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Abstract: This present study evaluates three isolates of Trichoderma as plant growth promoting or 
biological control agents: Trichoderma aggressivum f. sp. europaeum, Trichoderma saturnisporum, and 
the marine isolate obtained from Posidonia oceanica, Trichoderma longibrachiatum. The purpose is to 
contribute to an overall reduction in pesticide residues in the fruit and the environment and to a 
decrease in chemical fertilizers, the excess of which aggravates one of the most serious abiotic 
stresses, salinity. The tolerance of the different isolates to increasing concentrations of sodium 
chloride was evaluated in vitro, as well as their antagonistic capacity against Pythium ultimum. The 
plant growth promoting capacity and effects of Trichoderma strains on the severity of P. ultimum on 
melon seedlings under saline conditions were also analysed. The results reveal that the three isolates 
of Trichoderma, regardless of their origin, alleviate the stress produced by salinity, resulting in larger 
plants with an air-dry weight percentage above 80% in saline stress conditions for T. longibrachiatum, 
or an increase in root-dry weight close to 50% when T. aggressivum f. sp. europaeum was applied. 
Likewise, the three isolates showed antagonistic activity against P. ultimum, reducing the incidence 
of the disease, with the highest response found for T. longibrachiatum. Biological control of P. ultimum 
by T. aggressivum f. sp. europaeum and T. saturnisporum is reported for the first time, reducing disease 
severity by 62.96% and 51.85%, respectively. This is the first description of T. aggressivum f. sp. 
europaeum as a biological control agent and growth promoter. The application of these isolates can 
be of enormous benefit to horticultural crops, in both seedbeds and greenhouses. 
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1. Introduction 

The growing concern of consumers for food safety and for the social and environmental 
sustainability of cultivation systems has a particular impact on the fruit and vegetable production 
sectors. These sectors are facing increasingly stringent restrictions that large distribution chains 
establish in their purchasing specifications regarding the presence of active ingredients in multi-
waste pesticide analyses. These are much more restrictive than those established by community 
legislation itself, both in terms of the amount (less than the maximum residue limit, MRL) and in 
terms of the number of active substances detected that they permit [1]. This circumstance forces us to 
look for new tools for crop protection that are not based on chemical control. Currently, in important 
areas of intensive vegetable production such as Almería (Spain), there has been a notable advance in 
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the biological control of pests, but not in that of diseases, the latter still being quite dependent on the 
use of agrochemicals. The use of microorganisms as biological control agents (BCAs) of diseases is 
one of the keys to production with less phytosanitary residues and greater food safety. In addition, 
many of the BCAs marketed act as promoters of plant growth. This circumstance permits action on 
another of the important problems of intensive production systems, environmental pollution due to 
the excessive use of fertilizers. The search for new tools to reduce the use of pesticides and chemical 
fertilizers is a goal that must be achieved in the medium term. 

The productivity of agricultural lands in arid and semi-arid environments is affected by the 
accumulation of salts and the loss of soil organic matter [2]. The salinity of the soil, as well as the use 
of water with a high salt content for irrigation, leads to a reduction in plant growth and crop yields 
[3,4]. Likewise, the presence of salts affects the assimilation of nutrients by plants and the microbial 
activity of the soil. In addition, it increases the severity of the effects of phytopathogens and influences 
biological control agents and the interaction among them. There are numerous references to the 
buffering role of microorganisms in the plant rhizosphere [4–6]. Generally, this effect is due to 
molecular, biochemical and physiological changes in the plant elicited by microorganisms [7]. 
Paecilomyces formosus mitigates the negative impact of salt stress on cucumber plants by producing 
gibberellins and indoleacetic acid [8]. Likewise, the association with endophytic fungi such as 
Penicillium sp. and Phoma glomerata alters jasmonic acid levels, increases salicylic acid values and 
reduces abscisic acid synthesis, reducing the detrimental effects of salinity [9]. Coinoculation of 
Aspergillus niger and Trichoderma harzianum alleviates the deleterious effects of salt stress on wheat 
seedlings through the solubilisation of P and joint production of indoleacetic acid [10]. Yasmeen and 
Siddiqui [11] detected that the presence of Trichoderma in a saline environment increased the activity 
of antioxidant enzymes. Studies carried out with T. harzianum confirmed its high soil colonisation 
and yield in the production of tomatoes grown under plastic with high-salinity irrigation [12]. 
Nevertheless, there are microorganisms that are not adapted to conditions of high salinity. Such is 
the case for some isolates of Trichoderma, whose biofungicide and plant promoter role may be 
compromised by their low osmotolerance [13,14]. For this reason, numerous studies have been 
carried out in the search for halotolerant biological control agents. Gal-Hemed et al. [15] isolated T. 
atroviride and T. asperelloides from the Mediterranean sponge Psammocinia sp. capable of reducing 
Rhizoctonia solani damping-off disease in beans and also inducing defence responses in cucumber 
seedlings against Pseudomonas syringae pv. lachrymans. Likewise, Trichoderma isolates of marine 
sediments, invertebrates and algae have been obtained [16,17]. On the other hand, breeding of 
Trichoderma has been conducted, with the same objective of increasing the benefits of biological 
control, as well as resisting adverse conditions [13]. 

Therefore, the goals of the present study were: (a) to evaluate the tolerance of different 
concentrations of NaCl on three isolates of Trichoderma obtained from suppressive soils, mushroom 
culture substrates, and Posidonia oceanica; (b) to evaluate the in vitro antagonistic capacity of these 
isolates against Pythium ultimum; (c) to study the capacity to promote the growth of melon seedlings 
of Trichoderma strains under increasing salinity concentrations; and finally, (d) to evaluate the 
biological control of the disease caused by P. ultimum in melon seedlings, exerted by Trichoderma 
strains under various levels of salt stress. 

2. Materials and Methods 

2.1. Fungal Isolates 

The isolates selected in this study have been obtained from different environments. Trichoderma 
saturnisporum - (TS), obtained from suppressive soils, was selected for its known antagonistic activity 
and plant growth promotion in pepper and melon [18,19]. Trichoderma aggressivum f. sp. europaeum 
Tae52481 (TA) was isolated from samples of substrate used for Agaricus bisporus cultivation from 
mushroom farms located in Castilla-La Mancha (Spain). Trichoderma longibrachiatum (TL) was isolated 
from the roots of the endemic seagrass, Posidonia oceanica, sampled from the Mediterranean Sea in 
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Almeria, Spain, following the procedure of Vohník et al. [20]. Both were isolated by serial dilution 
technique on potato dextrose agar (PDA) medium and incubated at 25 °C for 5–7 days. 

Colony morphology of the pure cultured isolates TL and TA on potato dextrose agar (PDA, 
Difco) and conidiophore morphology examined by light microscopy and cryo-fracturing electron 
scanning microscopy (cryo-sem) [18] were consistent with the genus Trichoderma (Figure 1). 
Molecular identification of the selected fungi was conducted following the procedure described by 
Diánez et al. [18]. The sequence was analysed using a BLAST search in the GenBank database of the 
National Centre for Biotechnology Information (NCBI, http://blast.ncbi.nlm.nih.gov/Blast.cgi) and 
aligned to the nearest neighbours. The sequences have not been deposited in the GenBank database 
as they are subject to patent. 

 

Figure 1. Trichoderma isolates examined by electron and light microscopy. (A) Conidiophores with 
conidia of Trichoderma longibrachiatum; (B) Hyphae of Trichoderma saturnisporum; (C) Trichoderma 
aggressivum colonisation on melon root. (D) T. aggressivum mycelia around mycelium of Pythium 
ultimum. 

Melon seedlings showing lesions caused by Pythium ultimum were selected to obtain the 
inoculum, which was used as the test pathogen in antagonistic in vitro and in vivo assays. 

Each isolate was grown on PDA for 5 or 15 days at 25–27 ± 2 °C under dark conditions. Spore 
suspensions of Trichoderma isolates were prepared by flooding plates of 15-day-old cultures with 
sterile distilled water, scraping with a sterile glass rod and filtering, and adjusted to a concentration 
of 1·108 spores/mL with a Neubauer haemocytometer. 

2.2. Growth Conditions of the Fungal Strains in PDA with Differing Concentrations of NaCl 

Trichoderma and phytopathogen strains were cultured at 25 °C for 7 days in PDA. Mycelium 
discs (5 mm diameter) were obtained from the edges of the PDA plates and inoculated into new PDA, 
amended with various concentrations of NaCl (0, 1, 2, 5, 10, 15 or 20 g·L−1). The plates were incubated 
for 7 days at 25 and 35 °C. The colony diameters were recorded every day during culturing. The 
experiment was completely randomised with five replicates. Salt tolerance capacity of Trichoderma 
isolates was measured as the percentage reduction in linear growth calculated by (C − N)·100/C, 
where N is the maximum radius of the isolates grown on NaCl-supplemented medium and C is the 
radius of the isolates grown on NaCl-free medium. 

2.3. Dual Culture Antagonism Assays 

Trichoderma isolates were screened for their antagonism against Pythium ultimum by the 
confrontation assay of Santos and Diánez [21]. Petri dishes (9 cm diameter) containing 15 mL of PDA 
were prepared, amended with different concentrations of NaCl (0, 1, 2, 5, 10, 15, or 20 g·L−1). Petri 
dishes were sealed with parafilm and incubated in the dark at 25 °C for 4–7 days, until the growth in 
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the control plates reached the edge of the plates. The plates were then assessed by measuring the 
distances between pathogen and fungal cultures. Results were transformed into percentages of 
mycelium growth inhibition. These tests were carried out in quintuplicate. 

2.4. Evaluation of Growth Promotion Effects of Trichoderma Isolates on Melon Seedlings under Salinity 
Stress 

To determine the promoter effect of the different isolates of Trichoderma, melon seeds of the 
variety Piñonet (Piel de sapo) were disinfected with 2% hypochlorite for 3 min and washed 
abundantly with tap water to eliminate residues. Subsequently, the seeds were pregerminated in 
darkness in a humid room at 25 °C and transplanted to 300 mL pots into a commercial peat mix, with 
one seed per pot. Simultaneously to sowing, 5 mL of water (T0) or 5 mL spore suspension of each 
isolate of Trichoderma (TS, TA, or TL) was placed in each pot at 50 × 106 propagules/plant. The 
experiment was performed under greenhouse conditions. Each treatment consisted of 25 repetitions. 
Plants were fertilized daily with a commercial complex nutrient fertilizer. When the first true leaf had 
fully expanded, four different levels of NaCl concentrations, 0, 0.5, 1, 1.5 or 2 g·L−1, were given by 
manually drenching the media with approximately 50 mL of the solutions, once per day for 30 days, 
and with 100 mL per day for the following days, as the plants grew. The electrical conductivity (EC) 
of the solutions was recorded to be 2.1, 3.87, 5.30, 6.6 and 7.16 dS·m−1. After 45 days of culture, 10 
plants per treatment and control were analysed. Dry and fresh weight of the aerial part and roots 
were determined. 

2.5. Effects of Trichoderma Strains on the Severity of Pythium Ultimum in Melon Seedlings under Saline 
Conditions 

To obtain zoospores of Pythium ultimum, the procedure described by Marin et al. was followed 
[22]. The concentration of the zoospore suspension was adjusted to approx. 103 zoospores·mL−1, using 
a haemocytometer. The inoculum was used immediately, and 5 mL of the suspension was applied 
uniformly over the surface of the peat in each pot using a sterile micropipette. The pathogenicity test 
of P. ultimum on melon seedlings was carried out under greenhouse conditions, in the same manner 
as described above. The application of P. ultimum was performed after complete expansion of the 
second true leaf. The application of the different salt concentrations was carried out in the same 
manner as for the growth promotion test described above. Symptom severity was rated periodically, 
and a final disease severity index was estimated according to the following scale [23]: 0—healthy 
plant; 1—symptoms beginning; 2—moderate symptoms; 3—severely affected plant; and 4—dead 
plant. The experiments were conducted using completely randomised block designs. 

2.6. Statistical Analysis 

All data presented are the mean of five replicates of in vitro tests and ten replicates of pot 
experiments. Data were analysed using analysis of variance, conducted using the Statgraphics 
Centurion ver. XVI software. Results are expressed as mean value ± standard error of the mean. p-
values less than 0.05 were considered to be significant. 

3. Results 

3.1. Effects of Salinity and Temperature on Colony Growth of Trichoderma Isolates 

In Figure 2, the results obtained from mycelial growth of TS, TA, and TL are shown at different 
salt concentrations and temperatures (25 and 35 °C). As expected, there was no inhibition of TL 
mycelial growth at the different salt concentrations tested, nor were there differences in growth at 25 
and 35 °C. However, for both TS and TA, the presence of salt in the medium conditioned growth. 
This resulted in a drastic reduction of mycelial growth, from 66.9 (TS) and 76.75% (TA) from 2 and 
10 g·L−1, respectively. The temperature of 35 °C completely inhibited the mycelial growth of TA. No 



Int. J. Environ. Res. Public Health 2019, 16, 2053 5 of 11 

 

reduction in growth of P. ultimum was observed at 25 °C as salt concentration increased, except at 20 
g·L−1. No growth at 35 °C (Figure 2) was observed. 

 
Figure 2. Mycelial growth (cm) of Trichoderma isolates as affected by different concentrations of NaCl 
(0–20 g·L−1) and temperatures (25/35 °C). (A) Trichoderma aggressivum f. sp. europaeum. (B) T. 
longibrachiatum. (C) T. saturnisporum. (D) Pythium ultimum. Mean standard deviation is expressed in 
error bar (n = 5). For each isolate, columns marked with different letters indicate a significant 
difference at p < 0.05. 

3.2. Effects of Trichoderma Isolates on the Radial Growth of P. ultimum 

In Figure 3, the results obtained from the microbial antagonism for P. ultimum are observed. The 
highest percentages of inhibition of mycelial growth corresponded to the confrontations with TL, 
which were not affected under conditions of increasing salinity. The decrease in growth of TA and 
TS antagonist isolates had an impact on the microbial antagonism detected as the concentration of 
medium salt increased. Despite this, microbial antagonism values were high, considering the 
characteristic mycelial growth rate of this pathogen at any salt concentration.
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Figure 3. Antagonistic potential of Trichoderma isolates against P. ultimun (Py) in dual culture at 
different salinity levels on potato dextrose agar (PDA) medium. % mycelial inhibition was calculated 
as PIRG = (R1 − R2) ÷ R1 × 100, where: PIRG: percentage inhibition of radial mycelia growth of the 
pathogen, R1: radial growth of pathogen in control plates, R2: radial growth of pathogen in dual 
culture plates. a, b and c Means with the same letter are not significantly different (LSD) according to 
ANOVA test (p < 0.05). 

3.3. Promoter Effects of Trichoderma Isolates on Melon Seedlings and Salinity Treatments 

The effect of Trichoderma isolate application by irrigation on morphological parameters is shown 
in Table 1. The application of TS, TL and TA resulted in increases of both the aerial and radical part 
of the plant. These increases were statistically significant in some cases. Such promotion of plant 
growth also occurs under conditions of saline stress. 

Table 1. Morphological parameters of melon plants treated with different doses of NaCl and 
Trichoderma isolates.  

Treatments 
Isolate/NaCl (g·L−1) 

Aereal Fresh 
Weight (g) 

Root Fresh 
Weight (g) 

Aereal Dry 
Weight (g) 

Root Dry 
Weight (g) 

T0-0 6.74 ± 1.93 c 1.61 ± 0.70 b,c 0.48 ± 0.15 b 0.09 ± 0.06 b 
TS-0 7.92 ± 1.79 a 2.31 ± 0.50 a 0.78 ± 0.16 a 0.13 ± 0.02 a 
TA-0 7.01 ± 0.98 b,c 1.59 ± 0.85 b,c 0.71 ± 0.12 a 0.12 ± 0.03 a 
TL-0 7.27 ± 1.71 b 1.74 ± 0.49 b 0.76 ± 0.07 a 0.10 ± 0.04 a,b 

T0-0.5 6.94 ± 1.80 b 1.42 ± 0.42 b 0.37 ± 0.09 c 0.07 ± 0.03 b 
TS-0.5 7.19 ± 1.77 a,b 1.68 ± 0.54 a 0.55 ± 0.11 b 0.08 ± 0.02 a,b 
TA-0.5 7.49 ± 1.34 a 1.70 ± 0.61 a 0.66 ± 0.16 a,b 0.09 ± 0.02 a 
TL-0.5 7.05 ± 1.22 b 1.39 ± 0.48 a,b 0.69 ± 0.23 a 0.08 ± 0.03 a,b 
T0-1 5.32 ± 1.45 b 0.93 ± 0.55 b 0.39 ± 0.18 b 0.07 ± 0.03 a,b 
TS-1 6.01 ± 1.30 a 1.02 ± 0.35 b 0.49 ± 0.11 a,b 0.06 ± 0.02 c 
TA-1 5.90 ± 1.05 a,b 1.46 ± 0.42 a 0.76 ± 0.12 a 0.10 ± 0.01 a 
TL-1 6.30 ± 2.43 a 1.35 ± 0.46 a 0.77 ± 0.16 a 0.07 ± 0.03 a,b 

T0-1.5 5.26 ± 1.40 c 0.67 ± 0.35 c 0.39 ± 0.09 c 0.07 ± 0.04 a,b 
TS-1.5 5.57 ± 1.03 b 1.02 ± 0.24 b 0.50 ± 0.15 b 0.05 ± 0.02 b 
TA-1.5 7.43 ± 1.79 a 1.27 ± 0.25 a 0.63 ± 0.18 a 0.09 ± 0.02 a 
TL-1.5 5.07 ± 0.87 c 1.04 ± 0.23 b 0.50 ± 0.11 b 0.08 ± 0.02 a 
T0-2 5.22 ± 1.12 c 0.55 ± 0.28 b 0.44 ± 0.14 b 0.07 ± 0.03 a 
TS-2 5.82 ± 0.83 b 0.72 ± 0.28 a 0.51 ± 0.13 a 0.05 ± 0.02 b 
TA-2 6.35 ± 1.00 a 1.08 ± 0.21 a 0.58 ± 0.08 a 0.07 ± 0.03 a 
TL-2 5.42 ± 1.18 b,c 0.82 ± 0.33 a 0.49 ± 0.12 a,b 0.07 ± 0.03 a 

a, b, c Values of a column followed by the same letters have no significant difference at 5% (LSD 
test). 

The highest values were detected for TS at 0 g·L−1, where there was an increase in the fresh and 
dry weight of the aerial and radical parts of 17.5, 62.11, 44.02 and 46.51%, respectively. For the 
different salinity concentrations tested, plant growth promotion was also observed in the dry weight 
of the aerial part, which decreased as the salt content in the water increased (from 50.13% at 0.5 g·L−1 

to 17.16% at 2 g·L−1). However, there was a very marked decrease in the root, going from a 5.4% 
increase in the root at 0.5 g·L−1 to a 20% decrease at 2 g·L−1, relative to that of the control. 

The application of TL also promoted melon seedlings growth, increasing the dry weight of the 
aerial part by 58.17, 87.94, 94.92, 27.10 and 12.12% in NaCl concentrations of 0–2 g·L−1, respectively. 
Likewise, an increase in the dry weight of the root was also observed for all the treatments tested, 
reaching a maximum of 22% for a concentration at 1.5 g·L−1. 
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In the case of the application of TA, there was an increase in both the aerial part and the very 
important radical part, relative to that of the control, in all the treatments tested. Thus, increases of 
48, 80.54, 93.90, 61.89, and 32.72% were obtained for the dry weight of the aerial part, and increases 
of 41.80, 16.21, 56.92, 32.35, and 0%, for the dry weight of the root, for NaCl concentrations between 
0 and 2 g·L−1, respectively. 
3.4. Effects of Trichoderma Strains on the Severity of Pythium ultimum in Melon Seedlings under Saline 
Conditions 

The application of sodium chloride in irrigation water has not led to a significant increase (p = 
0.4699) in the symptoms caused by P. ultimum in melon seedlings relative to that of the control (0 
g·L−1). As determined in greenhouse experiments, three strains (TA, TS and TL) significantly reduced 
the disease index of P. ultimum root rot in melon seedlings, compared to that achieved by the control 
T0, for the different NaCl concentrations tested (Figure 4). 

Thus, at 0 g·L−1, the severity of the disease was reduced by 74% by the marine isolate TL, followed 
by TS and TA, with readings of 51.85% and 62.96%, respectively, relative to that of the control (p = 
0.0086). There were no significant differences in the ability to control the onset of symptoms in the 
three isolates of Trichoderma tested. In general, as salt content in irrigation water increased, there were 
no significant differences in the control of disease caused by P. ultimum for the three isolates of 
Trichoderma assayed, significantly reducing the symptoms with respect to the control (T0). TL 
performed greater control of the development of the disease, reaching a reduction of 44.11% for 2 
g·L−1 of NaCl. 

 
Figure 4. Disease incidence of P. ultimum in melon plants was rated 30 days after inoculation based 
on a 0–4 scale: where 0 = no visible disease symptoms and 4 = plant dead. Mean standard deviation is 
expressed in error bar (n = 10). a, b, c Means with the same letter are not significantly different (LSD) 
according to ANOVA test (p < 0.05). 

4. Discussion 

The capacity of using fungal isolates for biological control of diseases or promotion of the growth 
of plants under cultivation conditions may be conditioned by management, soil conditions or 
fertigation, temperature, salinity and the presence of heavy metals or pesticides, amongst many other 
factors. The saline conditions, caused in many cases by excessive chemical fertilisation in intensive 
horticulture, may call into question the effectiveness of these BCAs. In this study, we have analysed 
the capacity of isolates of Trichoderma obtained from different environments to promote the 
development of melon seedlings and to control root rot caused by P. ultimum under saline stress 
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conditions. Isolates from mushroom culture substrates and rhizomes of Posidonia oceanica were 
identified as T. aggressivum f. sp. europaeum and T. longibrachiatum, respectively. 

With the exception of TL, the mycelial growth of TA and TS has been influenced by salinity and 
temperature. The relationship between temperature and the development of Trichoderma depends in 
many cases on the species and the origin of the isolation. Thus, TA showed considerable differences 
in growth, depending on temperature (25 and 35 °C). Similar results were obtained by Sobieralski et 
al. [24], whose isolates of T. aggressivum f. europaeum exhibited very poor growth at a temperature of 
35 °C. Both TS and TA drastically reduced mycelial growth in a saline medium. Given the origin of 
TA, it is logical to presume it has a low tolerance to the presence of salt in the medium. However, this 
is not so for TS, since it was isolated from sand in the seabed of the coast of Cadiz (Spain), which 
showed suppressiveness against Fusarium oxysporum f. sp. dianthi [25]. At 30 g·L−1, its growth and 
sporulation was optimal after its isolation (Diánez F., personal communication), although this growth 
capacity was reduced after its growth in vitro. De la Cruz et al. [26] consider that there is no significant 
correlation between marine habitat and salt tolerance of fungal isolates, so it is unclear why marine 
fungi have different degrees of tolerance to salt, or why they lose that tolerance. 

We have shown that TA, TS, and TL can inhibit the development of P. ultimum in vitro and are 
effective in reducing disease severity in melon seedlings, even under saline stress conditions. Given 
the growth capacity of P. ultimum at concentrations of 20 g·L−1, it is necessary to apply saline stress 
tolerant microorganisms that do not lose their antagonistic capabilities against phytopathogens. 
Migheli et al. [27] showed the capacity of T. longibrachiatum CECT2606 to reduce the incidence of 
damping-off in cucumber, and the role of cellulases in the control of this disease. Recently, Yuan et 
al. [28] showed the capacity of T. longibrachiatum H9 as a growth promoter of cucumber plants and 
as BCA, reducing the disease index of gray mold caused by Botrytis cinerea by induced resistance. TL 
has been termed probiotic thanks to the multiple benefits to the associated host tomato plants and in 
disease control [29]. Plant probiotic microorganisms (PPM), also known as bioprotectants, 
biocontrollers, biofertilizers or biostimulants, are beneficial microorganisms that provide an 
alternative to the use of pesticides and fertilizers, by reducing environmental and public health 
problems [30]. 

Trichoderma saturnisporum has been described as a biostimulant in pepper, melon and Arabidopsis 
thaliana [18,19,31] plants, as well as BCA against Phytophthora parasitica, P. capsici [18] and Fusarium 
oxysporum [31]. New marine TS isolates from Dictyonella incisa sponge have recently been described, 
characterising new secondary metabolites of this species involved in disease control [32]. 

For the first time, this paper describes the promotion of plant growth and the control of P. 
ultimum by means of Trichoderma aggressivum f. sp. europaeum. In Europe, this fungus produces very 
serious decreases in mushroom yield [33,34]. There are no references to this fungus as a 
phytopathogenic agent. Its high mycelial growth and sporulation, as well as its high power as a 
pathogen, make TA a promising BCA. 

There are numerous references based on the important role played by different species of 
Trichoderma in both plant promotion and biological disease control. The characterisation of the 
mechanisms involved is well studied and in continuous development [35–37]. However, in intensive 
horticulture under plastic, the benefits of the application of biostimulants or biofungicides based on 
Trichoderma or other microorganisms are in question, due to the perception that farmers have of the 
low efficacy of these products as disease controllers when compared with the rapid response 
presented by a chemical fertilizers or fungicide. The current changes in legislation regarding the 
reduction of active ingredients [38] and the commercialisation of biostimulants and biopesticides, 
together with the need to increase the sustainability of agriculture in terms of public health and the 
environment, require the use of PPM as a key element in intensive horticulture. 

5. Conclusions 

The three isolates of Trichoderma studied have shown different degrees of tolerance to the 
presence of NaCl, demonstrating antagonism in vitro against P. ultimum. The marine isolate T. 
longibrachiatum did not lose antagonist activity at high salt concentrations (20 g·L−1). The present 



Int. J. Environ. Res. Public Health 2019, 16, 2053 9 of 11 

 

results clearly demonstrate that Trichoderma aggressivum f. sp. europaeum, T. saturnisporum and T. 
longibrachiatum were effective promoters of plant growth and reduced the rate of radicular 
putrification caused by P. ultimum in melon seedlings under saline stress conditions. This paper is 
the first description of Trichoderma aggressivum f. sp. europaeum as a plant promoter and BCA. 

6. Patents 

The isolated Trichoderma aggressivum f. sp. europaeum has been deposited in the CECT and is 
undergoing patentability studies, with nEPMO reference number P201731151. 
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