.1)
and noise levels (3.0 dBA; 95% CI: 1.7, 4.3) compared to cycling. Taking a bus also exposed travelers to
higher noise levels (1.8 dBA; 95% CI: 0.5, 3.0) than biking. Compared to traveling in the suburban area,
commuting in the Urban Core increased PM2.5 and BC levels (PM2.5: 18.8 µg/m3; 95% CI: 6,5, 31.1;
BC: 2939.4 ng/m3; 95% CI: 650.8, 3219.3). Differences in noise levels were not statistically significant
between neighborhoods.

Estimates from multivariable linear mixed models with interactions between modes and
neighborhoods are summarized in Figure 3 and Table S3 in the Supplementary Materials. The left
half of Figure 3 shows the contrast of pollutant levels between modes in each neighborhood and
the right half of the figure shows the contrast of pollutant levels between neighborhoods for each
mode. The interaction term was only statistically significant for noise (p = 0.0007). After adding the
interaction term into linear mixed models, the direction of main effects did not change compared to
results from the mixed effect model without an interaction term between modes and neighborhoods.
In the selected Suburb, riding a car had the lowest PM2.5 concentrations compared to biking, taking
the subway, or a bus. In the Urban Core, taking a bus exposed individuals to 25.4 µg/m3 (95% CI: 3.3,
47.5) higher PM2.5 than riding a car. In the Developing Neighborhood, biking exposed travelers to
higher PM2.5 concentrations than people using a car or the subway. Between neighborhoods, biking in
the Urban Core had higher PM2.5 concentration than in the Developing Neighborhood, while riding
a car had higher PM2.5 levels in the Suburb than in the Urban Core. For BC exposures, biking exposed
commuters to higher BC levels in the Suburb and Developing Neighborhood. Traveling in the Urban
core had similar BC levels for the four modes of transportation; also, taking a bus or the subway expose
travelers to similar BC concentrations across different areas of the city. Noise levels of different modes
of transportation have similar patterns in the three measured areas, riding a bus or a bike had the
highest noise levels, while riding a car exposed commuters to the lowest noise levels. Biking, riding the
subway, and riding a bus did not vary significantly between areas in the city; however, riding a car in
the Developing Neighborhood was noisier than in the Urban Core and the Suburb.
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DN represents Developing Neighborhood, SU represent suburb. Models were adjusted for season,
days of the week (weekend/workdays). and hours of the day; The pairwise comparison is the contrast
between groups, in which case, comparisons were computed between modes of transportation and
neighborhoods. The x axis shows the specified comparison groups, the y axis is the difference between
comparison groups. The point in the figure is the estimated difference in pollutant levels between
groups, while the bar shows the 95% CI of the point estimate.

4. Discussion

The choice of daily commuting can have important consequences on an individual’s exposure
to traffic-related pollution. Personal exposure to PM2.5, BC, and noise in four transportation modes
(biking, car, subway, and bus) were examined in summer and winter 2017 in Chengdu, China. A total
of 120 trips were assessed to characterize traffic-related pollution in the megacity. Linear mixed models
showed PM2.5 and BC levels in transportation were much higher in the winter time than the summer
months, while noise levels were lower in the winter months. PM2.5 and BC concentrations varied
spatially, and the Urban Core had the higher air pollution levels compared to other areas. All the
pollutants varied between transportation modes. Commuters using a car exposed to lower PM2.5 and
BC levels, while riding a subway had higher BC concentrations than other modes. Riding a car also
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exposed commuters to lower noise levels. However, PM2.5, BC, and noise exposures were not affected
by neighborhood during bus and subway trips in Chengdu city.

PM2.5 and BC concentrations in different microenvironments showed large seasonal variation.
Both of the two air pollutants levels were more than three times higher in the winter time than in
the summer. Previous ambient air studies reported large seasonal variation of ambient air pollution
levels in Chengdu. Wang et al. used 47-mm Teflon filters to collect PM2.5 samples, and observed the
highest monthly mean PM2.5 concentrations in winter (113.5 ± 47.8 µg/m3) and the lowest in summer
(45.1 ± 15.2 µg/m3) [25]. Shi et al. used medium-volume air samplers to measure PM2.5 and their
components from January 2009 to March 2013, and found the concentration peak of PM2.5 and elemental
carbon (or BC) was in winter (especially in January and December) [26]. Unfavorable meteorological
conditions, such as low wind speeds, low mixing heights, and relatively low precipitation amount in
Sichuan Basin, were common in the winter time in Chengdu [25]. The lower atmospheric boundary
layer and large number of days with stagnant atmospheric conditions impair the transport and
dispersion capacity of ambient air pollutants [27]. Compared to other provincial capitals, Chengdu has
a relatively high fractional contribution to PM2.5 concentration from transportation (7.4%); however,
the maximum daily fractional contributions from transportation did not present significant seasonal
variations [28]. Thus, peaks of air pollution levels in traffic found in the winter time may be due to the
higher ambient air pollution concentrations during those months.

Measured PM2.5 and BC concentrations also presented spatial variations. The urban core
neighborhood had the highest PM2.5 and BC concentrations. The Urban Core is not only the economic
center, but also a transportation center of the megacity. Similar to the ring-like urban planning in
Beijing, Chengdu consists of five ring roads. All of the arterial roads meet in the urban core. Also, as the
economic center, the Urban Core is filled with office buildings and a large number of commercial
complexes. Thus, this area suffers from heavy traffic, especially during rush hours. The current study
also showed that PM2.5 and BC concentrations were highly correlated (ρ = 0.84) in the Urban Core,
which suggests that the source of the air particles in that area is likely traffic. Therefore, the large
amount of vehicle exhaust emission in the Urban Core due to the urban planning in Chengdu may
explain the high air pollution levels in this area.

Unlike what is seen in the Urban Core, the Suburb is where many factories are located. Because of
this, and the regulation in Chengdu that prohibits trucks from entering the city during the day (except
for a very limited number of specific vehicles), the Suburb tends to have much more truck traffic
than other neighborhoods. In China, most passenger cars use gasoline or compressed natural gas as
fuel, while trucks typically use diesel as fuel, which results in higher emissions of PM. The current
study found a strong correlation between PM2.5 and BC in the Suburb (ρ = 0.86), which supports the
idea that higher truck traffic in that area contributes to the higher air pollution levels measured there.
The Developing Neighborhood is still transitioning from an industrial to a residential area and has a lot
of construction taking place. Since a very limited number of trucks are allowed to enter the city in the
day, there is comparatively less traffic in the daytime. In light of this, the weaker (ρ = 0.55) correlation
observed between PM2.5 and BC concentrations in the Developing Neighborhood is not surprising.

The linear mixed model results indicate that car passengers were exposed to lower air pollution
levels. The observed low exposures in car is supported by previous studies. Huang et al. sampled
PM2.5 for three commuting modes (taxi, bus, and bicycle) for 18 weekdays between December 2010
and February 2011 in Beijing. Using a portable aerosol spectrometer to measure real-time PM2.5

concentration in both heavy and light traffic, Huang et al. suggested that riding a taxi had the
lowest average PM2.5 concentrations (31.6 µg/m3) compared to cycling (49.1 µg/m3) or riding a bus
(42.4 µg/m3) [29]. Similarly, a study in Santiago, Chile, where a handheld optical particle counter was
used to measure PM2.5 concentrations during travel on buses, bicycles, cars, and subways in both
summer and winter, found that being in a car had the least impact on personal PM2.5 exposure [30].
One likely reason for the lowest PM2.5 levels found in cars is that most cars in China (as well as the car
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used in the sampling campaign) are newer designs, and the ventilation system of the car may make the
in-cabin microenvironment cleaner.

Published studies have shown inconsistent results for air pollution associated with traveling
by subway. A panel study in Taipei sampled PM2.5 on 120 young adults during 1-hour morning
commutes between January and March in 2012–2014 for same three modes of transportation as the
current Chengdu study (electrically powered subway system, gas-powered buses, gasoline-powered
cars) and walking. Results of the Taipei study indicated that subjects were exposed to the lowest PM2.5

concentrations when using a subway (22.3 ± 6.9 µg/m3) compared to riding a car (29.2 ± 11.3 µg/m3),
taking a bus (32.2 ± 12.4 µg/m3), or walking (42.1 ± 18.2 µg/m3) [31]. However, other studies found
riding a subway had higher air pollution concentrations than other modes of transportation in Shanghai
and New York [32,33]. Although all of the subway trains are newly designed (implemented in 2010),
electrically powered, and the ventilation system is kept running inside both the subway station and
the coach of the train, our study suggest highest BC concentrations during riding a subway than other
modes. The source of pollution in subways may come from rails, wheels, catenaries, brake pads,
pantographs [34], and brakes [35]. Also, the depth of the subway station and number of trains passing
through the station could also help explain the differences seen in air pollution concentration in
subways [33]. Additionally, magnetite and hematite resulting from the friction of the metal-to-metal
contact between the car wheels and the rail can interfere with the measurement by the Aethalometer in
the metro system. This may help explain the higher level of air pollution measured in the Chengdu
Metro system.

Based on the mixed effect model for PM2.5 exposure, cycling in the urban core in winter months
exposed people to the highest air pollution levels. Previously, it has been suggested that modes that
come into close proximity to traffic would lead those travelers to experience higher exposures [36].
Huang et al. found in Shanghai that cycling had the highest average PM2.5 concentrations (49.1 µg/m3)
compared to riding a bus (42.4 µg/m3) or a taxi (31.6 µg/m3) [29]. A panel study in Taipei also showed
subjects who walked were exposed to the highest air pollution concentration (PM2.5: 42.1 ± 18.2 µg/m3)
in the winter sampling campaign [31]. Chaney et al. examined personal PM2.5 exposures in the summer
on a single 2.7-km arterial urban route in Salt Lake City during rush hour. They found that higher
PM2.5 exposures occurred while biking, walking, and taking a bus compared to riding a window-closed
car or the light rail [37]. Biking in the winter exposes people directly to the high ambient air pollution
levels and vehicle exhaust emissions, while the ventilation and filtration system of the vehicles reduce
the penetration of air pollutants from the outside. Aside from the possibility of direct exposure to high
air pollution levels during cycling, people tend to have higher inhalation rate when biking and would
intake increased amount of air pollutants. Thus, biking during highly polluted days or in polluted
areas could increase personal intake of air pollutants compared to vehicle transportation and may have
the highest potential to affect health in the city. Therefore, more research is needed to determine the
tradeoffs between cardiovascular health benefits from cycling versus the harm from pollution exposure
in Chengdu.

Riding a car was found resulted in lower noise exposures than the other transportation modes.
Car travel is an almost-closed microenvironment compared to the other three modes of transportation,
and newly designed cars generally incorporate sound insulation. Thus, riding a car may be less noisy
than the other commuting modes. The current study’s measurements showed subway and bus trips
were noisier, which is inconsistent with some previous studies. Studies in Taipei and Europe indicated
that walking and biking to be the noisiest mode of transportation. [31,38]. The inconsistency between
our study and previous ones may be due to the differences in rail and wheel design, as well as sound
insulation design of the bus and Metro system. Additionally, the subway and bus in Chengdu were
usually at full passenger capacity when noise measurements were taken. Higher passenger exchange
rate during commuting, as well as the larger number of passengers in the microenvironment observed
in the Chengdu study, may explain the difference between our study and others. Our study also found
slightly higher noise levels in the summer compared to the winter. Chengdu is humid in summer
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and many insects can be found in the city, such as cicadas. Cicadas are a major source of ambient
noise aside from traffic during the summer time monitoring campaign by field staff. Both acute
and chronic noise exposure have been associated with adverse health outcomes, including hearing
loss, annoyance, sleep disturbance, cardiovascular diseases, and cognitive impairment (mainly in
children) [39]. Other investigators have found increased noise exposure is associated with arousals of
the autonomic nervous system and endocrine system, increased systolic and diastolic blood pressure,
changes of heart rate, and causes the release of stress hormones [40,41]. Meta-analyses have determined
associations between transportation noise and cardiovascular diseases, with observed thresholds for
the exposure–response link of different diseases ranging from 40 to 60 dBA [42,43]. The average noise
levels found in this current study for different modes of transportation all exceeded 60 dBA. As a known
risk factor, noise levels should be monitored to evaluate the health effect in commuter studies, and also
in health effect analysis of traffic-related air pollution to tease out potential confounding effects of noise.

It is noteworthy that published exposure studies on traffic-related air pollution have various
inconsistencies. Aside from modes of transport, other factors potentially influencing the assessment of
personal exposure in traffic include measurement factors (e.g., pollutants measured, position of the
measurements in relation to the breathing zone), personal or individual factors (e.g., breathing rate,
personal behavior or choices, and personal sources), traffic factors (e.g., traffic count and type, traffic flow,
junction layout, link length, etc.), and meteorological factors (e.g., wind speed, wind direction, etc.) [36].
Additionally, personal exposure in different modes of transportation may also be related to the energy
source of the vehicle, passenger population in the microenvironment, and ventilation and filtration
systems that are in place in the vehicles. Differences in any of the above-mentioned factors may lead to
inconsistent results between studies.

The world's population is estimated to reach 10 billion people by 2050, with 75% of this population
living in cities [44]. At that time, 90% of the 2.5 billion more people expected to be in urban areas will
be found in Asia and Africa [45]. Intra-city commuting potentially affects human health by choices in
transportation modes, route, time through various air pollution, physical activity, climate factors, as well
as interactions between these variables. The current study further analyzed the interaction between
modes of transportation and commuting neighborhoods in mixed effect models. Statistical results
showed different modes of transportation had similar BC concentrations in the urban core. Biking as
an active mode of transportation has been recommended, but there is concern about the high air
pollution concentrations present during biking. However, the current study’s findings suggest that
in certain areas, different modes of transportation had similar pollution levels. This may potentially
impact urban planning and policy decision-making to support active and public modes of travel
in Chengdu. As mentioned previously, the developing neighborhoods are still under construction.
Designing bike-friendly communities in this area would be suggested to promote physical activity
and population health. The Urban Core has been confronted with traffic congestion for a long time.
Promoting the use of public transportation in the urban core area would help reduce traffic emissions
and solve traffic congestion issues being experienced there. Additionally, personal intake of air
pollutants is also related to time of exposure and inhalation rate. This current study found lower air
pollutant levels when riding a subway or a car. However, the time spent on the same route is generally
shorter when traveling by subway than the other modes. This is especially true when traveling in
urban areas during peak hours. In contrast, although, riding a car exposes a commuter to the lowest
PM2.5, BC, and noise levels, it is not unusual to spend more time on the road because of traffic jam,
particularly in the urban core. Thus, further studies are needed to fully consider pollutant exposure
and transportation time to better recommend commuting choices to citizens.

Every study has limitations, and the current one is no exception. The main limitation of this study
was the use of a limited number of scripted trips and neighborhoods. Thus, the generalizability of the
study may be limited. Air concentrations were collected in the summer and winter of 2017 only, so no
between-year variations could be examined. Aside from pollutants levels were only measured in the
daytime, while no measurements were taken at night. Also, measurements were collected by research
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staff and we relied on scripted measurements for three specific routes, rather than taking samples from
actual, unscripted routes used by real commuters. Nevertheless, the monitoring mimicked personal
monitoring with repeated measurements, which captured several important characteristics of pollution
during different modes of transportation.

Although this study measured pollution levels under different situations, it did not address the
cumulative exposure for each pollutant. The cumulative exposure, which accounts for total time of
exposure, would be more relevant to understanding the health effects of exposures during intra-city
commuting. Thus, further studies are needed to generalize personal air pollution exposure models in
transportation by mode choice, commuting route and time, and meteorological factors, and to assess
the potential health effects on urban populations.

5. Conclusions

The current study investigated personal exposures to PM2.5, BC, and noise experienced during
trips in cars, buses, and subways, as well as during bicycling in Chengdu, China. All transportation
modes utilized scripted and repeated routes in three different neighborhoods. The total of 120 trips was
conducted across summer and winter seasons, and covered the mornings and afternoons of weekdays
and weekends. The monitoring campaign showed personal PM2.5, BC, and noise exposures in traffic
microenvironments varied by season, neighborhood, and modes of transportation. Air pollution
levels in traffic were significantly higher in the winter than in the summer. Traveling in the urban
core area of Chengdu resulted in higher air pollution levels. Riding a car resulted in lower PM2.5

concentrations. Taking a bus or the subway resulted in higher noise levels, while car trips had lower
noise levels. However, in certain areas, PM2.5 and BC levels were not affected by trip mode, or had
lower concentrations during active and public transportation. Riding a bike in the Urban Core during
the winter months may have the highest potential to affect individual health in this city. In the future,
exposure models that account for environmental, meteorological, and behavioral factors, as well as
duration of commuting, are needed in health studies of urban traffic microenvironments.
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