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Abstract: DNA methylation may play a critical role in aging and age-related diseases. DNA
methylation phenotypic age (DNAmPhenoAge) is a new aging biomarker and predictor of chronic
disease risk. While smoking is a strong risk factor for chronic diseases and influences methylation,
its influence on DNAmPhenoAge is unknown. We investigated associations of self-reported
and epigenetic smoking indicators with DNAmPhenoAge acceleration in a longitudinal aging
study in eastern Massachusetts. DNA methylation was measured in whole blood samples from
multiple visits for 692 male participants in the Veterans Affairs Normative Aging Study during
1999–2013. Acceleration was defined using residuals from linear regression of the DNAmPhenoAge
on the chronological age. Cumulative smoking (pack-years) was significantly associated with
DNAmPhenoAge acceleration, whereas self-reported smoking status was not. We observed significant
validated associations between smoking-related loci and DNAmPhenoAge acceleration for 52 CpG
sites, where 18 were hypomethylated and 34 were hypermethylated, mapped to 16 genes. The AHRR
gene had the most loci (N = 8) among the 16 genes. We generated a smoking aging index based
on these 52 loci, which showed positive significant associations with DNAmPhenoAge acceleration.
These epigenetic biomarkers may help to predict age-related risks driven by smoking.

Keywords: smoking-related DNA methylation; DNA methylation phenotypic age; aging biomarker;
aging acceleration

1. Introduction

DNA methylation is an aging biomarker that has attracted growing attention in recent years.
Tobacco smoking is a leading risk factor for many age-related diseases, including cardiopulmonary
diseases and various types of cancers [1]. Several studies have revealed, by means of regulating gene
expression and genome stability, that DNA methylation is associated with smoking and smoking-related
diseases [2]. Smoking-related CpG sites, located in genes such as AHRR, GPR15, and F2RL3, have
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been reported in an increasing number of epigenome-wide association studies (EWAS) using whole
blood samples [3,4]. A recent study generated a smoking index based on 1501 smoking-related loci,
suggesting that such methylation indices could be helpful to predict smoking-related health risks [5].

Smoking is a risk factor of disproportional aging that accelerates epigenetic age and decreases
life expectancy [6,7]. Aging is characterized by a series of changes at both the cellular and molecular
levels, including telomere length shortening, senescence, and variations in gene expression levels.
Hannum et al. [8,9] and Horvath (2013) developed the first generation of algorithms to estimate DNA
methylation age, which correlates well with chronological age. However, those methods only capture
CpG sites that correlate with chronological age and fail to account for an individual’s physiological
status [10].

A newly developed epigenetic biomarker, DNA methylation phenotypic age (DNAmPhenoAge),
was derived from a series of clinical measurements [11–15] to offer a better biomarker of biological
aging as a substitute measurement of “phenotypic aging”. DNAmPhenoAge acceleration is defined as
a discrepancy between DNAmPhenoAge and chronological age and has been proposed as an indicator
of disproportionate aging.

A recent study associated DNAmPhenoAge with self-reported smoking status [10]. However,
no study has investigated the association of smoking-related DNA methylation with DNAmPhenoAge
or age acceleration. In the current study, we used a well-established cohort to strengthen and extend
prior findings with respect to the association between self-reported and epigenetic smoking indicators
and age acceleration in whole blood samples.

2. Materials and Methods

2.1. Study Subjects

This study included 692 participants from the Normative Aging Study (NAS), a closed longitudinal
study of aging in men from eastern Massachusetts [16]. A total of 1596 participants free of chronic
diseases have been enrolled in NAS since 1984, and they undergo physical examinations every
3–5 years. At each visit, information on demographic factors, lifestyle, and disease history were
collected, and physical examinations and laboratory tests were performed. Specifically, we analyzed
DNA samples up to 4 visits from 1999–2013. The current study was restricted to the first three visits
to observe long-term DNAmPhenoAge acceleration and control for race heterogeneity. Participants
provided written informed consent during each visit, and the Veterans Affairs Boston Health Care
System Institutional Review Board approved the study (code: AAAQ8739).

2.2. DNA Methylation Data

DNA was extracted from stored blood buffy coats using the QIAamp DNA Blood Kit (Qiagen,
Valencia, CA, USA). We treated 500 ng DNA for bisulfite conversion using the EZ-96 DNA Methylation
Kit (Zymo Research, Orange, CA, USA). After bisulfite conversion, we hybridized DNA samples
to 12-sample Illumina HumanMethylation450 BeadChips per Infinium HD Methylation protocol
(Illumina, San Diego, CA, USA). Technical effects resulting from plates/chips were minimized with a
two-stage, age-stratified algorithm to randomize the samples. The β-values, ranging from 0–1, were
used to represent the methylation status of a specific CpG site, with 0 indicating no methylation and 1
indicating full methylation.

Calculation of DNAmPhenoAge: DNAmPhenoAge was estimated using the method described
by Levine et al. [10]. In short, phenotypic age was developed using clinical measurements from the
third National Health and Nutrition Examination Survey. A penalized Cox regression model was
used to select 10 out of 42 biomarkers. Phenotypic age was then regressed on DNA methylation data
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from whole blood samples based on an elastic net regression analysis, which led to 513 CpG sites.
We calculated DNAmPhenoAge based on these loci for each participant as:

DNAmPhenoAge = CpG1 × β1 + CpG2 × β2 + CpG3 × β3 + . . . + CpG513 × β513 + intercept (1)

Values of coefficients and intercepts were extracted from Levine et al. [10]. DNAmPhenoAge
acceleration was defined as residuals from a linear regression of DNAmPhenoAge on chronological age.

Selection of smoking-related DNA methylation loci: We selected 151 CpG sites reported from
previous smoking EWAS at least twice from a previous systematic review [3]. There was no overlap
between these 151 loci and the 513 loci used to predict DNAmPhenoAge.

2.3. Statistical Analysis

Descriptive statistics were used to present distributions of demographic and clinical variables
among all participants. Distributions of these variables across each visit were described as well.
Generalized linear mixed models were used to assess the relationship between smoking indicators
and DNAmPhenoAge acceleration (Figure 1). We conducted two parts of statistical analysis:
first, to explore the association between self-reported smoking indicators and DNAmPhenoAge
acceleration; and second, to explore the association between epigenetic smoking indicators and
DNAmPhenoAge acceleration.
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Figure 1. Flow chart of the generalized linear mixed model used to assess the relationship
between smoking indicators and DNA methylation phenotypic age (DNAmPhenoAge) acceleration of
participants in the Veterans Affairs Normative Aging Study in Boston, MA, 1999–2013.

First, we examined the associations between DNAmPhenoAge acceleration and self-reported
smoking indicators smoking status (never, current, or former) and cumulative smoking status
(pack-years). Model 1 was adjusted for age (years) and leukocyte distribution was estimated using the
Houseman et al.’s algorithm [17]. In addition, both visits and random batch effects of methylation
measurement were included in the model as random effects. Additionally, Model 2 was adjusted
for smoking status, alcohol consumption (abstainer, low, intermediate, or high), body mass index
(BMI) (underweight or normal weight BMI <25, overweight BMI ≥25 to <30, or obese BMI ≥30),
physical activity (low, metabolic equivalent of task (MET) ≤12 kcal/kg hours/week; median, MET 12–30
kcal/kg hours/week; or high, MET ≥30 kcal/kg hours/week), years of education (≤12 years, 13–16 years,
or >16 years), hypertension, stroke, coronary heart disease, and diabetes (yes/no).
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Second, we tested if epigenetic indicators were associated with DNAmPhenoAge acceleration.
The aforementioned fully adjusted model (Model 2) was used to explore associations between
DNAmPhenoAge acceleration and each of the 151 smoking-related loci. False discovery rate
(FDR)-adjusted [18] P-values were used to account for multiple testing. The alpha threshold for
FDR-adjusted P-value was set at ≤0.05. We performed bootstrap analysis to validate the selected CpGs.
We resampled the original dataset to create 1000 simulated datasets for each locus. Then, we ran the
model in each dataset and returned the effect estimates for the tested CpG sites. We counted the effect
estimates that were greater than or equal to the observed value and divided that count by the number
of estimates. We again used FDR-adjusted P-values to select the most robust loci.

Finally, we generated a smoking aging index based on the verified 52 CpG sites [5]. The mean
β-value (µc) and standard deviation (SD) (σc) were calculated across the never-smokers for each
selected CpG. The smoking aging index was defined as

SI(s) =
1
n

n∑
c

Wc
βcs − µc

σc
(2)

where, Wc is +1 if the smoking-associated CpG, c, is hypermethylated or −1 if it is hypomethylated in
smokers, and βc is the β-value of this CpG in sample s [5]. The smoking aging index for each participant
was calculated based on these validated DNAmPhenoAge acceleration-related loci, which were validated
by the bootstrap method. Statistical analysis was performed using R 3.5.1 (R core team, 2018).

3. Results

3.1. Characteristics of Participants

Demographic and clinical characteristics of the participants at all three visits are shown in Table 1.
Participants were 55–94 years old with a mean (SD) age of 72.7 (6.7) years at first visit. The mean
(SD) of the DNAmPhenoAge was 68.4 (11.9) years at first visit, younger than the chronological age.
The chronological age and the DNAmPhenoAge were correlated with each other (r = 0.42, P < 0.001)
(Figure 2). The majority of the participants in the cohort were former smokers and never smokers,
accounting for 66% and 30% at the first visit, respectively. The percentage for current smokers was
only 4% at the first visit. The total years of smoking was 16.9 years on average at the first visit.
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Table 1. Population characteristics of participants in the Veterans Affairs Normative Aging Study in
Boston, MA, 1999–2013 a.

Variable All Visits First Visit Second Visit Third Visit

No. of measures 1214 692 418 104
Chronological age (years) 74.3 (7.0) 72.7 (6.7) 76.3 (6.8) 79.8 (6.0)
DNAmPhenoAge (years) 70.5 (12.9) 68.4 (11.9) 70.6 (12.2) 83.6 (13.9)

Smoking status
Never smoker 374 (31%) 207 (30%) 131 (31%) 36 (35%)

Current smoker 46 (4%) 29 (4%) 15 (4%) 2 (2%)
Former smoker 794 (65%) 456 (66%) 272 (65%) 66 (63%)

Total years of smoking
cigarettes (years) 16.7 (15.8) 16.9 (15.7) 16.4 (15.9) 11.3 (15.5)

Alcohol consumption (g/d)
Abstainer 230 (24%) 146 (24%) 81 (25%) 3 (25%)

Low (0–40 g/d) 652 (69%) 420 (69%) 223 (70%) 9 (75%)
Intermediate (40–60 g/d) 37 (4%) 26 (4%) 11 (3%) 0

High (≥60 g/d) 23(2%) 18 (3%) 5 (2%) 0
Physical activity

(MET-hours/week)
Low(≤12 kcal/kg

hours/week) 667 (64%) 408 (63%) 240 (65%) 19 (58%)

Median (12–30 kcal/kg
hours/week) 227 (22%) 139 (22%) 83 (23%) 5 (15%)

High (≥30 kcal/kg
hours/week) 152 (15%) 98 (15%) 45 (12%) 9 (27%)

Years of education
≤12 years 335 (33%) 215 (33%) 115 (33%) 5 (42%)

13–16 years 477 (47%) 314 (48%) 159 (46%) 4 (33%)
>16 years 209 (20%) 131 (20%) 75 (21%) 3 (25%)

Body mass index
Underweight or normal

weight (<25.0) 265 (22%) 139 (20%) 94 (22%) 32 (31%)

Overweight (≥25.0 to <30.0) 636 (52%) 374 (54%) 214 (51%) 48 (46%)
Obese (≥30.0) 313 (26%) 179 (26%) 110 (26%) 24 (23%)

Chronic diseases
Hypertension 731 (71%) 464 (70%) 258 (73%) 9 (75%)

Stroke 99 (8%) 53 (8%) 39 (9%) 7 (7%)
Coronary heart disease 397 (33%) 208 (30%) 146 (35%) 43 (41%)

Diabetes 193(16%) 99 (14%) 73 (17%) 21 (20%)
a Mean value (standard deviation) for continuous variables and n (%) for categorical variables.

3.2. DNAmPhenoAge Acceleration and Smoking Indicators

Table 2 illustrates the association of DNAmPhenoAge acceleration with self-reported (smoking
status and pack-years) indicators in both the basic model (Model 1) and fully adjusted model (Model 2).
Only current smokers had significantly higher DNAmPhenoAge acceleration in Model 1, although
not in Model 2. However, cumulative smoking (pack-years) was significantly associated with
DNAmPhenoAge acceleration in both models. Figure 3 shows associations between DNAmPhenoAge
and pack-years for all participants (r = 0.09, N = 1214, P = 0.002), current smokers (r = 0.37, N = 46,
P = 0.01), and former smokers (r = 0.16, N = 794, P = 0.0001).
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Table 2. Association of DNA methylation phenotypic age (DNAmPhenoAge) acceleration with
self-reported smoking and epigenetic smoking indicators in the Veterans Affairs Normative Aging
Study Cohort in Boston, MA, 1999–2013.

Smoking Indicator Model 1 a Model 2 b

Smoking Status Estimate # SE * P-Value Estimate # SE P-Value

Current smoker 3.41 1.83 0.06 2.69 1.86 0.15
Former smoker 0.62 0.77 0.41 0.17 0.79 0.82
Never smoker Ref Ref
Cumulative smoking
(pack-year) 0.06 0.01 3.4 e-5 0.04 0.01 0.003

# Effect size of age acceleration per SD (standard deviation) increase of smoking aging index. * SE: standard error.
a Model 1: Adjusted for age (years), leukocyte distribution (Houseman et al.’s algorithm), visits, and random batch
effect of methylation measurement. b Model 2: Additionally adjusted for smoking status, alcohol consumption
(abstainer/low/intermediate/high), body mass index (BMI; underweight or normal weight/overweight/obese),
physical activity (metabolic equivalent of task (MET) low ≤12 kcal/kg hours/week, MET median 12–30 kcal/kg
hours/week, and MET high ≥30 kcal/kg hours/week), years of education (≤12 years, 13–16 years, >16 years),
hypertension, stroke, coronary heart disease, and diabetes (yes/no).
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Figure 3. Scatter plots of the association between pack-years and DNA methylation phenotypic age
(DNAmPhenoAge) for (A) all participants, (B) current smokers, and (C) former smokers in the Veterans
Affairs Normative Aging Study in Boston, MA, 1999–2013.

Moreover, we assessed associations between the 151 smoking-related CpG candidates and
DNAmPhenoAge acceleration using Model 2, with visits and random batch effects of methylation
measurement as random effects. A total of 85 of 151 CpG candidates passed the threshold of FDR <0.05,
and thus demonstrated significant associations with DNAmPhenoAge acceleration. We attempted to
validate theses CpG candidates using bootstrap methods. Validation confirmed that 52 of 85 CpG sites
were associated with DNAmPhenoAge acceleration (FDR < 0.05, Table 3). Of these 52 loci, 18 were
hypomethylated and 34 were hypermethylated. AHRR had the most related loci (N = 8).

Table 3. CpG Sites (P < 0.05) associated with DNA methylation phenotypic age (DNAmPhenoAge)
acceleration in the Veterans Affairs Normative Aging Study Cohort in Boston, MA, 1999–2013 a.

Chr CpG Site Gene Effect Size
per SD (SE) # P-Value

FDR-
Adjusted
P-Value

P-Value
for

Bootstrap

FDR-Adjusted
P-Value

1 cg25189904 GNG12 1.21 6.7E−04 2.0E−03 1.1E−02 2.7E−02
cg04885881 1.91 3.5E−08 4.0E−07 2.7E−08 3.0E−07
cg11314684 AKT3 1.82 4.3E−08 4.6E−07 2.0E−03 7.7E−03
cg09662411 GFI1 −1.66 2.5E−06 1.9E−05 5.0E−03 1.6E−02
cg10399789 GFI1 1.58 4.5E−06 3.0E−05 1.7E−02 3.3E−02
cg12547807 2.35 1.8E−14 6.9E−13 1.1E−13 4.3E−12
cg19713429 CAPZB 1.89 6.6E−09 8.3E−08 1.0E−03 4.5E−03
cg21140898 −1.61 7.1E−06 4.1E−05 4.3E−06 1.3E−05
cg26764244 GNG12 2.01 3.1E−09 4.4E−08 2.0E−03 7.7E−03
cg27537125 2.82 1.1E−19 1.6E−17 5.3E−18 1.3E−16

2 cg01940273 −1.40 2.7E−04 9.2E−04 1.3E−02 2.9E−02
cg03329539 1.71 2.7E−07 2.5E−06 1.6E−02 3.2E−02
cg23079012 −1.05 9.8E−04 2.6E−03 1.5E−02 3.0E−02

3 cg18642234 GPX1 1.86 2.9E−06 2.1E−05 1.4E−05 1.7E−04
cg18754985 CLDND1 −1.13 1.6E−04 5.9E−04 3.0E−03 1.1E−02

4 cg24556382 GALNT7 1.40 3.7E−05 1.7E−04 7.0E−03 2.0E−02

5 cg14817490 AHRR 1.85 2.6E−07 2.5E−06 1.5E−06 3.8E−05
cg05575921 AHRR −0.97 1.3E−05 1.2E−04 7.0E−03 2.0E−02
cg25648203 AHRR −1.14 6.6E−04 2.0E−03 2.2E−02 4.0E−02
cg26703534 AHRR −1.54 1.6E−05 7.7E−05 1.5E−02 3.0E−02
cg01899089 AHRR 1.53 6.9E−06 4.1E−05 4.9E−05 1.2E−05
cg01097768 AHRR 2.50 3.4E−12 6.3E−11 2.1E−11 4.5E−10
cg11554391 AHRR 1.72 3.2E−06 2.2E−05 2.0E−03 7.7E−03
cg17924476 AHRR 1.55 4.9E−06 3.1E−05 3.0E−03 1.1E−02
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Table 3. Cont.

Chr CpG Site Gene Effect Size
per SD (SE) # P-Value

FDR-
Adjusted
P-Value

P-Value
for

Bootstrap

FDR-Adjusted
P-Value

6 cg24859433 −1.44 5.8E−05 2.4E−04 1.5E−02 3.0E−02
cg14753356 1.65 5.1E−04 1.6E−03 1.2E−02 2.8E−02
cg15474579 CDKN1A 1.68 1.0E−05 5.5E−05 2.7E−02 4.7E−02
cg20778199 −3.01 5.7E−17 4.3E−15 3.6E−16 2.7E−14

7 cg11207515 CNTNAP2 1.72 5.0E−07 4.3E−06 5.0E−03 1.6E−02
cg25949550 CNTNAP2 2.56 8.7E−14 2.2E−12 6.0E−13 1.4E−11
cg05221370 LRRN3 2.43 6.6E−12 1.1E−10 4.9E−11 4.3E−09
cg07826859 MYO1G 1.64 4.6E−05 2.0E−04 2.8E−02 4.8E−02
cg09837977 LRRN3 1.92 1.6E−05 7.7E−05 9.0E−03 2.4E−02

8 cg25305703 1.39 6.7E−05 2.7E−04 1.3E−02 2.9E−02

10 cg25953130 ARID5B −1.54 1.5E−05 7.6E−05 7.0E−03 2.0E−02

11 cg23771366 PRSS23 1.31 8.1E−04 2.4E−03 1.5E−02 3.0E−02
cg04039799 NAV2 1.85 3.2E−09 4.4E−08 1.4E−08 3.9E−07
cg16556677 KCNQ1 −1.41 2.2E−04 7.7E−04 8.0E−03 2.2E−02
cg16611234 1.36 1.7E−04 5.9E−04 7.0E−03 2.0E−02

12 cg02583484 HNRNPA1 1.22 3.5E−04 1.2E−03 2.0E−02 3.8E−02
cg04158018 NFE2 −1.38 1.1E−04 4.0E−04 4.0E−03 1.4E−02

13 cg23681440 1.17 8.9E−04 2.5E−03 2.4E−02 4.3E−02

14 cg13976502 C14orf43 1.22 1.5E−05 7.6E−05 1.0E−03 4.5E−03
cg22851561 C14orf43 2.49 1.0E−15 5.2E−14 3.7E−14 6.4E−13
cg13038618 1.20 1.1E−03 2.9E−03 2.9E−02 4.8E−02

16 cg06972908 ITGAL 2.64 2.5E−14 7.7E−13 9.3E−12 4.6E−10
cg13500388 CBFB 1.67 1.7E−05 7.7E−05 1.1E−02 2.7E−02
cg16794579 XYLT1 2.37 6.7E−13 1.4E−11 3.5E−12 6.9E−10

17 cg19572487 RARA 1.43 7.2E−05 2.8E−04 2.2E−02 4.0E−02
cg07465627 STXBP4 1.46 1.8E−06 1.4E−05 6.2E−05 7.1E−04

19 cg15187398 MOBKL2A 1.84 5.1E−07 4.3E−06 4.2E−06 1.8E−05
cg23973524 CRTC1 −1.63 7.4E−06 4.1E−05 1.0E−02 2.6E−02

# SD: Standard deviation; SE: Standard error. a Adjusted for age (years), leukocyte distribution (Houseman et al.’s
algorithm), smoking status, alcohol consumption (abstainer/low/intermediate/high), body mass index (BMI;
underweight or normal weight/overweight/obese), physical activity (metabolic equivalent of task (MET) low
≤12 kcal/kg hours/week, MET median 12–30 kcal/kg hours/week, and MET high ≥30 kcal/kg hours/week), years of
education (≤12 years, 13–16 years, >16 years), hypertension, stroke, coronary heart disease, diabetes, cancer (yes/no),
visits, and random batch effect of methylation measurement.

We generated a smoking aging index based on the 52 validated smoking-related loci and compared
this new index with AHRR cg05575921, a strong smoking-associated hypomethylated locus. The
smoking aging index was highly associated with self-reported smoking indicators in the generalized
linear mixed effect model (P < 0.05, data not shown). For cg05575921, negative associations were found
in both Model 1 (β = −1.34, P = 0.0001) and Model 2 (β = −0.97, P = 0.007) (Table 3). For the smoking
aging index, positive associations were found in both Model 1 (β = 1.92, P < 0.0002) and Model 2
(β = 1.91, P < 0.0001).

4. Discussion

We systematically explored the association between self-reported and epigenetic smoking
indicators and DNAmPhenoAge in whole blood samples based on an elderly cohort in eastern
Massachusetts. One of the self-reported variables of smoking, cumulative smoking expressed
in pack-years, was significantly and strongly associated with DNAmPhenoAge acceleration.
For epigenetic indicators, 52 previously confirmed CpG sites (including a robust mono-biomarker
of smoking, ch05575921) and smoking aging index derived from these loci were associated with
DNAmPhenoAge acceleration.
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Tobacco smoking has long been regarded as a leading risk factor for several age-related health
outcomes [1,19,20]. A recent study investigated the relationship between DNAmPhenoAge acceleration
based on Horvath’s and Hannum et al.’s algorithms and smoking-related DNA methylation [21].
Although our current study assessed DNAmPhenoAge acceleration based on DNAmPhenoAge,
our findings are consistent with those of Gao et al., since we both found loci mapping to AHRR,
a well-known tumor suppressor gene. One specific AHRR locus, cg05575921, has been regarded as a
strong epigenetic smoking indicator in previous smoking EWAS [22–24] and was confirmed by our
current study [25]. Other consistent loci involve CNTNAP2 (contactin associated protein-like 2) and
have been reported associated with several mental diseases [26–28], as well as KCNQ1 (voltage-gated
KQT-like subfamily Q, member 1) that has been associated with type 2 diabetes [29]. Moreover,
our current study also unveiled other genes, such as GNG12 (a negative regulator of inflammation in
microglial cells that could impact the neural system) [30], LRRN3 (a member of neuron leucine-rich
repeat superfamily that may be associated with neural system development and differentiation
processes) [31], and GFI1 (involved in the regulation of hematopoietic stem cells) [32].

There are some inconsistencies between self-reported smoking indicators and epigenetic smoking
indicators with respect to their associations with aging. One inconsistency is that the smoking status was
not related to either DNAmPhenoAge acceleration in the fully-adjusted model (Table 2) or the smoking
aging index (Figure 3). One explanation is that the number of current smokers is far less than former
and never smokers, which may diminish statistical power. Another reason might be the susceptibility
of different individuals. For instance, genetic polymorphisms may play a role in modifying the health
impacts of exposure to environmental health hazards, indicating that some individuals may be more
or less likely to be affected by environmental hazards and develop diseases [33,34].

This point leads to our consideration that genetic variation may affect the relationship between
epigenetics and aging [35]. A recent study reported findings regarding the heritability of discrepancies
between chronological and epigenetic age by examining twins [9]. Moreover, we should also bear in
mind that exposure to cigarette smoking is not the only factor that could lead to differences in DNA
methylation. Other environmental hazards, such as drinking alcohol, lifestyle or nutritional factors,
or interaction effects between these hazards and smoking, might induce similar methylation changes
as well [36,37]. This evidence supports the idea that aging rates are influenced by interactions among
genetic variation, environmental exposures, and the epigenome.

Our study has the following strengths. We present a longitudinal study to investigate the
relationship between smoking-related DNA methylation and aging. Longitudinal studies that
investigate aging have advantages over cross-sectional studies, particularly with regard to genetic
variations [38]. Furthermore, the cohort longitudinal design allowed us to understand relationships
between genetics and other factors that specify inter-subject temporal changes in human DNA
methylation profiles.

However, there are also limitations to our study. First, we validated our results using a bootstrap
method in the training cohort instead of an external validation cohort. Although it is generally
ideal to use another cohort to validate and replicate findings, we could not access another similar
phenotypic cohort. Therefore, further studies are needed to validate and replicate our findings. Second,
our signature to predict smoking-related aging was derived from elderly males only. Thus, it remains
unclear whether the signature would differ in a female population. However, previous EWAS suggest
that smoking-associated changes in blood samples are not dependent on sex [39,40]. Nonetheless,
future validation in a larger sex-balanced cohort is still needed. Third, measurement inaccuracies may
affect the comparability of longitudinal DNAmPhenoAge acceleration. However, we adjusted for
batch effect by including it as a random effect in the model and normalized methylation profiles using
Horvath’s internal normalization methods. Fourth, loss to follow-up may have biased our findings.
However, we used inverse probability weighting to impute missing data as a sensitivity analysis.
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5. Conclusions

In summary, our results show that self-reported cumulative smoking and epigenetic smoking
indicators were associated with DNAmPhenoAge acceleration. Epigenetic changes at specific
smoking-related CpG sites and our combined smoking aging index might be useful biomarkers to
predict smoking-associated aging. Further research is warranted to replicate our findings in follow-up
studies and to identify the mechanism underlying the effects of smoking on DNAmPhenoAge.
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