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Abstract: This paper proposes a spatial difference analysis method for evaluating transit-based
accessibility to hospitals using spatially adjusted ANOVA. This method specializes in examining
spatial variations of accessibility to hospitals by regions (i.e. administrative districts or subdistricts).
The spatial lag model is applied to adjust traditional ANOVA, which reduces spatial dependency
and avoids false rejection to null hypothesis. Multiple comparison methods are used for further
detection of differences in accessibility between regions. After multiple comparison, accessibility
within regions is classified into three levels. The study is conducted on two scales—administrative
districts and subdistricts—to discuss spatial variations in macro and micro dimensions respectively
in the central part of Wuhan, China. Accessibility is calculated by using a simple model and a
gravity model. The final classification results showed that the spatially adjusted method is more
reliable than the traditional non spatially adjusted one and the gravity model can better detect
more hidden information about the inequal distribution of medical resources. It is also found that
the subdistricts, which have significantly lower accessibility to hospitals than others, are mainly
distributed in Hongshan and Qingshan district. Our study hopes to shed new lights in spatial
difference analysis for accessibility and provide policy recommendations that would promote equality
in provisions of public health services.

Keywords: ANOVA; Spatial difference; spatial lag model; accessibility

1. Introduction

Hospitals are playing an important role in maintaining people’s health. It is particularly important
for health professions, researchers, and planners to know how well the public health facilities serve the
public. A rational distribution of hospitals could ensure people to have equal access to health care and
help the government to achieve the goal of equalization of public health services. Public transit, with
low cost and high energy efficiency, has become one of the most important travel modes in people’s
daily life, especially in countries where cities are rapidly urbanizing and the mobility challenge is
daunting. To achieve sustainability, governments in different parts of the world are concentrating
investments in public transport infrastructure [1]. It is more important now than ever to evaluate
transit-based accessibility to hospitals. This study aims to develop a method to analyze the spatial
variations of transit-based accessibility to hospitals, which would provide insights in promoting a
distribution of health facilities that are equal and efficient.

Accessibility is defined as the ease for people to overcome spatial separation or the potential
of opportunities for interaction [2]. There are many definitions for accessibility to healthcare, two
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of which are mentioned most frequently in geographical analysis: (1) the number of opportunities
available to a population; (2) the impedance between patient location and supply points [3]. Various
methods were proposed for measuring accessibility, all of which have different focuses. For instance,
Dutt et al. measured accessibility by taking the average of travel impedance (distance or time) to
hospitals [4]. This method has two obvious shortcomings, which includes overestimating the influence
of peripheral hospitals within the study area as well as ignoring the relationship between the demand
of health series and supply ability. Another popular method is gravity models firstly proposed by
Hansen [2]. Compared to other measures, the gravity models are superior as they consider the
number of opportunities and travel impedance at the same time [5,6]. Variations of gravity model
were developed later which includes two-step floating catchment area method (2SFCA). This model
defines a service area by a threshold of travel time as well as taking supply side and demand side into
consideration. A lot of researchers had used 2SFCA and its modified models to measure healthcare
access [7–10]. However, as 2FSCA model needs to determine the proper catchment threshold which
tends to be arbitrary and difficult.

For transportation equity has become an important factor in the process of city development, the
analysis for spatial disparity of accessibility has become a hot issue. Some studies employ traditional
descriptive statistics and mapping to analyze the spatial patterns among areas [11–13]. Although
these studies can intuitively describe the distribution characteristics and variation levels within data,
they tend to be descriptive and exploratory. Some scholars used z-scores and its corresponding
Low-High map to determine spatial disparity in accessibility [9,14,15]. This method could roughly
identify whether accessibility within a subdistrict is above the standard or not as well as indicating
accessibility-population mismatch, but it cannot determine which subdistrict has significantly higher or
lower accessibility. Other researchers add spatial autocorrelation into consideration to further discuss
the spatial pattern of accessibility. One of the commonly used methods for the detection of spatial
patterns is LISA (local indicators of association), which can identify spatial clusters with high and low
values, and thus uncover spatial outliers and uneven resource distribution [16–19]. Though studies
above provided a substantial contribution to accessibility analysis, several issues need to be further
considered. For example, LISA could not be used to uncover the spatial disparity between units that
are not clustering. More researches are much needed to detect spatial variations and compare spatial
differences across regions.

Analysis of variance (ANOVA) is a traditional but effective way to measure whether regional means
come from the same population, or more specifically, whether the means among groups are significantly
different. A few scholars applied the ANOVA techniques in spatial difference analysis [20,21]. However,
most geographical data are spatially autocorrelated and studies above did not take it into consideration.
If a spatial dependency exists, observations could carry duplicated information, making effective
sample size much smaller than it looks like and resulting in wrong rejection to null hypothesis [22,23].
Some scholars provide possible adjustments to the analysis of variance model such as calculating
effective sample size or applying spatially autocorrelated error terms for liner regression [24–27].
Unfortunately, the implication of these modified models in spatial difference analysis is still very few,
especially in the field of transportation.

Enlightened by the studies above, we aim to apply a spatially adjusted ANOVA to analyze the
spatial difference of transit-based accessibility to hospitals. The central part of Wuhan, China is taken
as an experimental area. Our goal is to examine if public transit service resources and medical care
resources are equally distributed among regions, and discover the spatial differences. Spatial lag model
is applied to eliminate the influence of spatial autocorrelation on hypothesis test. Multiple comparison
methods will be used for further detection of the variation between groups. With the comparison results,
accessibility could be classified into different levels. In addition, the study compares accessibility on
two geographic scales: the administrative district (the macro scale) and the subdistrict (the micro
scale) to uncover more details about medical resources distribution. We also calculate two types of
accessibility measures using the simple model and the gravity model. By procedures above, three
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major questions could be answered: (1) What is the merit of spatially adjusted ANOVA and why it
could perform better than the nonspatial one? (2) Do residents in central Wuhan have equal access
to 3A hospitals under public transit travel mode and which spatial units have significantly higher or
lower accessibility to hospitals? (3) What is the difference between the accessibility result calculated by
simple model and gravity model?

The rest of this paper is organized as follows. Section 2 introduces study areas, data resources and
several experimental methods. Section 3 presents the results of accessibility calculation and spatial
difference analysis on two study scales. Section 4 includes discussions about the existing inequity
discovered through results above and the corresponding suggestions. Section 5 draws conclusions and
discusses the ideas for future study.

2. Materials and Methods

2.1. Study Area

Wuhan, with its extension of longitude 113◦41’ to 115◦05’, latitude 29◦58’ to 31◦22’, is the largest
city in central China. Until 2011, there were 7061 buses and 289 bus routes with average length of
19.9 kilometers. This makes public transport one of the most important travel mode in citizen’s daily
life. Considering data availability and study priority, we take central Wuhan as a case study (Figure 1).
This region includes 86 sub-districts under the jurisdiction of 7 administrative districts (Jiang’an,
Jianghan, Qiaokou, Hanyang, Wuchang, Qingshan, Hongshan) and is the main area for residents’
medical, educational and economical activities.
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2.2. Data Resources

2.2.1. Transit Data

Travel distance and travel time are two main factors in the assessment of accessibility.
In transit-based accessibility to hospitals analysis, bus stops and tertiary level-A hospitals (denoting as
3A hospital in the following paper) are taken as start points and target points respectively. Instead of
using road network data and speed limit to calculate theoretical travel distance and time, Baidu Map
API (http://lbsyun.baidu.com/) is applied to obtain real time travel distances and travel times under
transit mode between areas. The locations of bus stops and hospitals can also be harvested by Baidu
Map API.

http://lbsyun.baidu.com/
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As traffic jam is not a certain event that happens every day and detecting spatiotemporal fluctuation
of traffic condition is not our main purpose in this paper, the code was run after 9pm to avoid outliers
caused by traffic jam, therefore, to indicate the equity of basic medical resource distribution. As there are
1256 bus stops and 24 3A hospitals in study area, 30144 transit routes in total are included. The locations
of bus stops and 3A hospitals are shown in Figure 2.

Int. J. Environ. Res. Public Health 2019, 16, 1923 4 of 20 

 

distribution. As there are 1256 bus stops and 24 3A hospitals in study area, 30144 transit routes in 
total are included. The locations of bus stops and 3A hospitals are shown in Figure 2. 

 

. 
Figure 2. The distribution of bus stops, 3A hospitals and population. 

2.2.2. Hospital Data and Population Data 

In China, tertiary hospitals, especially 3A hospitals, contain the most important medical 
resources [15]. Therefore, in this study, we focus mainly on 3A hospitals. The number of sick beds in 
each hospital, which could be found at their official websites, are taken as an indicator of supply 
ability. Population data of each sub-district is obtained in census data 2014 and could be taken as an 
indicator of study units’ demand scale. The population data and the number of sick beds is also 
shown in Figure 2. 

2.3. Methods 

2.3.1. Group design 

As our aim is to apply ANOVA to analyze the spatial variations between different groups, we 
need to determine study groups and minimum spatial units within each group. Study groups are 
defined on different scales: the administrative district (the macro scale) and the subdistrict (the micro 
scale). 

On macro scale, seven administrative districts are viewed as study groups and 86 subdistricts 
within are taken as minimum spatial units within groups. While on micro scale, 86 subdistricts are 
taken as study groups and the theory of Thiessen polygon is adopted for the division of minimum 
spatial units, for any point in a Thiessen polygon has the closest distance to the corresponding 
polygon center [28]. 1256 bus stops are taken as center points to create 1256 corresponding Thiessen 
polygons (Figure 3). We assume that people whose location falls within that polygon tend to choose 
the only bus stop within and the polygon’s attribute (travel distance and travel time to hospitals) 
could be represented by the corresponding bus stop. Polygons that fall in each subdistrict are viewed 
as minimum spatial units of that group. For the polygons that fall on the boundary of two subdistricts, 
they are divided into two units (Figure 4). Unit A belongs to subdistrict A and its population density 
is the same as it is in subdistrict A. Same as unit B. The travel time to hospitals in unit A and B is the 
same, representing by bus stop n. After the division, there are 2170 minimum spatial units within 86 
study groups (Figure 5). 

Figure 2. The distribution of bus stops, 3A hospitals and population.

2.2.2. Hospital Data and Population Data

In China, tertiary hospitals, especially 3A hospitals, contain the most important medical
resources [15]. Therefore, in this study, we focus mainly on 3A hospitals. The number of sick
beds in each hospital, which could be found at their official websites, are taken as an indicator of
supply ability. Population data of each sub-district is obtained in census data 2014 and could be taken
as an indicator of study units’ demand scale. The population data and the number of sick beds is also
shown in Figure 2.

2.3. Methods

2.3.1. Group Design

As our aim is to apply ANOVA to analyze the spatial variations between different groups, we need
to determine study groups and minimum spatial units within each group. Study groups are defined
on different scales: the administrative district (the macro scale) and the subdistrict (the micro scale).

On macro scale, seven administrative districts are viewed as study groups and 86 subdistricts
within are taken as minimum spatial units within groups. While on micro scale, 86 subdistricts are
taken as study groups and the theory of Thiessen polygon is adopted for the division of minimum
spatial units, for any point in a Thiessen polygon has the closest distance to the corresponding polygon
center [28]. 1256 bus stops are taken as center points to create 1256 corresponding Thiessen polygons
(Figure 3). We assume that people whose location falls within that polygon tend to choose the only
bus stop within and the polygon’s attribute (travel distance and travel time to hospitals) could be
represented by the corresponding bus stop. Polygons that fall in each subdistrict are viewed as
minimum spatial units of that group. For the polygons that fall on the boundary of two subdistricts,
they are divided into two units (Figure 4). Unit A belongs to subdistrict A and its population density is
the same as it is in subdistrict A. Same as unit B. The travel time to hospitals in unit A and B is the
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same, representing by bus stop n. After the division, there are 2170 minimum spatial units within
86 study groups (Figure 5).
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2.3.2. Accessibility Measurement

The measurements for transit-based accessibility to hospitals is operated in two different ways.
One is a simple model proposed by [29], which can be demonstrated as follows:

Ai =
1
n

n∑
j=1

di j, i = 1, 2, . . . , k (1)

Em =
1
N

N∑
i=1

Ai, i = 1, 2, . . . , N (2)

Ai represents the accessibility to hospitals of i th bus stop. n (n = 24) is the number of 3A hospitals
within the whole area. k (k = 1256) is the total number of bus stops within study area. di j is defined
as the travel cost between bus stop i and hospital j, usually being travel time or distance. As travel
time is a reliable indicator of accessibility which could reflect the actual traffic condition, it is chosen to
represent travel impedance in our study [30,31]. Em is denoted as each sub-region’s overall accessibility
while N is the number of bus stops within corresponding sub-region m. The larger Em is, the less
convenient the region could be. The simple model can reflect the basic transit service resources to 3A
hospitals within the whole study area.

Another model is a modified gravity model proposed by Joseph and Bantock [5]. It adds
travel impedance as a weight indicator, taking both demand side and supply side into consideration.
The model can be shown in the following formulas:

Ai =
n∑

j=1

S j ∗ d−βi j

V j
(3)

V j =
m∑

k=1

Dk ∗ d−βkj (4)

Same as in Equations (1) and (2), Ai and di j represents accessibility and travel cost respectively. β
is a gravity decay coefficient. According to Kwan [32], when β = 2 the gravity model could generate
a more pronounced accessibility patterns, therefore we set β = 2 in our study. S j is supply scale of
hospital j which is represented by the number of sick beds in this paper. V j represents the demand on
hospital j and is calculated by summing up impedance weighted population of all spatial units, which
could be seen in formula (4). Dk is the demand scale of spatial unit k and in this paper, is represented
by population. The integer n is the total number of hospitals within study area and m is the total
number of spatial units.

2.3.3. Spatially Adjusted ANOVA

ANOVA is a method to compare the means of variables among groups and to determine whether
they are significantly different. If the variation between groups is much greater than variations within
groups, the difference between groups is significant. Otherwise, the difference between means might
just be due to sampling error.

In ANOVA, there are three assumptions for sampling data: normality, homoscedasticity,
independence. According to previous study, traditional one-way ANOVA can be rewritten as
linear regression model using following equation [25]:

Y∗ = Xβ+ ε (5)

where Y∗ is the n × 1 vector representing some characteristics, which should be independent; X is
a n ∗m binary dummy variable matrix transformed by factor variables, denoting which group the
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corresponding areal units belong to; ε is a n× 1 vector representing random error term, which should
be normally distributed and uncorrelated.

However, according to the first law of geography, variables are often spatially autocorrelated [33].
This paper uses spatial weights matrix and Moran’s I index to detect spatial autocorrelation. There are
many ways to construct a spatial weights matrix W. In our study, the queen-contiguity case is chosen,
which denote spatial units that share vertices or boundaries as contiguity.

With data spatially autocorrelated, the regression model could be developed by considering the
presence of spatial autocorrelation in its spatial lag terms:

Y = ρWY + Y∗ (6)

ρ is an unknown parameter which reflects the spatial autocorrelation; WY is the spatial lag factor
representing the influence of neighboring units. Y∗ is the independent part in accessibility Y.

Equation (6) yields
Y∗ = Y− ρWY (7)

Anselin proposed a maximum likelihood method for estimating ρ in spatial lag model [34]. Therefore,
the influence of spatial autocorrelation in Y could be filtered out and the spatially adjusted ANOVA
could be rewritten in regression form as:

(I− ρW)Y = Xβ+ ε (8)

2.3.4. Multiple Comparison for The Detection of Spatial Difference

Before conducting ANOVA, Shapiro-Wilk test and Levene’s Test are performed to examine if
accessibility data meets the assumption of normality and homoscedasticity. Box-cox transformation,
root transformation or logarithm should be taken if the data is not normally distributed [35]. If the data
cannot be transformed into normally distributed one, another nonparametric test called Kruskal-Wallis
test (also called one-way ANOVA on ranks) could be taken as an alternative.

After appropriate data transformation, following the steps in Section 2.3.3 to filter out the influence
of spatial autocorrelation. If the differences of ANOVA are significant at a certain level, at least one
group has significant higher or lower accessibility to hospitals compared with other groups.

To further identify which groups are indeed have significant higher or lower accessibility, multiple
comparison methods are applied. One is Scheffe’s method [36], which is often used for the post
hoc testing after ANOVA when the number of observations among groups are not equal. Another
method is Dunn’s test [37], which is a commonly used non-parametric pairwise comparison after
Kruskal-Wallis test.

The results of Scheffe’s method and Dunn’s test both records p-value for each comparison pairs.
However, it is difficult to identify if accessibility within a study group is significantly good or bad
simply by p-values among comparison pairs. Therefore, we should compare not only p-value between
subdistricts but also the average accessibility (denoting as ai) within. Take spatial unit i in gravity model
as an example, if Di j < 0.05 and ai > a j, it means unit i has significantly higher average accessibility
score than unit j and have better accessibility. Vice versa. Note that in simple model, the smaller the
calculated accessibility ai, the less the average the average travel time and the better the accessibility.
Count the number of other subdistricts that subdistrict i is significantly higher or lower to and denote
the number as “high” or “low”. A simple but useful algorithm is proposed to better illustrate the
whole procedure (see Algorithm 1).
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Algorithm 1

Simple model (the less the average travel time, the better the accessibility)
for i = 0, 1, 2, . . . , 85
high=0, low=0
for j = 0, 1, 2, . . . , 85
if Di j < 0.05 & a0 < a j
high=high+1
else (Di j < 0.05)
low=low+1
Gravity model (the higher the accessibility score, the better the accessibility)
for i = 0, 1, 2, . . . , 85
high=0, low=0
for j = 0, 1, 2, . . . , 85
if Di j < 0.05 & a0 > a j
high=high+1
else (Di j < 0.05)
low=low+1

With steps above, we can determine the significant spatial variation between areas and identify
which district has significant higher or lower accessibility than others. According to the results of
“High” and “Low”, accessibility is classified into different levels and spatial units within the same
level are not significantly different. If the accessibility in one subdistrict is significantly higher than
many other districts, we can infer that this subdistrict is at the level of good accessibility to hospitals
compared with others. On the contrary, if accessibility in one subdistrict is significantly lower than
many other subdistricts, it is at the level of poor accessibility. When subdistricts whose count of “High”
and “Low” are both zero, that is, the accessibility within are neither significantly higher or lower to
other subdistricts, we identify them at the level of mid-level accessibility. Those subdistricts that show
both significantly higher and lower accessibility to others, that is, being significantly higher than some
subdistricts (usually, subdistricts with extremely low accessibility) as well as being significantly lower
than some other subdistricts (usually, subdistricts with extremely high accessibility), is also classified
into the level of midlevel accessibility. The spatially adjusted ANOVA and multiple comparison
procedure are compared with the traditional non-spatial one.

3. Results

3.1. Administrative District Scale

3.1.1. Accessibility Measurements and Preprocessing

On administrative district scale, the accessibility to hospitals is measured by two different models
using travel time as impedance factor. Figure 6 shows the accessibility of 86 districts calculated by
simple model and gravity model. Nature break method is used to classify the accessibility into 5 grades.
The deeper the color, the better the accessibility to hospitals is. The results of simple model and gravity
model differ from each other, especially in the peripheral study area. A majority of subdistricts show
higher rank of accessibility in simple models. As a simple model can only reflect basic public transit
service to hospitals, it could be assumed that the basic public transit service to hospitals is generally
convenient. For gravity model, it takes demand scale and hospital serviceability into consideration.
For some subdistricts that near to hospitals, the large population within might result in a short supply
of hospital service.
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Figure 6. The accessibility calculated by two models on administrative district scale: (a) simple model;
(b) gravity model.

Before using ANOVA for spatial difference analysis, normality test and data transformation
should be performed. Table 1 demonstrates the results of Shapiro-Wilk normality test before and after
data transformation. It is shown that the accessibility data are not normally distributed, “Box-Cox”
power transformation is applied for data transformation. After power transformation with parameter
α1 = −1.07 (simple model) and α1 = 0.222 (gravity model), the accessibility data are turned into
normally distributed one (p-value > 0.05). The result of Levene’s test showed that accessibility data are
homoscedastic (p-value > 0.05). Therefore, ANOVA could be applied for spatial difference analysis.

Table 1. Scheffe normality test before and after data transformation on administrative district scale.

p-Value Simple Model Gravity Model

before transformation <0.0001 0.05
after transformation 0.076 0.12

3.1.2. Spatial Autocorrelation Analysis and Elimination

As spatial dependency could affect the result of ANOVA, it is important to examine if spatial
autocorrelation exists in experimental data. If accessibility data calculated by simple and gravity model
is spatially autocorrelated, steps in Section 2.3.3 are conducted to filter out the influence of spatial
autocorrelation. The Moran’s I regression model residuals are shown in Table 2. As the residuals
in traditional liner regression model is significantly spatial autocorrelated (p-value < 0.05), spatial
lag model is applied. The spatial autocorrelation parameter ρ for simple model and gravity model
estimated in spatial lag model is 0.826 and 0.839 respectively. With p-value > 0.05 in spatial lag
model, the spatial autocorrelation in residuals is eliminated and therefore could yield out spatially
adjusted ANOVA.

Table 2. Moran’s I of regression model residuals on administrative district scale.

Accessibility Liner Regression Model Spatial Lag Model

Moran’s I p-Value Moran’s I p-Value

Simple model 0.3796 <0.001 −0.032 0.6302
Gravity model 0.5158 <0.001 −0.0154 0.523

3.1.3. Spatial Difference Analysis and Multiple Comparison

The results for spatially adjusted ANOVA and traditional ANOVA are presented in Table 3. It can
be seen that the F-value in traditional model is much larger than the spatial adjusted model, with
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p-value in the traditional model much smaller than it is in the spatially adjusted one. As p-values
are both much smaller than 0.001, the accessibility data shows significant difference between seven
administrative districts. Scheffe’s method is applied to further identify the differences between groups
and the results are presented in Table 4. Before filtering out the influence of spatial autocorrelation,
there are much more comparison pairs showed significant difference (10 pairs in simple model and
11 pairs in gravity model) than it is after the spatial adjusted procedure (4 pairs in simple model and
3 pairs in gravity model).

Table 3. ANOVA table for accessibility on administrative district scale: (a) simple model; (b)
gravity model.

(a) Simple Model Degree of Freedom Sum of Square Mean Square F-Value p-Value

Traditional ANOVA
Y 6 0.00000007 0.00000001 22.651 0.00000000
Residuals 79 0.00000004 0.0000000005
Spatially adjusted ANOVA
Y 6 0.00000006 0.0000000009 4.9269 0.0002504
Residuals 79 0.00000001 0.0000000002

(b) Gravity Model Degree of Freedom Sum of Square Mean Square F-Value p-Value

Traditional ANOVA
Y 6 0.110570 0.0184283 21.557 0.00000000
Residuals 79 0.067533 0.0008549
Spatially adjusted ANOVA
Y 6 0.0078432 0.0013072 4.5522 0.000489
Residuals 79 0.0226855 0.0002872

The corresponding accessibility level is presented in Figure 7. Districts within the same level show
no significant difference between each other. In simple model, before filtering out the influence of spatial
autocorrelation, accessibility to hospitals in Hongshan and Qingshan district are significantly lower
than other 5 districts (Figure 7a). However, after the spatially adjusted procedure, the accessibility to
hospitals in Hongshan district is only significantly lower than 3 districts (Jiang’an, Jianghan, Qiaokou).
Accessibility in Wuchang Hanyang and Qingshan are at the level of mid-level accessibility, that is,
the accessibility to hospitals within are neither significantly higher nor lower than other districts
(Figure 7b). In gravity model, before filtering out spatial autocorrelation, Hongshan and Qingshan
district are at the level of poor accessibility, Hanyang is at the level of mid-level accessibility and the
rest of 4 districts are at the level of good accessibility (Figure 7c). While after filtering out the influence
of spatial autocorrelation (Figure 7d), the results are same with those in simple model (Figure 7b).

It can be seen that before filtering out spatial autoclrrelation, more districts tend to show
significantly lower accessibility than others and are classified at the level of poor accessibility. While
after filtering out the influence of spatial autocorrelation, only Hongshan district is at the level of poor
accessibility, which means the overall hospital accessibility in Hongshan districts is poor though there
may be some subdistricts within have relativly high accessibility to hospitals. However, as there are only
7 study groups, the results are relatively obscure and can only reflect the spatial difference on a macro
scale. Therefore, experiments are conducted on subdistrict scale to discover more detailed results.
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Table 4. Results of multiple comparison on administrative district scale

Simple Model Gravity Model

Comparison Pairs Traditional Spatially Adjusted Traditional Spatially Adjusted

Difference p-Value Difference p-Value Difference p-Value Difference p-Value

Hongshan

Jiang’an −0.00007265 0.0000 *** −0.00002344 0.0113 ** −0.079888 0.0000 *** −0.025619 0.0434 *
Jianghan −0.00008579 0.0000 *** −0.00002507 0.0084 *** −0.109038 0.0000 *** −0.030125 0.0130 **
Hanyang −0.00005974 0.0000 *** −0.00001970 0.1075 −0.068268 0.0001 *** −0.020041 0.2943
Wuchang −0.00005962 0.0000 *** 0.00001865 0.1246 −0.074259 0.0000 *** −0.023797 0.1069
Qingshan −0.00001597 0.8490 0.00000807 0.9347 −0.020734 0.8506 −0.010835 0.9088
Qiaokou −0.00007137 0.0000 *** −0.00002056 0.0829 * −0.102001 0.0000 *** −0.030520 0.0172 **

Jiang’an

Jianghan −0.00001453 0.8063 −0.00000163 1.0000 −0.029151 0.3212 −0.004506 0.9978
Hanyang 0.00001152 0.9347 0.00000374 0.9996 0.011620 0.9814 0.005577 0.9936
Wuchang 0.00001165 0.9238 0.00000478 0.9895 0.005628 0.9996 0.001822 1.0000
Qingshan 0.0000553 0.0000 *** 0.00001537 0.2426 0.059154 0.0010 *** 0.014783 0.5672
Qiaokou −0.00001058 1.0000 0.00000288 0.9995 −0.022114 0.7125 0.004901 0.9973

Jianghan

Hanyang 0.00002605 0.2254 0.00000537 0.9956 0.040771 0.0723 * 0.010083 0.9023
Wuchang 0.00002680 0.1986 0.00000642 0.9634 0.034779 0.1783 0.006328 0.9891
Qingshan 0.00006983 0.0000 *** 0.00001700 0.1836 0.088304 0.0000 *** 0.019289 0.2872
Qiaokou 0.00001442 0.8706 0.00000451 0.9954 0.007037 0.9992 −0.00040 1.0000

Hanyang
Wuchang 0.00000013 1.0000 0.00000105 0.9999 −0.005992 0.9996 −0.003756 0.9995
Qingshan 0.00004378 0.0044 *** 0.00001263 0.5682 0.047534 0.0348 ** 0.009206 0.9468
Qiaokou −0.00001163 0.9553 −0.00000014 1.0000 −0.033734 0.2792 −0.010478 0.9037

Wuchang Qingshan 0.00004365 0.0036 *** 0.00001057 0.7399 0.053525 0.0079 *** 0.012962 0.7551
Qiaokou −0.00001176 0.9484 −0.00000191 1.0000 −0.027742 0.5035 −0.006723 0.9880

Qingshan Qiaokou −0.00005540 0.0001 *** −0.00001248 0.6072 −0.081268 0.0000 *** −0.019685 0.3111

Notes: *** significance at 1% level; ** significance at 5% level; * significance at 10% level.
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3.2. Subdistrict Scale

3.2.1. Accessibility Measurements and Preprocessing

The results for accessibility measured by simple model and gravity model are presented in Figure 8.
Similar to the results in administrative district scale, in simple model a large number of spatial units
have a relatively higher accessibility (Figure 8a). Some spatial units that are not near to hospitals also
show high accessibility to hospitals. We assume that the convenient route design of corresponding bus
stops to hospitals might compensate the impedance of distance. In gravity model, however, less spatial
units show the highest level of accessibility to hospitals (Figure 8b). That is, when taking demand and
supply scale into consideration, the medical resources might not be equally distributed.

Shapiro-Wilk test and Levene’s test should be performed to identify if accessibility data is normally
distributed and homoscedastic. As the accessibility data is not normally distributed (p-value < 0.05)
and cannot be transformed into normal one, Kruskal-Wallis test is applied for the following spatial
difference analysis.



Int. J. Environ. Res. Public Health 2019, 16, 1923 13 of 20

Int. J. Environ. Res. Public Health 2019, 16, 1923 13 of 20 

 

The results for accessibility measured by simple model and gravity model are presented in 
Figure 8. Similar to the results in administrative district scale, in simple model a large number of 
spatial units have a relatively higher accessibility (Figure 8a). Some spatial units that are not near to 
hospitals also show high accessibility to hospitals. We assume that the convenient route design of 
corresponding bus stops to hospitals might compensate the impedance of distance. In gravity model, 
however, less spatial units show the highest level of accessibility to hospitals (Figure 8b). That is, 
when taking demand and supply scale into consideration, the medical resources might not be equally 
distributed. 

 

 
(a) 

 
(b) 

Figure 8. The accessibility calculated by two models on subdistrict scale: (a) simple model; (b) gravity 
model. 

Shapiro-Wilk test and Levene’s test should be performed to identify if accessibility data is 
normally distributed and homoscedastic. As the accessibility data is not normally distributed (p-value 
< 0.05) and cannot be transformed into normal one, Kruskal-Wallis test is applied for the following 
spatial difference analysis. 

3.2.2. Spatial Autocorrelation Analysis and Elimination 

The Moran’s I of regression model residuals are shown in Table 5. With p-value<0.05, the 
accessibility calculated by simple model and gravity model is spatially autocorrelated. Using spatial 
lag model to estimate spatial autocorrelation parameter and the result show that ρଵ=0.8879 (simple 
model) and ρଶ=0.852(gravity model). Follow the steps in section 2.3.3 to eliminate the influence of 
spatial autocorrelation. With p-value > 0.05 in spatial lag model, the spatial autocorrelation in 
residuals is eliminated, yielding spatially adjusted Kruskal-Wallis test. 

Table 5. Moran’s I of regression model residuals on subdistrict scale. 

Accessibility 
Liner regression Model Spatial Lag Model 

Moran’s I p-Value Moran’s I p-Value 
Simple model 0.49573 <0.0001 −0.07436 1 
Gravity model 0.39730 <0.0001 −0.073657 1 

3.2.3. Spatial Difference Analysis and Multiple Comparison 

The p-value in Kruskal-Wallis test is smaller than 0.05 in both two models, which means the 
difference of accessibility between 86 subdistricts is significant. Dunn’s test is applied for multiple 
comparison to identify which groups differ. The output results of Dunn’s test in software R is an 
86*86 symmetric matrix D, denoting the p-value of pairwise multiple comparison.  

After multiple comparison procedure described in Algorithm 1, the number of “High” and 
“Low” are presented in Figure 9. Similar to the results under administrative district scale, more 
comparison pairs showed significant difference in accessibility when the influence of spatial 
autocorrelation is not filtered out. In simple model, before filtering out the influence of spatial 

Figure 8. The accessibility calculated by two models on subdistrict scale: (a) simple model;
(b) gravity model.

3.2.2. Spatial Autocorrelation Analysis and Elimination

The Moran’s I of regression model residuals are shown in Table 5. With p-value < 0.05, the
accessibility calculated by simple model and gravity model is spatially autocorrelated. Using spatial
lag model to estimate spatial autocorrelation parameter and the result show that ρ1 = 0.8879 (simple
model) and ρ2 = 0.852 (gravity model). Follow the steps in Section 2.3.3 to eliminate the influence of
spatial autocorrelation. With p-value > 0.05 in spatial lag model, the spatial autocorrelation in residuals
is eliminated, yielding spatially adjusted Kruskal-Wallis test.

Table 5. Moran’s I of regression model residuals on subdistrict scale.

Accessibility Liner Regression Model Spatial Lag Model

Moran’s I p-Value Moran’s I p-Value

Simple model 0.49573 <0.0001 −0.07436 1
Gravity model 0.39730 <0.0001 −0.073657 1

3.2.3. Spatial Difference Analysis and Multiple Comparison

The p-value in Kruskal-Wallis test is smaller than 0.05 in both two models, which means the
difference of accessibility between 86 subdistricts is significant. Dunn’s test is applied for multiple
comparison to identify which groups differ. The output results of Dunn’s test in software R is an 86*86
symmetric matrix D, denoting the p-value of pairwise multiple comparison.

After multiple comparison procedure described in Algorithm 1, the number of “High” and “Low”
are presented in Figure 9. Similar to the results under administrative district scale, more comparison
pairs showed significant difference in accessibility when the influence of spatial autocorrelation is not
filtered out. In simple model, before filtering out the influence of spatial autocorrelation (Figure 9a,c),
17.4% of subdistricts show significant higher accessibility than other 37% of subdistricts and 22% of
subdistrict showed significant lower accessibility than other 46.5% of subdistricts. After filtering out
the influence of spatial autocorrelation (Figure 9b,d), only 4.7% of subdistricts show significantly higher
accessibility than more than 1 district. 72.1% of subdistricts only showed significant higher accessibility
than Baiyushan subdistrict. In gravity model, before filtering out spatial autocorrelation, the multiple
comparison results presented in Figure 9e,g are similar to Figure 9a,c. However, after filtering out
spatial autocorrelation (Figure 9f,h), less subdistricts showed significantly higher accessibility and
more subdistricts show significant lower accessibility when comparing with the results in simple
model(Figure 9b,d).



Int. J. Environ. Res. Public Health 2019, 16, 1923 14 of 20

Int. J. Environ. Res. Public Health 2019, 16, 1923 15 of 21 

 

(a)High: Before (b)High: After 

  
(c)Low: Before (d)Low: After 

(e)High: Before (f)High: After 

  
(g)Low: Before (h)Low: After 

  
Figure 9. Number of “High” and “Low” before and after filtering out the influence of spatial 
autocorrelation: (a,b,c,d) simple model; and (e,f,g,h) gravity model. 

Figure 9. Number of “High” and “Low” before and after filtering out the influence of spatial
autocorrelation: (a–d) simple model; and (e–h) gravity model.



Int. J. Environ. Res. Public Health 2019, 16, 1923 15 of 20

The final classification of accessibility level among subdistricts are presented in Figure 10. In simple
model, before filtering out spatial autocorrelation, there are 23.3% subdistricts are at the level of poor
accessibility, 19.8% at mid-level accessibility and 56.9% at the level of good accessibility (Figure 10a).
However, after filtering out the influence of spatial autocorrelation, only 4 (4.7%) subdistricts including
Qingling, Guanshan, Changqian, and Baiyushan are at the level of poor accessibility. The percentage
of subdistricts with good accessibility reached to 76.7% and the remaining 18.6% is at mid-level of
accessibility (Figure 10b). While in gravity model, before filtering out spatial autocorrelation, 27.9% of
subdistricts are at the level of poor accessibility, 20.9% at the level of mid-level accessibility and 51.2%
at the level of good accessibility (Figure 10d). After filtering out the influence of spatial autocorrelation,
the percentage of subdistricts at the level of poor accessibility decrease to 14%. Meanwhile, 34.8% of
subdistricts are at mid-level accessibility and 51.2% subdistricts are at the level of good accessibility.

For better visualization, the accessibility calculation results (Figure 8a,b) are averaged by subdistrict
units and the maps are shown in Figure 10c,f. It can be seen that the classification results after filtering
out spatial autocorrelation (Figure 10b,e) are more in common with these accessibility calculation results.
Besides, some previous studies also concluded that subdistrict with relatively lower accessibility to
hospitals mainly distributed in west of Qingshan and south of Hongshan [38,39], which also indicate
that the traditional non-spatial model’s result is inappropriate. When the spatial autocorrelation exists,
owing to the variance inflation, more comparison pairs showed significant difference when none
indeed exists. Therefore, in both simple and gravity model, some subdistricts showed significantly
lower accessibility than others when they are indeed not and tends to be misclassified into the level of
poor accessibility.
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4. Discussion

4.1. Spatial Difference Analysis Based on ANOVA

In this paper, we developed a spatially adjusted ANOVA method in hospital accessibility analysis
by using spatial lag regression model to estimate spatial autocorrelation parameter and filter out the
spatial autocorrelation in residuals. If overall accessibility showed significant difference, multiple
comparison methods are used to identify which study group indeed have significantly higher or lower
accessibility than others. This spatially adjusted procedure could reduce the influence of variance
inflation in ANOVA and, in return, decreases the chance of false rejection to null hypothesis [24,25,40].

By comparing the multiple comparison results before and after considering the influence of spatial
autocorrelation, it can be concluded that the p-value in traditional ANOVA and its following multiple
comparison procedures are much smaller, making more comparison pairs show significant difference.
The classification results also support that the spatial adjusting procedure performs better than the
traditional ones by being closer to the accessibility calculation results.

The accessibility to hospitals is analyzed on two scales to discover the spatial variations by
regions in macro and micro dimensions. On administrative scale, there are 86 minimum spatial
units (subdistricts) within 7 study groups (administrative districts). According to the results of
spatial adjusting procedures, we found that accessibility to hospitals in Hongshan district is the worst.
Although there are many bus stops and two 3A hospitals distributing in Hongshan, as the largest
administrative district in Wuhan, Hongshan covers an area of 570 km2 and lies beside East Lake, which
makes it less convenient for residents to get to 3A hospitals by public transport.

For further detection of the spatial variations on a micro scale, 86 subdistricts are taken as study
groups. The results for spatial difference analysis at subdistricts level are consistent to those at
administrative districts level and reveal more details. Subdistricts with good accessibility to hospitals
mostly aggregate in Wuchang, Qiaokou, Jianghan and Jiang’an district. Especially, Qiaokou and
Jianghan district have a majority of subdistricts with good accessibility to hospitals. Subdistricts whose
accessibility are significantly lower to others mainly distribute in Hongshan and Qingshan district
(Qingling, Guanshan, Changqian, and Baiyushan in simple model; Tianxingxiang, Shizishan, Heping,
Qingling, Guanshan, Xingouqiao, Honggangcheng, Gongrencun, Qingshanzhen, Changqian, Wudong,
and Baiyushan in gravity model). These subdistricts are either severely lack of public transit resources
to hospitals or have a very high number of populations. To improve the accessibility within these
subdistricts, the government should make some policies to allocate health care resources. For example,
setting funds to support to expand the number of sickbeds in 3A hospitals nearby such as WISCO
general Hospital, Hubei Maternal and Child Health Hospital and Hubei Cancer Hospital, and therefore
enlarging hospitals’ service capacity and scope. Besides, public transit department could add some
convenient transit routes to hospitals in these subdistricts to decrease the travel time impedance.
Moreover, telemedicine systems could be developed to facilitate high-quality medical services in these
places [41]. In later urban design, policy makers should also pay attention to prevent the over-clustering
of 3A hospitals [42]. To first solve the problem in poor accessibility areas could better achieve the goal
of “leaving no one behind” and alleviate the existing inequality.

4.2. Comparison Between Simple Model and Gravity Model

Simple model and gravity model are used for accessibility measurements. According to the
accessibility measurement results, we can see that a majority of spatial units show good accessibility in
simple model, which means the basic public transit service to hospitals is generally good. However, as
gravity model takes the opportunity of getting medical care into consideration, less spatial units show
the highest level of accessibility to hospitals.

On administrative district scale, the results between simple model and gravity model are generally
the same. This is reasonable because there are only seven study groups so that we cannot determine
which model can better reflect the spatial variations. However, on subdistrict scale, results are
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largely different. In simple model only 4.7% of subdistricts show poor accessibility and 76.7% of
subdistricts show good accessibility. While in gravity model there are 51.2% of subdistricts at the
level of good accessibility, 34.9% at the level of mid-level accessibility and 14% at the level poor
accessibility. The results in simple model show that the overall basic public transit service to hospitals
to central Wuhan is relatively equal and convenient. Although this result is consistent to accessibility
measurement result, it is still questionable. As the biggest city in central China, Wuhan is developing
rapidly in recent years and the inequality of accessibility to hospitals among districts is irresistible.

Therefore, simple model may not be suitable for the spatial difference analysis to hospitals. It can
only reflect basic public transit service to hospitals and over estimates the influence of hospitals that
are far away. Besides, it cannot reflect the spatial differences in the perspective of getting medical
opportunities. Gravity model is more appropriate because it not only considers the relationship
between supply and demand scale but also puts distance decay function into the model to add
reasonable weights to corresponding hospitals, thus can detect more hidden information about the
inequal distribution of medical resources.

5. Conclusions

There are two major contribution of this paper, which could be summarized as follows. On the one
hand, we put forward a spatial difference analysis method for accessibility to hospitals by regions using
spatially adjusted ANOVA. This method could examine if accessibility to hospitals within different
groups is significantly different or the differences of mean value are just due to unreasonable sampling.
Comparing with the traditional ANOVA, the spatially adjusted ANOVA performs better by filtering
out the influence of spatial autocorrelation, which largely avoids false rejection to null hypothesis
(Type I error) caused by spatial dependency among sampling data. As the results of ANOVA show
significant difference among study groups, corresponding multiple comparison methods are chosen
to further identify which groups are significantly different. According to the multiple comparison
result, accessibility to hospitals within study groups is classified into different levels and groups within
the same level are not significantly different. This method could be employed not only in hospital
accessibility assessment, but also in many other aspects (education, work, entertainment, etc.) to detect
if these resources are equally distributed and find out which places are in significantly bad situation.
It can shed some new lights in providing suggestions for urban planning and transit constructing.

On the other hand, the spatial difference analysis for accessibility to hospitals is conducted on
two scales. One is administrative districts scale and another is subdistrict scale. The analysis in macro
and micro dimension not only find out the overall poor or good accessibility areas but also point out
regions with significantly lower accessibility to hospitals that needs to be improved at the first place.

However, some limitations still need to be considered. Firstly, in the calculation of hospital
accessibility, some important factors such as residents’ preference of hospitals, different travel modes
as well as their income are not taken into consideration [43–45]. Secondly, variations of accessibility in
spatiotemporal patterns are not studied. Results of accessibility could vary during the course of the
day or the week, but we do not investigate the fluctuation [30,46]. At the next step, we will consider
these problems and conduct more comprehensive analysis.
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