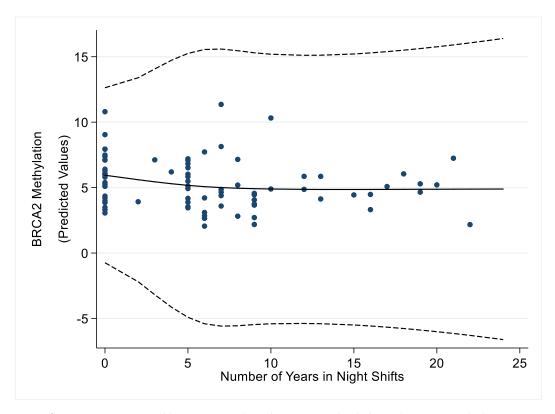
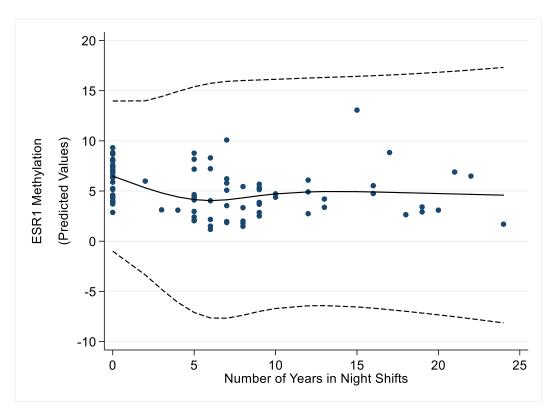

Figure S1. Association* between number of years in night shifts and TP53 methylation.

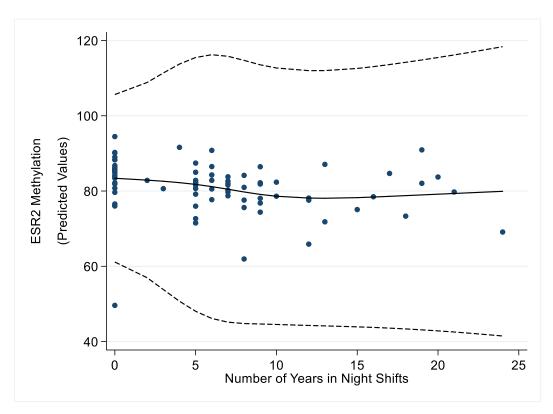
^{*} Number of years in night shifts modeled as a restricted cubic spline with four knots at values 0, 6, 9, 17; other variables in the model include ever/never night shift, age, BMI, smoking habit, oral contraceptive use, and an interaction term between parity and marital status/age at marriage.


Figure S2. Association* between number of years in night shifts and *CDKN2A* methylation.

^{*} Number of years in night shifts modeled as a restricted cubic spline with four knots at values 0, 6, 9, 17; other variables in the model include ever/never night shift, age, BMI, smoking habit, oral contraceptive use, and an interaction term between parity and marital status/age at marriage.


Figure S3. Association* between number of years in night shifts and *BRCA1* methylation.

^{*} Number of years in night shifts modeled as a restricted cubic spline with four knots at values 0, 6, 9, 17; other variables in the model include ever/never night shift, age, BMI, smoking habit, oral contraceptive use, and an interaction term between parity and marital status/age at marriage.


Figure S4. Association* between number of years in night shifts and *BRCA2* methylation.

^{*} Number of years in night shifts modeled as a restricted cubic spline with four knots at values 0, 6, 9, 17; other variables in the model include ever/never night shift, age, BMI, smoking habit, oral contraceptive use, and an interaction term between parity and marital status/age at marriage.

Figure S5. Association* between number of years in night shifts and *ESR1* methylation.

^{*} Number of years in night shifts modeled as a restricted cubic spline with four knots at values 0, 6, 9, 17; other variables in the model include ever/never night shift, age, BMI, smoking habit, oral contraceptive use, and an interaction term between parity and marital status/age at marriage.

Figure S6. Association* between number of years in night shifts and *ESR2* methylation.

^{*} Number of years in night shifts modeled as a restricted cubic spline with four knots at values 0, 6, 9, 17; other variables in the model include ever/never night shift, age, BMI, smoking habit, oral contraceptive use, and an interaction term between parity and marital status/age at marriage.

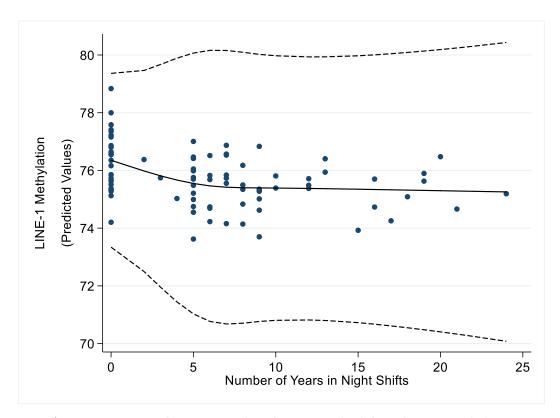
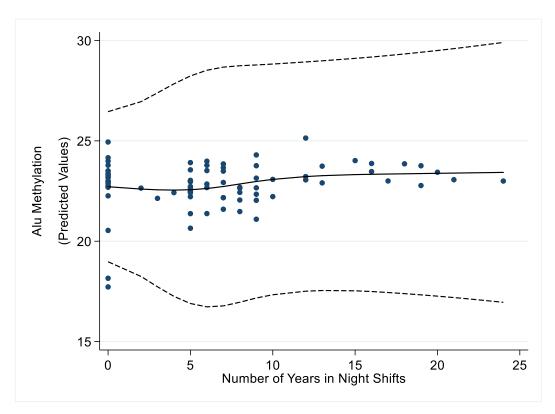



Figure S7. Association* between number of years in night shifts and LINE-1 methylation.

^{*} Number of years in night shifts modeled as a restricted cubic spline with four knots at values 0, 6, 9, 17; other variables in the model include ever/never night shift, age, BMI, smoking habit, oral contraceptive use, and an interaction term between parity and marital status/age at marriage.

Figure S8. Association* between number of years in night shifts and *Alu* methylation.

^{*} Number of years in night shifts modeled as a restricted cubic spline with four knots at values 0, 6, 9, 17; other variables in the model include ever/never night shift, age, BMI, smoking habit, oral contraceptive use, and an interaction term between parity and marital status/age at marriage.

Table S1. Primer sequences and polymerase chain reaction (PCR) conditions for DNA methylation analysis.

Genes	Forward primer (5' to 3')	Reverse primer (5' to 3')	Sequencing primer (5' to 3')	PCR conditions
				95°C for 60s,
TP53	Biotin-TTAGGAGTTTATTTAATTTAGGGAAG	TATCCAACTTTATACCAAAAACCTC	TCCAAAAAACAAATAACTACTAAACTC	57°C for 60s,
				72°C for 60s
				95°C for 30s,
CDKN2A	AGGGGTTGGTTATTAG	BIO- CTACCTACTCTCCCCCTCTC	GGTTGGTTATTAGAGGGT	58°C for 40s,
				72°C for 30s
				95°C for 30s,
BRCA1	ATTTAGAGTAGAGGGTGAAGG	Biotin-TCTATCCCTCCCATCCTCTAATT	TTGAGAAATTTTATAGTTTGTTTT	54°C for 45s,
				72°C for 45s
				95°C for 30s,
BRCA2	GTTGGGATGTTTGATAAGGAATTT	Biotin- ATCACAAATCTATCCCCTCAC	GTTATATTGAGAAATATT	55°C for 30s,
				72°C for 30s
				95°C for 30s,
ESR1	GTAGTTTAAGATTTTTTTGGAG	Biotin- CCAAATAATAAAACACCTACTAACC	ATTTGGATAGTAGTAAGTT	48°C for 30s,
				72°C for 30s
				95°C for 30s,
ESR2	GTGTTGTGGTTAATATTTGGGTAT	Biotin-CACCAAAAACTCTTTTAAAATTCC	TTTTTTTTTAGTGGTTTAT	60°C for 30s,
				72°C for 30s
				95°C for 30s,
LINE-1	TTTTGAGTTAGGTGTGGGATATA	Biotin-AAAATCAAAAAATTCCCTTTC	AGTTAGGTGTGGGATATAGT	50°C for 30s,
				72°C for 30s

				96°C for 90s,
Alu	Biotin-TTTTTATTAAAAATATAAAAATT	CCCAAACTAAAATACAATAA	AATAACTAAAATTACAAAC	43°C for 60s,
				72°C for 120s

Forty-five cycles were performed for all PCR protocols except for the Alu one (40 cycles).

Table S2. Analyzed CpG islands on gene promoters.

Genes	Genes Chromosome		Amplicon end	CpGs (position)	Assembly	
TP53	17	7531409	7531628	7531486 7531473 7531469	b ~ 17	
11755			7531628	7531458	hg17	
		21965321	21965395	21965350		
				21965355		
				21965357		
CDKN2A	9			21965361	hg19	
				21965365		
				21965368		
				21965374		
		41277339	41277523	41277364		
				41277381		
BRCA1	17			41277389	hg19	
				41277392		
				41277394		
	? 13 32		32889749	32889561		
				32889570		
				32889579		
BRCA2		32889486		32889584	hg19	
DKCAZ		32007400		32889586	ng19	
				32889591		
				32889594		
				32889599		
		152129135	152129444	152129194		
				152129197		
ESR1	6			152129212	hg19	
				152129219		
				152129221		
ESR2	14	14 64749381		64749426	hg19	
ESINZ	14	04/49381	64749472	64749448	11819	

Table S3. Summary statistics for methylation (%) of specific genes and repetitive elements, and telomere length (T/S).

Biological Markers	Number of Observations	Mean	Standard Deviation	Minimum	Maximum
TP53	94	6.28	1.49	3.28	10.89
CDKN2A	94	2.04	0.90	0.84	5.11
BRCA1	94	4.08	1.15	2.28	7.69
BRCA2	89	5.26	2.00	2.35	11.91
ESR1	95	5.04	2.38	1.40	13.00
ESR2	91	81.23	7.14	46.87	91.95
LINE-1	93	75.71	0.99	73.34	78.47
Alu	93	22.83	1.34	15.58	24.73
Telomere length	95	0.79	0.26	0.05	1.90

Table S4. Association between number of years in night shifts and gene-specific methylation, methylation of repetitive elements, and telomere length, according to duration of work in night shifts ($< 12 \text{ vs.} \ge 12 \text{ years}$).

Dialogical Manhama	<	12 years in night sl	nifts	2	≥ 12 years in night s	hifts
Biological Markers	β*	(95%CI)	р	β*	(95%CI)	р
TP53	0.03	(-0.20; 0.25)	0.82	-0.07	(-0.27; 0.13)	0.51
CDKN2A	0.12	(-0.004; 0.24)	0.06	-0.03	(-0.14; 0.09)	0.63
BRCA1	0.01	(-0.14; 0.17)	0.88	-0.08	(-0.23; 0.06)	0.24
BRCA2	-0.05	(-0.40; 0.30)	0.77	-0.004	(-0.32; 0.31)	0.98
ESR1	0.06	(-0.31; 0.42)	0.75	0.02	(-0.29; 0.33)	0.90
ESR2	-0.66	(-1.74; 0.42)	0.23	0.17	(-0.81; 1.14)	0.73
LINE-1	-0.04	(-0.19; 0.11)	0.58	-0.003	(-0.14; 0.13)	0.97
Alu	0.10	(-0.08; 0.28)	0.29	0.02	(-0.14; 0.19)	0.79
TL	0.06	(0.03; 0.09)	< 0.001	-0.07	(-0.10; -0.04)	< 0.001

TL: telomere length. * Number of years in night shifts modeled as linear spline allowing the slope of the function to change at 12 years; other variables in the model include ever/never night shift, age, BMI, smoking habit, oral contraceptive use, and an interaction term between parity and marital status/age at marriage.