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Abstract: Econometrics and input–output models have been presented to construct a joint model
(i.e., an EC + IO model) in the paper, which is characterized by incorporating the uncertainty of the
real economy with the detailed departmental classification structure, as well as adding recovery
period variables in the joint model to make the model dynamic. By designing and implementing
a static model, it is estimated that the indirect economic loss for the transportation sector caused
by representative haze pollution of Beijing in 2013 was 23.7 million yuan. The industrial-related
indirect losses due to the direct economic losses incurred by haze pollution reached 102 million
yuan. With the constructed dynamic model, the cumulative economic losses for the industrial
sectors have been calculated for the recovery periods of different durations. The results show that:
(1) the longer the period that an industrial department returns to normal output after haze pollution
has impacted, the greater the cumulative economic loss will be; (2) when the recovery period is
one year, the cumulative economic loss value computed by the dynamic EC + IO model is much
smaller than the loss value obtained by the static EC + IO model; (3) the recovery curves of industrial
sectors show that the recovery rate at the early stage is fast, while it is slow afterwards. Therefore,
the governance work after the occurrence of haze pollution should be launched as soon as possible.
This study provides a theoretical basis for evaluating the indirect economic losses of haze pollution
and demonstrates the value of popularization and application.

Keywords: Econometric (EC) model; input–output (IO) model; static and dynamic EC + IO joint models;
haze pollution; indirect economic loss

1. Introduction

Outdoor air pollution, especially haze pollution, directly impacts the health of people and the
transportation system, and indirectly affects other industrial departments. Currently, in China, the PM2.5

(particulate matter smaller than 2.5 µm) pollution, which is largely produced by exhaust emissions from
motor vehicles, carries a serious threat to public health and the national economic system [1].

Outdoor air pollution (mainly PM2.5) leads to 3.3 million premature deaths per year worldwide,
and surprisingly, 1.357 million, or 41.2 percent of the world’s total, occurred in China alone [2].
The death rate caused by atmospheric pollution in China is nearly one order of magnitude higher than
that of road traffic injuries and AIDS (Acquired Immunodeficiency Syndrome), and air pollution is the
main cause of death [3].

In contrast to the above studies on health effects, this study is to develop static and dynamic
models that are capable of estimating indirect economic loss incurred by haze pollution for the Beijing
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area at refined industrial levels (particularly for the transportation and warehousing sector) and
predicting the trend of the economic damage.

Indirect economic loss has been commonly recognized as consequential costs or the decline of
direct economic loss [4]. It is normally discussed from the aspects of human and environmental
impacts, which differs but is caused by direct loss [5].

Beijing is the capital of China, the world’s second most populous city (6336 square miles:
urban 528 square miles and rural 5808 square miles) and the most populous capital city (21.7 million
municipal population, 18.8 million urban, 24.0 million metro in 2017). The city, located in northern
China, is governed as a direct-controlled municipality under the national government with sixteen
urban, suburban, and rural districts.

For Beijing, the total haze pollution is determined as a combination of self-emitted and transmitted
(drifted-in from outside) PM2.5 contamination. On the 14th May 2018, the Beijing Municipal Environmental
Protection Bureau reported that about one third of annual PM2.5 in Beijing was contributed due to regional
transmission from outside sources; whereas two thirds was due to local pollution emissions, of which 45%
were due to mobile sources, including diesel vehicles, petrol vehicles, Beijing transit vehicles, transit diesel
vehicles, aviation trains, non-road machinery, etc. [6]. Therefore, it is a critical and challenging to measure to
estimate and even predict possible economic losses due to haze pollution.

1.1. Literature Survey

Haze pollution not only seriously affects people’s health but also incurs huge socio-economic losses [7–9].
The current research on the economic loss caused by haze pollution is mainly from the perspective of health.
Ridkei [10] applied the human capital method to assess the economic loss caused by air pollution regarding
various diseases and deaths in United States in 1958, and the results showed that the total health benefits
of air pollution during the year was US $80.2 billion. This study was considered to be the beginning of
health damage assessments in air pollution. Quah and Boon [11] studied the incidence, mortality and
economic loss of airborne particulate matter (PM10) in Singapore, and they found that the total economic
loss caused by air pollution in Singapore in 1999 accounted for 4.31% of the GDP (Gross Domestic Product)
in that year. Yoo, Kwak and Lee [12] estimated that families with a 10% drop in the concentration of major
pollutants in Seoul paid US $4.6 a month, and all Seoul residents had to pay US $169.5 million a year.
Othman et al. [13] collected data on the daily hospitalization of 14 diseases related to haze pollution from
four hospitals in Malaysia in 2005, 2006, 2008 and 2009 respectively, and assessed the health economic loss
caused by haze pollution in the area. It was estimated that the average annual economic loss due to haze
pollution was about US $91,000 for each hospitalized patient.

Research on the economic loss of air pollution in China began in the 1980s. Guo, Zhang and Li [14]
comprehensively utilized the market value method, the opportunity cost method, the engineering cost
method, the corrected human capital method and a large amount of statistics and testing data to assess
China’s environmental pollution losses during the “6th Five-Year Plan” period (1981–1985). Results
showed that the air pollution loss during this period was 12 billion RMB. Wang and Qu [15] used the
exposure–response model and the production function method to quantify the loss of air pollution.
It was found that the pollution loss of atmospheric resources in Jiangsu Province in the 1990s was as
high as 10 billion RMB each year. Wan, Yang and Masui [16] estimated that the economic losses caused
by particulate pollution based on the exposure–response model in Shanghai’s urban areas in 2001 were
approximately US $625.4 million, which was 1.03% of the city’s GDP. Xia, Guan and Jiang [17] adopted
the supply-driven input–output model to estimate the economic losses caused by the shortening of
working hours in 2007 in 30 provinces in China related to air pollution, and the total economic loss was
found to be 346.26 billion RMB (about 1.1% of the national GDP). This loss approximately equal to the
annual GDP of Vietnam in 2010. Peng and Tian [18] used the vector autoregressive model (VAR model)
to investigate the long-term dynamic characteristics of environmental pollution and economic growth
in Hunan Province from 1985 to 2008, and found that economic growth was an important cause of
environmental pollution. It has a reverse effect on economic growth and a certain hysteresis effect.
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Mu and Zhang [19] evaluated the direct economic loss in areas affected by haze pollution in China
in 2013 and found the country’s direct economic loss on transportation and health was about 23 billion
RMB through the integrated utilization of a direct loss assessment, disease cost method, human capital
law and other methods. Wang et al. [20] used the changes in labor supply and additional medical
expenses as the conduction variables to feed back into the computable general equilibrium model (CGE
model). It was found that the extra medical expenses for PM2.5 pollution in Beijing in 2013 were about
RMB 1.113 billion. The negative health effects resulted in a loss of about 23.396 billion RMB in the
total output of the industrial sector, and a loss of about 901 million RMB in GDP. Hao et al. [21] used
urban-level panel data from 2013 to 2015 to study the impact of PM2.5 concentration on urban per capita
GDP, and introduced a series of time and regional models to control for the fixed effect. It was found
that smog pollution did have a significant negative impact on economic development, and when other
conditions were the same, each increase in PM2.5 concentration could result in a decrease in per capita
GDP of about 2500 yuan. Fan and Wu [22] used Shanghai’s per capita GDP and three types of haze
pollution indicators as research samples. Through the establishment of the VAR model, the long-term
equilibrium relationship and dynamic impact mechanism between Shanghai’s economic growth and
haze pollution levels were studied. It has been found that there is a two-way mechanism between
Shanghai’s economic growth and haze pollution, and the adverse effect of haze pollution on economic
growth is greater than the impact of economic growth on haze pollution.

1.2. The Scope and Methods of Our Study

Besides health consequences, the public are also concerned about the indirect economic losses
caused by haze pollution on other aspects [23,24]. Particularly, in addition to short-term economic
damages, the public prefer to pursue a long-term loss estimate on the economy, which involves indirect
economic loss, a topic of this study.

Visibility is badly reduced during smog pollution, which seriously affects the transportation
system, and often triggers ripple effects to other industrial sectors such as the food and tobacco sectors,
damaging trade network links between regions and hence impacting the whole economic system.
This potential indirect economic loss is more profound than the direct economic loss [25]. The value of
indirect economic loss caused by haze pollution is studied in this paper, reflecting the indirect effects of
smog pollution.

By including the indirect economic loss caused by haze pollution, this study combines an econometric
model (EC model) with an input–output model (IO model) to extend the traditional input–output model,
and so constructs the econometrics and input–output joint model (EC + IO model). Previous EC + IO
models were mostly used for the study of industrial structures, rarely for air pollution loss.

At present, the human capital method, exposure–response model, and other methods are
commonly employed to assess the economic loss of smog. These methods can only roughly calculate
the total economic loss caused by haze pollution and cannot be refined to the local level [26–28]. A few
studies have attempted to evaluate the economic losses of haze through traditional IO models and
static CGE models. However, the traditional IO model is based on the premise of a linear relationship;
whereas the static CGE model is very demanding on the data, and the entire process takes a long
time and has a lower efficiency. An EC + IO model is established in this paper to randomize the
deterministic IO model with the characteristics of the EC model, which can improve the ability of the
traditional IO model to analyze problems and optimize the properties of the model. This proposed
model preserves the decomposition of the traditional IO model sectors, and adds a random term
in the EC model, making the model into a dynamic framework, which is able to not only reduce the
static restrictions of the IO model, but also extend the linear constraints [29,30]. The EC + IO joint
model absorbs the advantages of the IO model and the EC model, and it can reflect both the detailed
departmental classification structure and randomness. At the same time, the EC + IO joint model
connects the statistical yearbook with the data from the input–output table, which allows us to obtain
relevant data from the input–output table containing non-edited year related data, making its data
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more integrated and expanding its data applications. The construction of dynamic EC + IO model can
break the constraint on the time of the static EC + IO model and add the variable “recovery period”
making the model more extensive and dynamic in practical forecasting. For these two models, data is
easier to obtain and greatly reduces the time consumption.

Previously, a static EC + IO model for direct and indirect economic damages incurred by typhoon
events for China was presented in 2013 [29]. It has been expanded to the study of damages caused
by haze pollution for the Beijing area in 2013, with the method from a static EC + IO model to
a dynamic one. In that case, conductive and interactive effects between sectors can be considered and
further studied.

The remainder of this paper is organized as follows. Section 2 introduces the relevant models.
In Section 3, the static and dynamic EC + IO models will be developed. In Section 4, for the Beijing area
in 2013, an empirical analysis will be performed on the indirect economic losses for all 42 industrial
sectors, which were caused, through ripple effects, by direct damage to the transportation and
warehousing sector. Section 5 contains a discussion on the model’s limitations. Finally, the conclusion
is drawn in Section 6.

2. The System Model

The input–output identity based on line relationship and pure industrial sector as follows:

n∑
j=1

xi j + Yi = Xi, (1)

where xi j is the number of products allocated by sector i to the sector j. Xi is the total output of sector i.
Yi is the end use of sector i. A is the direct consumption coefficient matrix whose element is ai j =

xi j
X j

.
Equation (1) is expressed as a matrix:

AX + Y = X, (2)

It is equivalent to:
X = (I −A)−1Y, (3)

where (I −A)−1 is a Leontief inverse matrix.
The connection of the EC model and the IO model is usually done by using the end-use variable Y

in the IO model. The Y in the non-supplemental regional input–output table consists of six components:
household consumption, government consumption, total capital formation, net exports, domestic
inflows outside the province, and domestic inflows outside the province. Due to the limitation of
regional accounting data, when establishing the regional EC + IO model, only the resident consumption
in the Y is considered to establish the EC model, i.e., to make the resident consumption data endogenous.
Other end-use items are treated as exogenous variables and are substituted into the model using raw
data. Using the results of the EC model to drive the IO model, the model built by the connection
method is the EC + IO joint model.

3. Model Establishment

3.1. EC Model

Based on the regional non-supplemented input–output table, a regional EC + IO model of line
relationship was constructed in this paper. Due to the limitation of regional accounting data, only the
EC model of residential consumption was established. Based on the dual social structure in China,
the urban residents’ consumption model and rural consumption model were established respectively
in this paper. Time series data can be used to establish the following model:
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Urban residents’ consumption equation:

LnCt = β01 + β11LnDISt + β21LnCt−1 + ε. (4)

Rural residents’ consumption equation:

LnCt = β02 + β12LnDISt + β22LnCt−1 + ε. (5)

Among them, in Equation (4), DIS is per capita disposable income, and in Equation (5), DIS per
capita net income. Ct is the residents’ consumption in the current period, Ct−1 denotes the residents’
consumption in the previous period. ε is a random item.

3.2. Static EC + IO Model

Using the prediction results of the EC model and the original data, the end-use part is denoted as,
and Equation (3) becomes:

X1 = (I −A1)
−1

Y1, (6)

where A1 is the predicted direct consumption coefficient matrix, and its element is a1
i j =

xi j
n∑

i=1
xi j+Y1

j

.

Besides, Y1
i is the element of Y1 and the element of X1 is X1

i =
n∑

j=1
xi j + Y1

i .

From Equation (6), the loss of the final product of the industrial sector can be regarded as the
direct economic loss, i.e., ∆Y = (∆Y1∆Y2, . . . , ∆Yn)

T. Then, the total product loss will be:

∆X = (I −A1)
−1

∆Y, (7)

where ∆X is also considered as the total economic loss and the indirect economic loss is ∆X − ∆Y.
In order to improve the accuracy of the assessment of indirect economic loss in each industrial

sector, the total consumption coefficient will be used for the analysis [1]. It is obvious that the total
consumption coefficient matrix can be regarded as the predicted total consumption coefficient matrix,
and the relationship with the predicted direct consumption coefficient matrix is B1 = (I −A1)

−1
− I.

Equation (7) can then be transformed into:

∆X = (B1 + I)∆Y (8)

Suppose that the loss in sector i is due to a certain pollution incident, and the final needs of other
sectors remain unchanged, then the total output changing in all sectors is shown as follows:



∆X1

∆X2

. . .
∆Xi
. . .

∆Xn


=





b1
11 b1

12 . . . b1
1i . . . b1

1n
b1

21 b1
22 . . . b1

2i . . . b1
2n

. . . . . . . . . . . . . . . . . .
b1

i1 b1
i2 . . . b1

ii . . . b1
in

. . . . . . . . . . . . . . . . . .
b1

n1 b1
n2 . . . b1

ni . . . b1
nn


+



1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1







0
0
. . .

∆Yi
. . .
0


=



b1
1i∆Yi

b1
2i∆Yi
. . .

b1
ii∆Yi
. . .

b1
ni∆Yi


+



0
0
. . .

∆Yi
. . .
0


, (9)

where b1
i j(i, j = 1, 2, . . . , n) is the predicted total consumption factor, and the total economic loss for

sector i is:
∆Xi = b1

ii∆Yi + ∆Yi, (10)

where ∆Yi is the direct economic loss of sector i and bii∆Yi is the indirect economic loss of the ith sector.
The total economic loss for other sectors is:

∆Xm = b1
mi∆Yi, m , i. (11)
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3.3. Dynamic EC + IO Model

The Leontief dynamic IO model is [31]:

X(t) −AX(t) −D[X(t + 1) −X(t)] = U(t), (12)

where D is the investment coefficient matrix, D[X(t + 1) −X(t)] is the productive investment matrix
and U(t) is the final net demand matrix (D[X(t + 1) −X(t)] + U(t) = Y(t)).

If let Q = −D−1, then Equation (12) can be converted to:

X(t + 1)−X(t) = Q[AX(t) + U(t) −X(t)]. (13)

The total economic loss ratio of sector i is li = ∆xi/xi, where ∆xi is the total economic loss of sector
i. xi is the total output of sector i. li is the element of matrix total loss proportion matrix L and matrix
L = X−1∆X. The loss ratio of demand for sector i is u∗i = ∆ui/xi, where ∆ui is the demand loss for the
ith sector. u∗i is the element of the demand loss matrix U∗, then U∗ = X−1∆U. Equation (13) can be
shown as:

l(t + 1) − l(t) = Q[A∗l(t) + U∗(t) − l(t)], (14)

where A∗ = X−1AX.
The general solution of (14) is:

l(t) = l(0)e−Q(1−A∗)t +

∫ t

0
QU∗(s)eQ(1−A∗)(s−t)ds. (15)

If the final requirements of the various industrial sectors remain the same, then U∗ = 0.
Equation (15) becomes:

l(t) = l(0)e−Q(1−A∗)t. (16)

When t→∞ , the loss ratio l(t)→ 0 and the affected industrial sectors returned to normal. If only
sector i is considered, Equation (16) can be changed to:

li(t) = li(0)e
−qi(1−q∗ii)t. (17)

The total economic loss Xi(t) in sector i during the period of returning to normal production can
be expressed as:

Xi(t) = xit

∫ T

t=0
li(t)dt, (18)

where xit is the output of sector i during period t.
The dynamic EC + IO model predicts the end-use part of the unprocessed input–output

table, denoted as Y1. If the input–output inequality still holds, the total output of the ith sector

is X1
i =

n∑
j=1

xi j + Y1
i . As a result, the output of sector i during period t will change. Similarly, the rate of

loss will change as well, and then Equation (17) becomes the following:

li(t)
1 = li(0)e

−qi(1−q∗1ii )t, (19)

where a∗1ii is the element of matrix A∗1 = X−1A1X, and A1 is the predicted matrix of direct
consumption coefficient.

The cumulative economic loss (i.e., the economic loss during the recovery period until the normal
production is resumed) of sector i evaluated by the dynamic EC + IO model in period t during normal
recovery is:

Xi(t) = x1
it

∫ T

t=0
li(t)

1dt, (20)
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where Xi(t) is also considered as indirect economic loss and xit
1 is the predicted output of sector i

in one unit time.

4. Empirical Analysis

4.1. Data Sources

The relevant data from 1993–2012 in the Beijing Statistical Yearbook have been used to establish
the EC model. In order to eliminate the effect of price changes, constant price (1993 = 100) data is
required. The input–output table data comes from the 42 sector input–output table of Beijing in 2012,
while the direct economic loss data is derived from the statistical study of Mu and Zhang [19].

4.2. Parameter Estimation of the EC Model

After taking the logarithm of the original data, it was found that all the indexes involved in the
model were first-order single integer sequences. However, their first-order differential sequences have
no unit root and are stable, thus meeting the cointegration preconditions. The long-term equilibrium
relationship between the sequences of variables needs to be further studied. The E–G two-step method
was used to test the cointegration relationship, and performs the ADF (Augmented Dickey-Fuller Test)
unit root test on the regression residual e of the consumption equations of urban residents and rural
residents respectively. The results are shown in Table 1.

Table 1. ADF unit root test results for regression residual sequences.

Variables T Statistics 1% Threshold 5% Threshold Test Form
(c,t,k) p-Value Conclusion

(α = 0.05)

e1 −3.569 −2.699 −1.961 (0,0,0) 0.0013 stationary
e2 −2.900 −2.699 −1.961 (0,0,0) 0.0063 stationary

Note: e1 represents the regression sequence of urban residents’ consumption, e2 is rural the residents’. ADF:
Augmented Dickey-Fuller Test.

From the table above, it can be seen that at the level of significance of 5%, the regression series (e1

and e2) of urban residents’ consumption and rural residents’ consumption are all stable. It is considered
that there is a cointegration relationship among the variables, and the cointegration regression equations
are as follows:

Urban residents’ consumption cointegration regression equation:

LnCt = 1.062 + 0.626LnDISt + 0.244LnCt−1. (21)

Rural residents’ consumption cointegration regression equation:

LnCt = 0.294 + 0.914LnDISt + 0.087LnCt−1. (22)

In Equation (21), the fact that R̂2 = 0.9975, the value of the F statistic is 3570.307, and the p value (α= 5%)
is far less than 0.05, which shows that the equation of urban residents’ consumption is significant. Similarly,
in Equation (22), that fact that R̂2 = 0.9964, the value of the F statistic is 2513.692, and the p value (α= 5%) is
much less than 0.05, which shows that the equation of rural residents’ consumption is also significant.

4.3. Assessment of Indirect Economic Loss of Haze Pollution

4.3.1. Forecast of Total Residential Consumption

Equations (21) and (22) can be used to predict the consumptions per capita for urban and rural
residents living in Beijing in 2013, respectively. Multiplying these rates with the populations of urban
and rural residents in that year, the total consumption of urban residents in Beijing in 2013 was
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508.2 billion RMB, and the total consumption of rural residents was 3861.5 billion RMB. According
to the input and output table for the 42 departments in Beijing in 2012, the percentage of residents’
consumption in each department was calculated. This percentage was taken as the percentage of
residents’ consumption in various departments in 2013. Finally, the original data was used for other
items of Y to obtain the total output of each department in 2013. The results are shown in Table 2.

Table 2. Predicted total output for each industrial sector in 2013.

No. Industrial Sector Total Output/Million RMB

1 Agriculture, forestry, animal husbandry and fishery 47,706.7
2 Coal mining industry 118,782.9
3 Oil and natural gas mining products 67,610.5
4 Metal mining industry 29,972.1
5 Non-metallic minerals and other mining industry 30,240.6
6 Food and tobacco 120,672.5
7 Textile industry 8105.2
8 Textile clothing footwear leather down and its products 30,975.5
9 Woodworking and furniture 13,779.1
10 Paper printing and cultural and educational sporting goods 52,469.5
11 Petroleum, coking and processed nuclear fuel products 114,225.7
12 chemical product 180,805.2
13 Non-metallic mineral products 60,885.0
14 Metal smelting and calendering products 88,774.5
15 Metal products industry 45,225.9
16 General Equipment 78,925.2
17 Professional setting 67,906.8
18 Transportation equipment 362,258.0
19 Electrical machinery and equipment 92,811.3
20 Communications equipment, computers and other 274,597.0
21 Instrumentation 28,891.9
22 Other manufacturing products 10,834.5
23 Waste scrap 2404.1
24 Metal Products, Machinery and Equipment Repair 5043.9
25 Electricity, heat production and supply 362,264.0
26 Gas production and supply 23,652.1
27 Water production and supply 5813.7
28 Construction industry 440,748.7
29 Wholesale and Retail 430,978.5
30 Transportation and warehousing 341,639.8
31 Accommodation and dining 127,355.5
32 Information transmission, software and information 333,324.7
33 Finance 414,562.4
34 Real estate 219,714.6
35 Leasing and business services 247,071.4
36 Scientific research and technical services 386,633.2
37 Water conservancy, environment and public 32,244.3
38 Residents services, repairs and other services 29,791.8
39 Education 122,793.0
40 Health and social work 115,255.6
41 Culture, sports and entertainment 115,273.1
42 Public administration, social security and social organization 157,876.3

4.3.2. Empirical Results of Industrial Sector’s Indirect Economic Loss

Data Processing

The input–output table of the 42 industrial sectors in Beijing in 2012 was used in this paper,
and data on the direct economic losses are from statistical research by Mu and Zhang [19]. In January
2013, the direct economic loss caused by haze pollution incidents in Beijing was 64.2 million RMB
(1777.7 million RMB for haze-related health treatment, see Mu and Zhang [19]). The loss for the storage
industry is regarded as the direct economic loss, under the transportation and warehousing sector.
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Evaluation Results from Static EC + IO Model

By applying Equation (10), the total economic loss for the transportation and warehousing sector
in Beijing in 2013 was estimated as 87.9 million RMB. This figure includes this sector’s direct economic
loss (64.2 million RMB, See Mu and Zhang [19]) and indirect economic loss (23.7 million RMB, shown
in Table 3 below). From Equation (11), the indirect economic losses of other sectors caused by the
ripple effect triggered by the damage to the transportation and warehousing sector can be calculated,
and the results are arranged in Table 3.

Table 3. Indirect economic loss for each industrial sector in 2013.

No. Industrial Sector Loss Value/Million RMB

1 Transportation and warehousing 23.7
2 Petroleum, coking and processed nuclear fuel products 15.8
3 Finance 8.2
4 Oil and natural gas mining products 7.6
5 Electricity, heat production and supply 6.9
6 Leasing and business services 5.0
7 Wholesale and Retail 4.1
8 Metal Products, Machinery and Equipment Repair 3.6
9 Transportation equipment 2.7
10 Metal smelting and calendering products 2.2
11 Chemical products industry 2.1
12 Paper printing and cultural and educational sporting goods 2.0
13 Communications equipment, computers and others 1.9
14 General Equipment 1.4
15 Food and tobacco 1.4
16 Accommodation and dining 1.3
17 Information transmission, software and information 1.2
18 Scientific research and technical services 1.2
19 Real estate 1.1
20 Residents services, repairs and other services 1.1
21 Coal mining industry 0.9
22 Electrical machinery and equipment 0.8
23 Metal products industry 0.7
24 Gas production and supply 0.7
25 Agriculture, forestry, animal husbandry and fishery 0.6
26 Textile industry 0.5
27 Non-metallic mineral products 0.5
28 Construction industry 0.5
29 Instrumentation 0.4
30 Textile clothing footwear leather down and its products 0.3
31 Woodworking and furniture 0.3
32 Professional setting 0.3
33 Culture, sports and entertainment 0.3
34 Education 0.2
35 Non-metallic minerals and other mining industry 0.1
36 Other manufacturing products 0.1
37 Waste scrap 0.1
38 Water production and supply 0.1
39 Public administration, social security and social organ 0.05

40 Water conservancy, environment and public facilities
management 0.04

41 Metal mining industry 0.02
42 Health and social work 0.01

Total indirect economic loss 102.0

From Table 3, following the descending order of total losses in each sector, the top five industrial
sectors impacted hardest by haze pollution in terms of value loss in Beijing in 2013 are the transportation
and warehousing sector (23.7 million RMB), petroleum, coking products and processed nuclear fuel
products sector (15.8 million RMB), finance sector (8.2 million RMB), oil and natural gas mining
products sector (7.6 million RMB), and electricity, heat production and supply sector (6.9 million RMB).
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In addition, the top five industrial sectors affected by haze according to the indirect economic loss ratio
are the metal products, machinery and equipment repair services sector (0.0715%), petroleum, coking
products and processed nuclear fuel products sector (0.0138%), oil and gas mining products sector
(0.0112%), transportation and warehousing sector (0.0069%), and textiles sector (0.0058%).

Moreover, it is noted that three sectors were ranked in the top five due to two indicators, i.e., the oil
and natural gas mining products sector, petroleum, coking products and processed nuclear fuel
products sector, and the transportation and warehousing sector. The total economic loss for these three
industrial sectors was further calculated in Beijing in 2013, totaling 111.2 million RMB, which accounted
for 66.91% of the total economic loss across all industrial sectors (166.2 million RMB). Therefore,
these three sectors are the hardest hit by haze pollution.

Evaluation Results from Dynamic EC + IO Model

From the above, metal products, machinery and equipment repair services sector suffered from
haze pollution in Beijing 2013 the highest indirect economic loss ratio. Hence, the dynamic EC
+ IO model was decided to use this sector to evaluate the cumulative economic loss during the
recovery period. The indirect economic loss ratio of this sector is 0.0715%, i.e., l1(0) = 0.000715.
Assuming that the industry returns to 99.99% of its original output after 30 days, i.e., l(30) = 0.0001.
From Equation (19), this sector’s q value (q = 0.0691) was obtained, and when the industrial sector
returns to normal output, the recovery equation becomes:

1− l(t) = 1− 0.000715× e−0.0691×t. (23)

The 30-day recovery curve for this sector is shown in Figure 1.

Figure 1. Thirty day metal products, machinery and equipment repair service sector recovery curve.

From the figure above, this sector’s recovery is faster in the early recovery period and slower
in the later recovery period.

It can be seen from Equation (20) that when the recovery period of this sector continues for 30 days,
the cumulative economic loss of the sector will be 125.0 thousand RMB. Similarly, the results of the
economic loss can be calculated when the recovery periods vary from 10 days, 20 days, 30 days 60 days,
365 days, 5 years, 10 years and 20 years, which is shown in Table 4.
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Table 4. Cumulative economic loss value in different recovery periods.

Recovery Period * Industrial Economic System Recovery Ratio Cumulative Economic Loss/Million RMB

10 days 0.2073 0.04
20 days 0.1036 0.08
30 days 0.0691 0.13
60 days 0.0345 0.25
365 days 0.0057 1.52
5 years 0.0011 9.08

10 years 0.00057 15.76
20 years 0.00027 33.25

* See remark below.

From the results in Table 4, it is seen that the shorter the recovery period, the smaller the cumulative
economic loss caused by haze pollution to the department. The longer the recovery period, the larger
the cumulative economic loss. When the recovery period is one year, the cumulative loss value obtained
from the dynamic EC + IO is much smaller than that obtained by the static EC + IO model, because
the loss rate in the dynamic EC + IO model gradually decreases over time while the static model
uses an instantaneous loss rate as the constant annual loss rate, resulting in the estimated industrial
economic loss being larger.

The specific recovery period for the metal products, machinery and equipment repair service
sector was not studied after being hit by haze pollution. With regard to the recovery periods of this
and other sectors, Hsiang and Jina’s extensive meta-analysis in 2014 about some 6700 metrological
events that occurred from 1950 to 2008, found strong evidence that, after being hit by metrological
disasters, the recovery periods for industrial sectors might last for an extremely long time and could
vary from some years to even two decades.

5. Discussion

In this paper, the static and dynamic EC + IO models were established to estimate the indirect
economic loss caused by haze pollution in the Beijing area. The application of the traditional IO model,
which is based on the input–output table and updated every five years, results in a time difference
between the data in the input–output table and the data in the statistical yearbook. The EC + IO
model not only absorbs the advantages of the IO model and the EC model, but also connects the data
in the statistical yearbook with the data in the input–output table to some extent. It is therefore more
comprehensive than either of them due to obtaining relevant data of the input–output table that is to be
in the incoming yearbook. When constructing the dynamic EC + IO model, adding the recovery period
variables in this paper made the dynamic EC + IO model more widely used in practical applications.
Therefore, compared with the traditional IO model, the EC + IO model not only expands its data
application field, but also improves the accuracy of the evaluation results.

Study of the indirect economic impact of haze pollution in Beijing focuses on the assessment of
indirect economic loss. Motor vehicle exhaust is one of the culprits of smog pollution. Visibility is
reduced during haze pollution, which seriously affects the transportation system. The transportation
industrial sector is damaged due to the correlation effect between industrial sectors, which will affect
other sectors and the entire economic system. This potential indirect economic loss is far more profound
than the impact of direct economic loss; compare with Gu’s recent result [7]. Gu applied the traditional
IO model to assess the economic loss in 2013 caused by haze pollution in Beijing and found that the
indirect economic loss caused by haze pollution amounted to 26.8 million RMB for the transportation
and warehousing sector alone, which also resulted in a total indirect economic loss of 145.6 million RMB
for transportation-related industrial sectors due to ripple effects. This result is higher than the static
assessment of this paper (102.0 million RMB). The reason for this difference is that Gu adopted the 2010
Beijing input–output extension table to estimate the economic loss for 2013. Therefore, the estimates
in this paper are more in line with the actual situation.
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Through the dynamic EC + IO model, it is found in this study that the shorter the recovery period,
the smaller the cumulative economic loss, whereas the longer the recovery period, the greater the
cumulative economic loss. When the recovery period is one year, the loss rate gradually decreases
with time, so the cumulative economic loss value is much smaller than the loss value obtained by the
static model. In other words, the static EC + IO model overestimates the cumulative economic loss
because it assumes a constant loss rate for a given period.

The results supported our team’s earlier research [1,29]. The EC + IO model is mostly used
in the study of the industrial structure [32–34]. A further study that some scholars have established is
an EC + IO model that predicts future emissions of atmospheric pollutants to reflect regional changes
in emissions and economic structures in Chicago [34]. For now, this is the first time that the EC + IO
model has been employed for assessing regional haze-associated indirect economic loss. Noticeably,
the implementation of the dynamic EC + IO model in this paper eliminates (or reduces) the drawback
of overestimation by the static EC + IO model. Hence, findings of this paper provide policy makers
a better understanding and more insights into haze pollution, along with its impact on the economy.
In addition, there is only little difference between the regional and national input–output tables,
and hence the assessment process in this paper can also be promoted in other regions, and even the
whole country.

The EC + IO model was established through the end-use variables in the IO model. This variable
consists of six parts: household consumption, government consumption, total capital formation,
net exports, domestic inflows outside the province, and domestic inflows outside the province. Due to
the limitation of regional accounting data, only the EC model on resident consumption was established,
and hence the proposed EC model may be further improved.

The EC + IO models can subdivide the distribution of economic loss by haze pollution, but this
can only estimate industry-related losses, and cannot obtain a total value of economic loss by haze
pollution. Moreover, when using the EC + IO model to calculate the associated economic loss, it is
assumed that the final product of one or more severely impacted sectors have changed, while the final
products of other sectors remain unchanged, and there is suspicion of underestimating economic loss
from haze pollution.

6. Conclusions

Due to the complexity of the economic system, the preparation of the input–output table is
undoubtedly a complicated project, generally compiled once every five years in China. Hence,
input–output tables are often not continuous in time, and because of the classification of different
industrial sectors, an input and output table with the annual preparation of the statistical yearbook
cannot be a good choice. In this study, the EC + IO model makes it possible to combine the uncertainty
of the real economy with a detailed departmental classification structure. The EC model is used to
predict the relevant parts of the input–output table, to obtain the input–output tables of the unedited
years, and therefore to expand the input–output model. The EC + IO model has been utilized to
quantitatively assess the indirect economic loss caused by haze pollution. The results indicate that:

1. With regards to the economic loss results, according to the static EC + IO model, the indirect
economic loss caused by major haze pollution events in Beijing in 2013 was 23.7 million RMB
for the transportation and warehousing sector alone; the total indirect economic loss due to the
ripple effect triggered by damage to the transportation and warehousing sector was 102.0 million
RMB. The value of this loss is large and cannot be ignored. Economic development can be one of
the approaches used to reduce haze pollution.

2. The three sectors most affected by haze pollution are: (1) the oil and natural gas mining products sector;
(2) the petroleum, coking products and processed nuclear fuel products sector; and (3) the transportation
and warehousing sector. When haze pollution occurs, the relevant government departments should
pay special attention to these industrial sectors.
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3. From the departmental recovery curve for the dynamic EC + IO model, a sector’s recovery
initially goes faster but becomes slower later in the period. The longer a sector recovers, the bigger
its losses become. Therefore, after the occurrence of haze pollution, the relevant government
departments should start governance work as soon as possible, in order to reduce the sector’s
recovery duration, so that the affected industrial sectors can resume normal output.

4. According to the evaluation results of the dynamic EC + IO model, it can be believed that the longer
the recovery period is, the greater the economic loss will be. Hence, the relevant departments
should consider the length of the recovery period to develop haze pollution governance policy.

The loss rate in the dynamic EC + IO model decreases over time, implying that the static EC
+ IO model overestimates the cumulative economic loss since the static EC + IO model assumes
a constant loss rate for a given period. The result of the dynamic EC + IO model is more in line with
the actual situation.
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