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Abstract: Objective: To investigate the levels of a deoxynivalenol (DON) biomarker in the urine of
subjects living in two China provinces with different geographic locations and dietary patterns, and
estimate their dietary DON exposures and health risks. Methods: First morning urine samples were
collected on three consecutive days from 599 healthy subjects—301 from Henan province and 298
from Sichuan province—to analyze the total DON concentrations (tDON) after β-glucuronidase
hydrolysis using a high-performance liquid chromatography tandem mass spectrometry-based
method. The consumption of cereal foods in the previous 24 h before each urine collection was
recorded using a duplicate diet method. DON exposure levels were estimated based on the urinary
tDON concentrations. Results: Total DON were detected in 100% and 92% of the urine samples from
Henan and Sichuan, respectively. Mean urinary tDON concentrations were 52.83 ng/mL in Henan
subjects and 12.99 ng/mL in Sichuan subjects, respectively. The tDON levels were significantly higher
in the urine of Henan subjects than that of the Sichuan subjects (p < 0.001). Urinary tDON levels were
significantly different among age groups in both areas (Henan: p < 0.001; Sichuan: p = 0.026) and
were highest in adolescents aged 13–17 years, followed by children aged 7–12 years. Based on the
DON biomarker and exposure conversion reported by the European Food Safety Authority (EFSA),
the mean estimated dietary intakes of DON were 1.82 µg/kg bw/day in Henan subjects and 0.45 µg/kg
bw/day in Sichuan subjects. A total of 56% of Henan subjects and 12% of Sichuan subjects were
estimated to exceed the PMTDI of 1 µg/kg bw/day. Consistent with urinary tDON levels, the highest
estimated dietary DON intakes were also in children and adolescents aged 7–17 years. For all kinds
of wheat-based foods except dumplings, the consumptions were significantly higher in Henan than
those in Sichuan. The mean consumption of steamed buns was 8.4-fold higher in Henan (70.67 g/d)
than that in Sichuan (8.45 g/d). The mean consumption of noodles in Henan (273.91 g/d) was 3.6-fold
higher than that in Sichuan (75.87 g/d). Conclusions: The levels of urinary DON biomarker and the
estimated dietary DON intakes in Henan province were high and concerning, especially for children
and adolescents. The overall exposure level of Sichuan inhabitants was low.
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1. Introduction

Deoxynivalenol (DON), also known as “vomitoxin”, is one of the most commonly occurring
mycotoxins in the world, especially in temperate regions [1,2]. It belongs to group B trichothecenes
and is produced mainly by Fusarium graminearum and Fusarium culmorum. Cereal grains including
wheat, barley, rye, maize, and oats are the predominant sources of DON exposure [3,4]. The main
adverse effects of DON exposure found in animal experiments are gastroenteritis, growth inhibition,
immunologic dysregulation, and impairments of reproductive function [2,5–10]. There were also
a number of reports on human acute intoxications of DON in China and India in the 1980s and
1990s, with cardinal symptoms of nausea, vomiting, diarrhea, abdominal pain, and headaches [11,12].
Although human health effects related to chronic exposure to DON are lacking, given the adverse effects
revealed in animal studies, its mechanisms of action, and the ubiquitous contamination of DON, human
exposure to DON is regarded as an important food safety issue [13]. To protect human health, the Joint
FAO/WHO Expert Committee on Food Additives (JECFA) established a group provisional maximum
tolerable daily intake (PMTDI) for DON and its acetylated derivatives (3-Ac-DON and 15-Ac-DON)
of 1 µg/kg bw/day [11]. In response, many countries including the European Union, Norway, Japan,
Pakistan, and China performed DON exposure assessment in corresponding populations [14–18].

The traditional method to assess the exposure to DON is based on representative food
contamination data combined with food consumption data. Similar to all mycotoxins, the distribution
of DON in foods exhibits high heterogeneity, and is thus subject to poor food sampling
representativeness [19]. The inaccuracy in food consumption measurement and the multiple food
sources of DON in diets contribute to the difficulty for reliable exposure assessment. With the
understanding of DON metabolism in vivo and the development of analytical methods of DON
biomarkers, assessment of DON exposure based on biomarkers is considered to be an advanced
approach, and has been used in an increasing number of studies [20–23] because it avoids the influence
by the heterogeneous distribution of DON in food samples and the variation of DON concentration in
foods due to food processing [19]. Many studies conducted in the past decade have demonstrated
that the main fraction of DON ingested is excreted in the urine in its unmetabolized form (free
DON) and DON-glucuronides (DON-GlcA), including DON-15-glucuronide (DON-15-GlcA) and
DON-3-glucuronide (DON-3-GlcA) [19,24–26]. The sum of free DON and DON-GlcA in human urine,
i.e., total DON (tDON), was well correlated with the consumption of DON-contaminated cereals, and is
thus considered an appropriate biomarker of DON exposure for risk assessment [27–30]. In addition to
DON, deepoxy-deoxynivalenol (DOM-1) and its glucuronides are also frequent metabolites excreted
in urine, especially in children [31]. However, the detection rate and content level of DOM-1 are much
lower than those of DON [12,23]. Thus, DOM-1 was not a preferred biomarker of exposure, especially
in large human epidemiological studies.

China is a country that is mainly located in a temperate zone, and the grain-based dietary pattern
makes Chinese residents at relatively high risk due to DON exposure. Results of dietary exposure
assessment indicated high exposure levels in some Chinese populations [18]. However, to date,
few biomonitoring studies have been conducted in China, and there are very limited data on levels of
DON biomarkers in Chinese people. To fill in the data gap, we conducted a survey in two Chinese
provinces located in the north (Henan province) and south (Sichuan province), respectively, with very
different consumption patterns of staple foods (Henan inhabitants consume wheat as their staple food,
whilst those in Sichuan consume rice as their staple food). The two selected provinces can represent two
typical DON exposure scenarios in China. The aim of this study was to investigate the levels of DON
biomarker in the urine of subjects living in the two provinces with different geographic locations and
dietary patterns, and estimate their dietary DON exposures as well as the corresponding health risks.
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2. Materials and Methods

2.1. Subjects Recruitment

Subjects aged above 1 year were randomly recruited from several villages and communities in
Henan province (n = 301) and Sichuan province (n = 298) during November to December 2015. All the
subjects included had been living in the surveyed areas for at least 1 year, and were apparently healthy.
Subjects with diabetes were excluded for the possible change of cereal consumption habits.

This study was approved by the ethics committee of China National Center for Food Safety Risk
Assessment (identification code: 2016030063). Informed written consents were obtained from all the
subjects or their statutory guardians when juveniles were considered.

2.2. Data and Sample Collection

Approximate 40 mL of first morning urine samples were collected from each subject and were
immediately frozen at −20 ◦C on three consecutive days (two working days and a weekend day).
The consumption of cereal-based foods in ready-to-eat state in the previous 24 h before each urine
sample collection were recorded using a duplicate diet method. Demographic and anthropometric
data including age, gender, and body weight were recorded in the meantime. All the field worker
investigators were trained before the survey started.

2.3. Laboratory Analysis

The three urine samples collected from each subject were thawed and mixed by equal proportion.
All the mixtures were centrifuged (5000× g, 15 min) and then processed with β-glucuronidase digestion
to release DON from its glucosiduronide conjugates. The tDON concentration in each urine sample
after enzyme digestion was analyzed as the exposure biomarker using a high-performance liquid
chromatography tandem mass spectrometry-based method described by Brera et al. [25] and Deng
et al. [32]. The limit of detection (LOD) and limit of quantitation (LOQ) for tDON in urine were
0.5 ng/mL and 1.0 ng/mL, respectively.

2.4. Estimation of Dietary DON Intakes

Dietary intake of DON was estimated based on urinary tDON concentration using the following
formula reported by European Food Safety Authority (EFSA) and others [12,32–34] for calculation.

Dietary DON intake (µgkg bw/day) =
Urinary tDON (µgL) × 24 h urine volume(L)

Excretion rate (0.7) × Body weight (kg)
(1)

The average excretion rate was assumed to be 70% [12], and the 24-h urine volume was assumed
to be 0.5 L for children aged 1–6 years, 1.0 L for children and adolescents aged 7–17 years, and 1.5
L for adults according to the published data [12,23,33,35]. The estimated dietary DON intakes were
compared to the PMTDI of 1 µg/kg bw/day to assess the risk of DON exposure.

2.5. Statistical Analysis

SAS 9.4 (SAS Institute Inc., Cary, NC, USA) was used for statistical analysis. DON concentrations
of unquantified samples were set as half value of the LOD. Data of urinary tDON concentrations
and estimated dietary DON intakes didn’t fit normal distribution with or without logarithmic
transformation, and were described by means, standard deviations, and quantiles. Differences in the
above data between the two surveyed areas or genders were analyzed using a Wilcoxon independent
sample rank sum test. Differences in urinary tDON levels and estimated dietary DON intakes among
age groups were analyzed using the Kruskal–Wallis H-test. Findings were considered statistically
significant at p-value < 0.05.
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3. Results

3.1. Characteristics of Subjects

A total of 599 subjects, 301 from Henan province (107 males and 194 females) and 298 from
Sichuan province (146 males and 152 females), were included in the analysis. The mean body weight
was 61.53 kg for male subjects and 51.41 kg for female subjects. All the subjects were allocated into five
age groups, i.e., 1–6 years, 7–12 years, 13–17 years, 18–59 years, and ≥60 years. The number of subjects
in each age group were 65, 61, 64, 260, and 149, and the mean body weight were 18.03 kg, 35.08 kg,
53.93 kg, 66.48 kg, and 62.47 kg, respectively.

3.2. Urinary tDON Concentrations of the Subjects

Total DON was detected in most of the urine samples after enzyme hydrolysis with a positive rate
of 100% in samples from Henan subjects and 91.9% in Sichuan subjects’ samples. Descriptive data of
urinary tDON concentrations by area, age, and gender were presented in Table 1.

Table 1. Urinary total deoxynivalenol (tDON) concentrations of the subjects.

Age/Area n
Total DON (ng/mL)

p
Mean ± SD P25 P50 P75 P90 Maximum

1–6
years

Henan 35 55.71 ± 48.55 19.76 41.99 82.58 100.16 224.14
Sichuan 30 10.13 ± 12.73 2.03 5.43 12.30 27.90 56.30 <0.001

7–12
years *

Henan 32 78.36 ± 60.94 42.25 53.24 122.77 159.83 240.87
Sichuan 29 15.86 ± 29.24 2.83 6.10 14.60 31.09 148.00 <0.001

13–17
years *#

Henan 36 100.18 ± 76.35 47.05 81.17 140.25 214.80 335.84
Sichuan 28 24.65 ± 25.04 7.85 12.95 33.15 69.20 85.30 <0.001

18–59
years

Henan 121 47.89 ± 47.22 16.58 32.54 63.68 102.94 228.18
Sichuan 139 12.11 ± 20.47 2.07 5.40 11.70 33.00 149.62 <0.001

≥60
years *

Henan 77 26.54 ± 38.75 9.96 14.74 30.86 47.81 247.08
Sichuan 72 10.2 ± 12.69 1.38 5.76 13.45 24.40 69.98 <0.001

Henan
Male 107 35.72 ± 37.63 12.24 24.09 42.82 82.58 228.18

Female 194 62.26 ± 61.94 16.60 43.15 86.62 152.16 335.84 <0.001
Total 301 52.83 ± 55.95 14.84 34.33 68.25 129.31 335.84

Sichuan
Male 146 13.71 ± 24.41 1.85 6.33 12.82 32.30 149.62

Female 152 12.31 ± 14.84 2.61 5.76 17.55 30.70 69.41 0.325
Total 298 12.99 ± 20.08 2.10 6.02 14.92 31.50 149.62

For each subject, the tDON concentration was derived from a mixture of three urine samples collected on three
consecutive days. * Urinary tDON levels were significantly different (p < 0.05) compared with 18–59 years group in
Henan subjects. # Urinary tDON levels were significantly different (p < 0.05) compared with 18–59 years group in
Sichuan subjects.

Mean urinary tDON concentrations were 52.83 ng/mL in Henan subjects and 12.99 ng/mL in
Sichuan subjects, respectively. The median and maximum values were 34.33 ng/mL and 335.84 ng/mL
in Henan whilst 6.02 ng/mL and 149.62 ng/mL in Sichuan, respectively. Total DON levels were
significantly higher in the urine of Henan subjects than those of Sichuan subjects (p < 0.001). Between
genders, urinary tDON levels were significantly higher in female subjects than those in male subjects
in Henan (p < 0.001), and the mean values were 62.26 ng/mL and 35.72 ng/mL, respectively. However,
in Sichuan province, urinary tDON levels were not significantly different between genders (p = 0.325),
and the mean values were 13.71 ng/mL in male subjects and 12.31 ng/mL in female subjects.

Among age groups, urinary tDON levels were significantly different in both areas (Henan:
p < 0.001; Sichuan: p = 0.026) with the mean values of 55.71 ng/mL, 78.36 ng/mL, 100.18 ng/mL,
47.89 ng/mL, and 26.54 ng/mL in Henan subjects aged 1–6 years, 7–12 years, 13–17 years, 18–59 years,
and ≥60 years, and 10.13 ng/mL, 15.86 ng/mL, 24.65 ng/mL, 12.11 ng/mL, and 10.20 ng/mL in
corresponding age groups in Sichuan. Urinary tDON concentrations were highest in subjects aged
13–17 years in both areas, followed by children aged 7–12 years, whereas the lowest levels were in the
elderly (≥60 years). Compared with adults (18–59 years), the difference was statistically significant for
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7–12 years (p = 0.010), 13–17 years (p < 0.001), and ≥60 years (p < 0.001) in Henan, whilst in Sichuan, the
difference was significant for 13–17 years (p = 0.013) only. Urinary tDON concentrations were significantly
higher in Henan subjects than those reported in Sichuan subjects in all age groups (all p values < 0.001).

3.3. Estimated Dietary DON Intakes

The estimated dietary DON intakes based on urinary tDON concentrations and the results of
risk assessment were provided in Table 2. The mean and median estimated dietary intakes of DON
were 1.82 µg/kg bw/day and 1.17 µg/kg bw/day in Henan subjects and 0.45 µg/kg and 0.21 µg/kg
bw/day in Sichuan subjects. A total of 55.8% of Henan subjects and 12.1% of Sichuan subjects were
estimated to exceed the PMTDI of 1 µg/kg bw/day. Consistent with urinary tDON levels, the estimated
dietary DON intakes were significantly higher in Henan than those in Sichuan (p < 0.001) and were
also significantly different among age groups (p < 0.001). Mean estimated dietary intakes of DON
were 2.22 µg/kg bw/day, 3.80 µg/kg bw/day, 2.64 µg/kg bw/day, 1.52 µg/kg bw/day, and 0.90 µg/kg
bw/day in Henan subjects aged 1–6 years, 7–12 years, 13–17 years, 18–59 years, and ≥60 years, whilst
0.40 µg/kg bw/day, 0.63 µg/kg bw/day, 0.67 µg/kg bw/day, 0.41 µg/kg bw/day, and 0.39 µg/kg bw/day
in corresponding age groups in Sichuan. There was a significant difference in estimated dietary DON
intakes among age groups in Henan (p < 0.001), with the highest intakes in children and adolescents
aged 7–17 years, whilst the lowest intakes were in subjects aged 60 years and over. Compared with
adults (18–59 years), the difference was statistically significant for 7–12 years, 13–17 years, and ≥60
years (all p values < 0.001) in Henan. However, for Sichuan subjects, the estimated dietary DON
intakes were not significantly different among age groups. 81.6% (84/103) of juveniles (<18 years) in
Henan, and 16.1% (14/87) of juveniles in Sichuan were estimated to exceed the PMTDI.

Table 2. Estimated dietary DON intakes of the subjects.

Age Group
Henan Sichuan

p
n Mean ± SD Median P90

% Exceeding
PMTDI n Mean ± SD Median P90

% Exceeding
PMTDI

1–6 years 35 2.22 ± 1.68 1.83 4.31 74.29 30 0.40 ± 0.51 0.24 1.00 10.00 <0.001
7–12 years * 32 3.80 ± 3.73 2.23 9.93 87.50 29 0.63 ± 0.96 0.25 1.70 20.69 <0.001
13–17 years * 36 2.64 ± 1.93 2.01 5.93 83.33 28 0.67 ± 0.71 0.36 2.08 17.86 <0.001
18–59 years 121 1.52 ± 1.60 1.06 3.15 52.07 139 0.41 ± 0.64 0.16 1.14 11.51 <0.001
≥60 years * 77 0.90 ± 1.31 0.46 1.73 27.27 72 0.39 ± 0.52 0.22 0.91 8.33 <0.001

Total 301 1.82 ± 2.10 1.17 4.28 55.81 298 0.45 ± 0.65 0.21 1.14 12.08 <0.001

PMTDI: provisional maximum tolerable daily intake. For each subject, the food consumption was the mean value of
food consumptions on three consecutive days. * Estimated dietary DON intakes were significantly different (p <
0.05) compared with 18–59 years group in Henan subjects.

3.4. Consumption of Cereal-Based Foods

Table 3 presents the consumptions of the main kinds of cereal-based foods in the two surveyed
areas, including steamed buns, noodles, steamed rice, rice porridge, pancakes, steamed stuffed buns,
and dumplings. The top three most frequently consumed cereal-based foods in Henan province
were noodles, steamed rice, and steamed buns, and the percentage of eaters were 96.01% (289/301),
86.38% (260/301), and 72.43% (218/301) in sequence. The most frequently consumed cereal-based
foods were steamed rice, rice porridge, and noodles in Sichuan with the percentage of eaters at 94.97%
(283/298), 36.24% (108/298), and 22.82% (68/298), respectively. For all kinds of wheat-based foods except
dumplings, the consumptions were significantly higher in Henan than those in Sichuan (steamed buns,
noodles, and pancakes: p < 0.001; steamed stuffed buns: p = 0.001). Among wheat-based foods, steamed
buns and noodles were the primary kinds with the highest frequency of consumption in both areas.
The mean consumption of steamed buns was 8.4-fold higher in Henan (70.67 g/d) than that in Sichuan
(8.45 g/d). The mean consumption of noodles in Henan (273.91 g/d) was 3.6-fold higher than that in
Sichuan (75.87 g/d). For rice-based foods, the consumptions of steamed rice were much higher in Sichuan
than those in Henan (p < 0.001), with the mean consumptions of 561.20 g/d and 120.33 g/d, respectively.
The consumptions of rice porridge were not significantly different between the two areas (p = 0.267).
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Table 3. Consumption of the cereal-based foods.

Food Category
Henan Sichuan

Z p
Eaters%
(Eaters/Respondents) Mean ± SD Median Eaters%

(Eaters/Respondents) Mean ± SD Median

Wheat-derived foods
Steamed buns 72.43 (218/301) 70.76 ± 79.48 47.63 6.38 (19/298) 8.45 ± 35.95 0 15.45 <0.001
Noodles 96.01 (289/301) 273.91 ± 175.67 241.67 22.82 (68/298) 75.87 ± 176.53 0 15.57 <0.001
Pancakes 12.62 (38/301) 6.60 ± 22.18 0 1.34 (4/298) 1.14 ± 10.59 0 5.37 <0.001
Steamed stuffed bun 11.30 (34/301) 18.19 ± 64.78 0 4.36 (13/298) 3.42 ± 21.17 0 3.25 0.001
Dumplings 5.98 (18/301) 9.25 ± 41.29 0 2.68 (8/298) 6.49 ± 42.12 0 1.923 0.054

Rice-derived foods
Steamed rice 86.38 (260/301) 120.33 ± 93.30 106.27 94.97 (283/298) 560.74 ± 421.57 494.3 –17.34 <0.001
Rice porridge 40.53 (122/301) 98.33 ± 164.23 0 36.24 (108/298) 161.11 ± 273.75 0 –0.95 0.343

The consumption of all foods was weighed at the ready-to-eat state after cooking with water included.



Int. J. Environ. Res. Public Health 2019, 16, 2169 7 of 11

4. Discussion

DON exposure varies considerably with geographic location, climatic conditions, economic
development, as well as agricultural infrastructure, policy, and food adequacy [1]. The two surveyed
areas in this study, Henan province and Sichuan province, were located in separate parts of China
with discrepant climate and dietary patterns so that there might be differences in DON exposure levels
between the two areas. The assessment performed in this study confirmed the wide difference in
urinary tDON levels and estimated dietary DON exposure between subjects in Henan and Sichuan.
Overall, the estimated DON exposures of Henan subjects were high, with a mean exposure of 1.82 µg/kg
bw/day and more than half (56%) of individuals exceeding the PMTDI, whereas the exposures of
Sichuan subjects were low, with a mean exposure of 0.45 µg/kg bw/day and 12% of individuals
exceeding the PMTDI. Other studies conducted in Chinese populations also revealed interregional
differences in DON exposure. Meky et al. [36] investigated the urinary DON levels in Linxian county,
Henan province, and Gejiu city, Yunnan province (in southern China) in a small-scale study (n = 15).
The mean urinary DON level was found to be 37 ng/mL in Henan subjects, which was lower than the
mean value of Henan subjects (52.83 ng/mL) obtained in our study. The mean urinary DON level was
12 ng/mL in Yunnan subjects in Meky’s study, which was close to the mean value of Sichuan subjects
(12.99 ng/mL) in our study. Assessments performed based on food analysis nationwide showed that the
dietary exposures to DON were higher in northern China than those in southern China with the mean
exposures about 1.15 µg/kg bw/day and 0.41 µg/kg bw/day, respectively [18], which was consistent
with the results of this study, and thus manifested that the methods used in our study to estimate
dietary DON exposure based on urinary DON biomarker were reliable.

DON mainly contaminates cereal crops including wheat, corn, barley, rye, and oats, and humans
are exposed to DON predominantly by consuming cereal-based foods [4,11]. It has been demonstrated
that urinary DON concentrations were well correlated with the consumptions of DON-contaminated
cereals [27]. In this study, consumptions of cereal-based foods by the subjects were analyzed, and great
differences in cereal consumption patterns were recognized between the two areas. The consumptions
of wheat-based foods in Henan were significantly higher than those in Sichuan, while the consumptions
of rice-based foods were on the contrary, which was consistent with other studies [37]. Risk assessment
performed in the Chinese population indicated that wheat-based food products were the main source
of DON exposure [18]. Thus, it is believed that the diversity in the consumption of wheat-based
foods was an important reason for the difference in concentrations of the urinary DON biomarker as
well as estimated dietary DON exposures between the two areas. Besides, many studies reported
that Henan was a province with a high incidence of Fusarium head blight and high levels of DON
contamination [38,39]_ENREF_40. Therefore, different DON contamination levels in foods might be
another reason for the interregional difference in DON exposure.

There are some other studies reporting the levels of DON biomarkers in human urine around
the world. Several studies were conducted in United Kingdom (UK) adults, and the mean urinary
tDON levels ranged from 7.1 to 17.8 ng/mL [27–29,40], which was approximate to the mean level of
Sichuan adults in this study (18–59 years: 12.11 ng/mL). Wallin et al. [21,41] analyzed the urinary
tDON levels in Sweden adults, and a median level of 2.9 ng/mL and a mean level of 4.4 ng/mL were
obtained, which were even lower than the Sichuan adults in our study (median: 5.4 ng/mL; mean:
12.11 ng/mL). The results of other studies in European sites include: the median urinary tDON level
of 76 France subjects, which was 6.8 ng/ml [42]; the mean urinary tDON level of 52 Italy subjects
aged 3–85 years, which was 11.9 ng/ml [34]; and the mean urinary tDON in Germany was reported
to be 13.2 ng/mL [33]. Compared to the above studies, the urinary tDON levels of Sichuan subjects
reported in our study were at the similar level with the European populations, while the urinary
tDON levels of Henan subjects (median value: 34.33 ng/mL; mean value: 52.83 ng/mL) were much
higher than those of the Europeans. However, there have been studies conducted in Belgium and
Croatia that reported even higher urinary tDON concentrations than those in Henan, with mean values
of approximately 65.2 to 167.5 ng/ml [22,43]. Studies carried out in regions other than Europe also



Int. J. Environ. Res. Public Health 2019, 16, 2169 8 of 11

revealed the variability in levels of urinary DON biomarkers in different populations. The mean level
of urinary tDON in Haiti subjects was reported to be 20.2 ng/ml [33]. Bangladesh adults and pregnant
women were exposed to much lower levels of DON, with mean urinary tDON concentrations of 0.17
and 0.86 ng/mL, respectively, as reported by Ali et al. [20,44].

Urinary tDON levels and estimated dietary DON exposures were highest in children and
adolescents in this study. This was consistent with the data obtained from the UK, Italian,
and Norwegian populations reported in the EFSA’s report [12]. Papageorgiou’s study [23] also
presented a relatively higher level of urinary tDON in UK children and adolescents (mean concentrations
were approximately 20.6 to 38.2 ng/mL in children aged 3–9 years and approximately 20.6 to 28.8 ng/mL
in adolescents aged 10–17 years) compared with that in the UK adults reported above. Mitropoulou’s
study [31] reported a higher positive rate of urinary DON in children (94%) than in adults (63%). Makri
et al. [45] reviewed children’s susceptibility to chemicals, and indicated that their greater dietary intake
on a weight basis compared with adults resulted in higher exposure to chemicals in children. Thus,
the reason for higher DON exposure in children in our study was believed to be their higher cereal food
intake per kg of body weight. In addition to the higher exposure level, children and adolescents are
considered to be more sensitive to the adverse effects caused by DON due to the ongoing development
of their body system and limited ability for detoxification compared with adults [8,45]. Therefore,
DON exposure in children and adolescents deserves attention from the government and the public,
especially in Henan province, where 81.6% of the juvenile subjects were estimated to exceed the PMTDI
set by JECFA.

The limitations of this study include the lack of 24-h urine collection; as a result, the estimation of
dietary DON intake was not accurate. Furthermore, the carry over of DON from dietary intakes to
urine may be estimated if the DON contamination data in cereal-based foods consumed by the subjects
were obtained. There is also a certain degree of uncertainty in the estimation of dietary DON exposure
due to the individual variation of DON excretion rate and the different calculating methods.

5. Conclusions

In summary, this study revealed high levels of the urinary DON biomarker and estimated dietary
DON intakes in Henan, especially in children and adolescents. This raised serious concerns regarding
the high risk of DON exposure in Henan province. Although a small number of subjects in Sichuan
exceeded the PMTDI, the overall exposure level of Sichuan inhabitants was low. To get a full picture of
the urinary DON biomarker levels of Chinese residents and find out other high-risk populations, there
is an urgent need for larger-scale studies in different regions of China.
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