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Abstract: China’s rapid economic growth is accompanied by increasing energy consumption and
severe environmental problems. As sustainable development can only be achieved by reducing
energy intensity, new energy and renewable energy investment, as well as improving traditional
energy efficiency, is becoming increasingly important. However, past energy efficiency assessments
using data envelopment analysis (DEA) models mostly focused on radial and non-radial DEA
model analyses. However, traditional radial DEA models ignore non-radial slacks when evaluating
efficiency values, and non-radial DEA models ignore the same proportionality as radial DEA when
evaluating efficiency value slacks. To balance the radial and non-radial model characteristics and
consider undesirable output, this study combines a modified Epsilou-based measure (EBM) DEA
and undesirable output and proposes a modified undesirable EBM DEA model to analyze the
efficiency of China’s new and traditional energy sources. The empirical results found that (1) most
new energy investment in most municipalities/provinces rapidly grew from 2013 to 2016; (2) as
the annual efficiency score was only 1 in Beijing, Inner Mongolia, Shanghai, and Tianjin, the other
26 municipalities/provinces need significant improvements; (3) traditional energy efficiency scores
were higher than new energy efficiency; and (4) NO2 efficiencies are slightly better than CO2 and
SO2 efficiencies.

Keywords: EBM (Epsilou-based measure); efficiency; new energy; traditional energy;
undesirable output

1. Introduction

Energy drove the rapid economic growth in China, most of which was supplied from low-efficiency
fossil energy sources. However, because fossil energy sources are limited and their use for power
generation causes excessive carbon emissions that aggravate the greenhouse effect, the sustainable
development of both natural and human environments is endangered. Therefore, in the past few
decades, there was increased attention paid to new and renewable energies as a core alternative, as
they are more environmentally friendly and sustainable than fossil fuels. Reducing energy use and
improving energy efficiency by actively developing green and environmentally friendly new energy
sources can guarantee a better life for future generations.

As China became the world’s leading energy consumer and the country that emits the highest
carbon emissions, the Chinese government stated that, by 2030, the proportion of non-fossil fuels for
energy consumption should rise to above 20%. China is also actively promoting a low-carbon economy
that has high-efficiency and low-carbon emissions to improve the deteriorating environmental quality
and ensure sustainable development. To reduce energy use and accelerate the generation of new
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energy, today’s new energy technologies are characterized by high performance, high efficiency, low
cost, and low pollution.

Past energy research tended to focus more on energy efficiency than energy diversity [1–12].
However, in more recent years, there was a greater focus on the benefits of renewable energy and
sustainable energy development [13–28] using data envelopment analysis (DEA) analysis models such
as the radial CCR (Charnes, Cooper and Rhodes) and BCC (Banker, Charnes and Cooper) models or
the non-radial slack-based model (SBM) or directional distance function (DDF) models. Unfortunately,
because traditional radial DEA models ignore non-radial slacks and non-radial DEA models ignore
the same proportionality as the radial DEA, they are not suitable for gaining a true picture of energy
efficiency. To solve this problem, Tone and Tsutsui [29] suggested an Epsilou-based measure (EBM)
variable range that was not limited and added an undesirable variable factor, which they called the
modified undesirable SBM model. Therefore, this model was used in this paper to assess the energy
efficiency of four Chinese municipalities and 26 provinces from 2013–2016 to avoid underestimating or
overestimating the efficiency values and needed improvements.

Furthermore, although there were a number of new energy efficiency assessments suggested,
there is a lack of general discussion about new energy and traditional energy efficiency. Therefore, to
evaluate and analyze the environmental efficiency of new energy and traditional energy sources in four
Chinese municipalities and 26 provinces from 2013–2016, this study used a modified undesirable EBM
DEA model that had labor, fixed assets, new energy, and energy consumption as the input indicators,
gross domestic product (GDP) as the output indicator, and CO2, SO2, and NO2 as the undesirable
variable output indicators.

The remainder of this paper is organized as the follows: Section 2 gives a comprehensive literature
review, Section 3 describes the research method, Section 4 gives the comprehensive empirical results
and discussion, and Section 5 gives the conclusions and policy proposals.

2. Literature Review

Data envelopment analysis (DEA) is a widely used linear programming technique. It evaluates
the relative efficiency of a decision-making unit (DMU) based primarily on the concept of the Pareto
optimal solution. DEA is an effective method to evaluate the priority of multiple decision-making
schemes in a multi-oriented environment. Its main function is to establish an efficiency index by a set
of evaluated decision-making units by measuring more than two attributes. This efficiency index forms
the frontier of an efficiency boundary through the linear programming method by the input and output
variable data of each DMU, and determines the relative efficiency of individual DMUs according to
the distance between each DMU and the efficiency boundary. DEA uses a mathematical model to
determine the production frontier. DEA differs from the stochastic frontier approach (SFA) in that it
requires a preset production function. It is also different from multi-criteria decision analysis (MDA)
when evaluating performance. The objectivity of weight is limited. DEA is considered to be more
suitable for assessing company or industry performance than other methods (such as SFA) [30–32],
and because of DEA requires very few assumptions and opened up possibilities for its use in many
cases [33], the scope of DEA application was expanded to many industries. In recent years, DEA was
widely used in energy efficiency [34–38].

As early research tended to be focused on environmental protection, it mainly discussed the
impact of excessive greenhouse gas emissions on the global ecological environment, and any analyses
were generally focused on energy efficiency. For example, Hu and Wang [1] used a modified radial DEA
model to analyze China’s energy and found that economic growth boosted China’s energy efficiency.
Yeh et al. [2] used a radial DEA model to analyze the energy efficiency of China and Taiwan, and found
that Taiwan’s energy efficiency was higher than that of eastern China. Shi et al. [3] used a radial DEA
model to analyze China’s energy efficiency, and found that energy efficiency in eastern China was the
best. Choi et al. [4] used a slack-based DEA to analyze China’s energy efficiency, finding that China’s
carbon dioxide efficiency was poor. Wu et al. [5] used radial DEA and Malmquist methods to explore
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energy efficiency in eastern, western, and central regions of China, and found that the average energy
efficiency in eastern and central China was higher. In more recent research, Chang [6] used radial DEA
to explore European Union (EU) energy efficiency and found that the main reason for the increase in
energy intensity was whether the needed improvements were made. Wang and Wei [7] used a DDF
model to analyze China’s energy efficiency and found that there was a significant growth in carbon
dioxide emissions. Cui et al. [8] used radial DEA and Malmquist methods to analyze the relationship
between management, technical indicators, and energy efficiency. Wu et al. [9] used a Russell measure
model to explore China’s energy efficiency and found that excess energy was the main cause of poor
energy efficiency. Pang et al. [10] used an SBM DEA to analyze the efficiency of 87 countries and found
that European countries were more efficient in reducing emissions and had better energy efficiency.
Guo et al. [11] also used SBM dynamic DEA to analyze the energy efficiency of 27 countries and found
that all improved their energy efficiencies. Feng et al. [12] used a meta-frontier DEA to study the
energy efficiency of 30 provinces in China and found that CO2 efficiency was generally low.

In addition to the above energy efficiency research, with the growth in pollution and carbon
dioxide emissions, there was increased attention paid to new energy issues, renewable energy, and
sustainable development. For example, Hoang and Rao [15] used a non-radial DEA to analyze the
total efficiency of 29 OECD countries, and found that the sustainable efficiency varied enormously.
Shiau and Jhang [16] used radial DEA to analyze the efficiency of Taiwan’s transportation system, and
observed that, when the three core indicators (service impact, cost efficiency, and service reduction)
were excellent, the transportation system could continue to develop. Camioto et al. [24] used an
SBM DEA to analyze the overall efficiency of various industries in Brazil, finding that the textile
industry was the most efficient industry in Brazil, and the metallurgical industry was the least efficient.
Wang [25] used an SBM DEA to analyze the efficiency of 109 countries, finding that high-income
countries performed best in terms of sustainable energy.

There are two major research directions for new energy issues: the impact of new energy on GDP
or CO2, and new energy policy and efficiency assessments. Research on the impact of new energy on
GDP or CO2 was mainly based on OLS (ordinary least square), VECM (vector error correction model),
Panel, ECM (Error correction mechanism), ARDL (Autoregressive Distributed Lag), and VAR (vector
autroregession) regression analyses [39–47]. Research also mainly explored new energy efficiencies
and recommended the adoption of new energy policies. For example, Chien and Ho [13] used a radial
DEA to analyze the total efficiency of 45 OECD (Economic Co-operation and Development) economies,
and found that an increase in renewable energy improved technical efficiency. Honma and Hu [14]
studied energy efficiency indicator structures in 47 metropolitan areas in Japan from 1993 to 2003,
and found that renewable energy development was difficult to promote due to its excessive costs,
which suggested that the government should encourage inefficient regions to change their industrial
structures to reduce energy consumption. Blokhuis et al. [17] also used radial DEA to analyze the
efficiency of new energy in the Netherlands and found that wind energy was able to improve technical
efficiency. Boubaker [18] used radial DEA to analyze the energy efficiency of Morocco, Algeria, and
Tunisia, and found that energy diversification was a common interest. Sueyoshi et al. [21] studied
United States environmental efficiency and observed that a clean air act (CAA) was needed to improve
carbon dioxide emissions. Fagiani et al. [20] explored the role played by renewable energy in power
generation portfolios to reduce emissions in the power sector. Menegaki and Gurluk [19] compared
renewable energy performances in Turkey and Greece, finding that Greece delayed its renewable energy
development due to its economic crisis. Azande et al. [23] used fuzzy DEA to study Iranian wind
power plants, concluding that consumer proximity was important to wind farm siting. Sueyoshi and
Goto [22] used radial DEA to assess the efficacy of 160 photovoltaic power plants in Germany and the
United States, finding that photovoltaic power plants in Germany were more efficient. Kim et al. [26]
used a radial DEA method for an energy assessment and found that wind power was the most efficient
renewable energy source for Korean government investment. Zhang and Xie [27] used a non-radial
DDF method to explore renewable energy and sustainable development in China, concluding that
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China’s environmental supervision costs increased significantly from 1991 to 2005. Guo et al. [28]
used a modified SBM model to explore energy savings and pollutant reductions in China, and came
to the conclusion that the government needed to introduce new technologies to maintain economic
development, and that all regions needed to pay attention to energy and pollution issues.

Therefore, while there were many previous papers that employed DEA for new energy efficiency
assessments, there were few that jointly evaluated new energy and traditional energy efficiency.
Furthermore, the main evaluation methods were radial or non-radial DEA models, both of which
were shown to be prone to efficiency underestimations or overestimations. To solve this problem,
in this paper, an undesirable variable factor was added to Tone and Tsutsui’s [29] EBM to propose
a modified undesirable SBM Model to evaluate the energy efficiency of four municipalities and 26
provinces in China.

3. Research Method

Based on Farrell’s [48] concept of “boundary” in data envelopment analysis, Charnes et al. [49]
developed the CCR DEA model with a fixed-scale returns assumption, after which Banker et al. [50]
extended these assumptions to propose a BCC model that measured technical efficiency (TE) and scale
efficiency (SE). However, as both CCR and BCC were radial DEA models that ignore non-radial slacks
when evaluating efficiency values, Tone [51] proposed a slack-based measure (SBM) in 2001 that used
a difference variable as the basis for measurement, considering the slack in the input and output items
and a scalar variable in the non-radial estimation methods to present SBM DMU (decision-making
unit) efficiency values between 0 and 1, for which an efficiency value of 1 indicated that the DMU
had no slack on the production boundary regardless of the input or output items. However, as the
SBM was a non-radial DEA model, it failed to consider the radial characteristics; that is, it ignored
the characteristics that had the same radial proportions. To address the shortcomings in both the
radial and non-radial models, Tone and Tsutsui [29] then proposed the EBM (Epsilou-based measure)
DEA model, that was input-oriented, output-oriented, and non-oriented, and was able to resolve the
shortcomings in radial and non-radial DEA models.

Tone and Tsutsui’s [29] EBM DEA description for the input-oriented, output-oriented, and
non-oriented model and solution is outlined below.

In the input-oriented EBM Model, the situation of resource inputs at the same output level
is compared.

γ∗ = min
0,λ,S−

θ− εx
m∑

i=1

W−i S−i
Xio

subject to θx0 −Xλ− S− = 0,
Yλ ≥ y0,
λ ≥ 0,
s− ≥ 0.

In the output-oriented EBM Model, the situation of output achievements at the same input level
is compared.

1/τ∗ = max
η,λ,S+

η+ εy
s∑

i=1

W+
i S+i
yio

subject to Xλ ≤ x0,
ηy0 −Yλ+ S+ = 0,

λ ≥ 0,
s+ ≥ 0.

3.1. Non-Oriented EBM: Simultaneous Assessment of Inefficiency from Both Input and Output Perspectives

Suppose there are n DMUs, DMU j = (DMU1, DMU2, · · · , DMUk, · · · , DMUn), that have m type
inputs X j =

(
X1 j, X2 j, · · · , Xmj

)
, that produce an s type output Y j =

(
Y1 j, Y2 j, · · · , Ysj

)
; then, the

efficiency of the DMU is:



Int. J. Environ. Res. Public Health 2019, 16, 1764 5 of 24

K∗ = min
0,η,λ,s−,s+

θ−εx
∑m

i=1
w−i s−i

xi0

η+εy
∑s

i=1
w+

i s+i
yi0

Subject to θX0 −Xλ − S− = 0,
ηY0 −Yλ + S+ = 0,
λ1 + λ2 + · · ·+ λn = 1
λ ≥ 0, S− ≥ 0, S+

≥ 0.

(1)

where Y is the DMU output, X is the DMU input, S− is the slack variable, S+ is the surplus variable, W−

is the weight of input I,
∑

W−i = 1
(
∀iW−i ≥ 0

)
, W+ is the weight of output S,

∑
W+

i = 1
(
∀iW+

i ≥ 0
)
, εx

is a combination of radial θ and non-radial slack, and εy is a combination of radial η and non-radial slack.
If DMU0 K∗ = 1 is the best efficiency for a non-oriented EBM, then if an inefficient DMU wants to

achieve an appropriate efficiency goal, the following adjustments are needed:

X∗0 =Xλ∗ = θ∗X0 − S−∗;
Y∗0 = Yλ∗ = η∗y0 + S+.

3.2. Empirical Model in This Study: A Modified Undesirable EBM DEA Model

Because Tone and Tsutsui’s [29] EBM had no restrictions for the range of θ and η variables and did
not consider any undesirable factors, this paper combines the modified EBM DEA and an undesirable
factor for the evaluation of the energy efficiency of 30 mainland Chinese municipalities/provinces so as
to avoid underestimating or overestimating the efficiency values.

In the modified undesirable EBM DEA model, the objective is to expand desirable outputs while
simultaneously reducing inputs and undesirable output. The modified undesirable EBM DEA Model
is described below.

Suppose there are n DMUs, DMU j = (DMU1, DMU2, · · · , DMUk, · · · , DMUn), using m type
inputs X j =

(
X1 j, X2 j, · · · , Xmj

)
and producing s type outputs Y j =

(
Y1 j, Y2 j, · · · , Ysj

)
; then, the DMU

efficiency is as follows

K∗ = min
0η,λ,s−,s+g,s−b

θ−εx
∑m

i=1
w−i s−i

xi0

η+εy[
∑S1

i=1
w+S1

i s
+g
i

yi0
+

∑S2
i=1

w−S2
i s−b

i
yi0

]

Subject to θX0 −Xλ − S− = 0,
ηY0 −Y+g

λ
+ S+g = 0

ηY0 −Y−b
λ

+ S−b = 0
λ1 + λ2 + . . .+ λn = 1

λ ≥ 0, S− ≥ 0, S+g
≥ 0, S−b

≥ 0, θ ≤ 1, η ≥ 1

(2)

where Y is the DMU output, X is the DMU input, S− is the slack variable, S+g is the desirable slack
variable, S−b is the undesirable slack variable, W− is the weight of input i,

∑
W−i = 1

(
∀i W−i ≥ 0

)
, W+

is the weight of output S,
∑

W+S1
i +

∑
W−S2

i = 1
(
∀i W+

i ≥ 0
)
, εx is the combination of radial θ and

non-radial slack, and εy is the combination of radial η and non-radial slack.
If DMU0 K∗ = 1 is the best efficiency for the non-oriented EBM, then an inefficient DMU needs the

following adjustments to achieve the most appropriate efficiency goal:

X∗0= Xλ∗= θ∗X0−S−∗;
Y∗0= Yλ∗(−b)= η∗y0+S+g;
Y∗0= Y∗−bλ= η∗y0+S−b.
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3.3. New Energy, Energy Consumption, and CO2, SO2, and NO2 Efficiency Indices

Hu and Wang’s [1]’s total-factor energy efficiency index is used in this paper to overcome any
possible bias in the traditional energy efficiency indicators. For each specific evaluated municipality
or province, the GDP, energy consumption (ENG), new energy (NENG), and CO2, SO2, and NO2

efficiencies were calculated using Equations (3)–(8).

GDP =
Actual GDP desirable output (i, t)
Target GDP desirable output (i, t)

; (3)

ENG =
Target energy input (i, t)
Actual energy input (i, t)

; (4)

NENG =
Target new energy input (i, t)
Actual new energy input (i, t)

; (5)

CO2 =
Target CO2 Undesirable output (i, t)
Actual CO2 Undesirable output (i, t)

; (6)

SO2 =
Target SO2 Undesirable output (i, t)
Actual SO2 Undesirable output (i, t)

; (7)

NO2 =
Target NO2 Undesirable output (i, t)
Actual NO2 Undesirable output (i, t)

. (8)

If the target ENG and NENG input are equal to the actual input and the CO2, SO2, and NO2 are
equal to the actual undesirable outputs, then the ENG, NENG, and CO2, SO2, and NO2 efficiencies are
equal to 1, indicating overall efficiency. If the target ENG and NENG input is less than the actual input
and the CO2, SO2, and NO2 undesirable outputs are less than the actual undesirable outputs, then the
ENG, NENG, and CO2, SO2, and NO2 efficiencies are less than 1, indicating overall inefficiency.

If the target GDP desirable output is equal to the actual GDP desirable output, then the GDP
efficiency is equal to 1, indicating overall efficiency. If the actual GDP desirable output is less than the
target GDP desirable output, then the GDP efficiency is less than 1, indicating overall inefficiency.

4. Empirical Analyses

4.1. Data Sources and Description

This study used 2013 to 2016 panel data from 30 Chinese municipalities/provinces in the most
developed areas in China. The socio-economic development data were collected from the Chinese
Statistical Yearbooks [52], the Demographics and Employment Statistical Yearbook of China, and the
City Statistical Yearbooks [53]. Air pollutant data were collected from the Chinese Environmental and
Protection Bureau Annual Reports and the Chinese Environmental Statistical Yearbooks [54].

As the 30 municipalities/provinces have different populations, industries, natural resources,
meteorological conditions, and geographical positions, they were fairly representative of the pollution
emissions and treatment situations in China.

The input indicator variables used in this study were labor, fixed assets, new energy, and traditional
energy consumption, the output indicator was GDP, and CO2, SO2, and NO2 were the undesirable
output (Table 1).
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Table 1. Input and output variables. GDP—gross domestic product.

Input Variables Output Variables Undesirable Output

Labor (lab)

GDP

CO2
Fixed assets (asset) SO2

Energy consumption (com) NO2
New energy

4.1.1. Input Variables

Labor input (lab): this study used the number of employees in each municipality/province at the
end of each year (unit = people).

Capital input (assets): the capital stock was calculated based on the fixed asset investments in
each municipality/province (unit = 100 million Chinese yuan (CNY)).

Energy consumption (com): this was calculated from the total energy consumption in each
municipality/province (unit = 100 million tons).

New energy (new). In October 2012, the State Council issued “China’s energy policy 2012”
Chapter 4 [55], developing new and renewable energy, in which nuclear energy is a key project for
the development of new energy in the country, aiming to optimize the energy structure and ensure
national energy security. Due to the nuclear disaster caused by the 2011 earthquake in Japan, it is still
controversial whether countries can summarize nuclear energy into green energy.

For China’s development, because of the continuous improvement of science and technology, new
energy generally refers to the development of new technologies including hydropower, wind power,
solar energy, biomass energy, nuclear energy, geothermal energy, wave energy, ocean current energy,
tidal energy, and combustible ice. Microbial energy, hydrogen energy, and fourth-generation nuclear
energy are all important projects for China’s future energy development.

Thus, new energy included solar energy, nuclear energy, and wind power. It was calculated from
the total energy consumption in each municipality/province (unit = 100 million tons).

4.1.2. Output Variable

GDP: the GDP in each municipality/province was applied as the output (unit = 100 million CNY).
The GDP data were extracted from each province’s statistical yearbook for the given period.

4.1.3. Undesirable Output

The CO2 (carbon dioxide) emissions data for each municipality/province were estimated from
the energy consumption. CO2 emissions are a primary cause for the changes being experienced in
earth temperatures and the rising sea levels. CO2, unlike other air pollutants, is used as the sole carbon
emissions measure for global solutions to climate change. SO2 (sulfur dioxide), which is released
naturally by volcanic activity, is also a by-product from the burning of fossil fuels contaminated with
sulfur compounds. NO2 (nitrogen dioxide), which is from a group of highly reactive gases known
as nitrogen oxides (NX), is an intermediate gas resulting from the industrial synthesis of nitric acid,
millions of tons of which are produced each year. At higher temperatures, it is a reddish-brown gas
that has a characteristic sharp, biting odor and is one of the most prominent air pollutants.

4.2. Statistical Analysis

Figure 1 shows the statistical analyses for the employed population, fixed assets, traditional
energy consumption inputs, new energy production inputs, and GDP. From the statistical analysis,
it can be seen that the maximum and average number of employed people declined from 2014, and
investment in fixed assets rose significantly. The average GDP maintained a steady upward trend,
where the maximum GDP had a relatively large upward trend, and minimum GDP slowly increased.
Although the average value of traditional energy sources continued to decline slightly, the maximum
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traditional energy consumption continued to rise, and the minimum value experienced only a marginal
rise. The total new energy production was smaller than the traditional energy consumption; however,
from 2012 to 2013, there was a significant increase from 2000 tons to 2500 tons with a further rise from
2013 to 2016. Therefore, it can be seen from the rapid growth that, under central government guidance,
most municipalities and provinces were seriously investing in new energy.
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data were collected from the Chinese Environmental and Protection Bureau Annual Reports and the
Chinese Environmental Statistical Yearbooks [54].

4.3. Empirical Analysis of the Modified Undesirable EBM DEA

This study used a modified Undesirable EBM DEA model to analyze the energy efficiencies in
30 Chinese municipalities/provinces.

4.3.1. Epsilon Score Analysis

The sample Epsilon score in this study compared the radial DEA and the non-radial DEA. The main
radial analysis was close to 0 and the main non-radial analysis was close to 1. Table 2 indicates that the
radial DEA model was more appropriate for this analysis.

Table 2. Epsilon score. EBM—Epsilou-based measure.

Epsilon Score 2013 2014 2015 2016

Epsilon for EBM X 0.2427 0.3584 0.2698 0.2771
Epsilon for EBM Y 0.093 0.1450 0.1105 0.1264
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4.3.2. Annual Efficiency

Table 3 shows the total efficiency scores for the four municipalities (Beijing, Shanghai, Tianjin,
and Chongqing) and the 26 provinces from 2013 to 2016. It can be seen that total efficiencies of 1 were
achieved by Beijing, Inner Mongolia, Shanghai, and Tianjin, with the other municipalities/provinces
having relatively high total annual efficiencies. The areas with a full four-year efficiency score below
0.6 include Gansu, Guizhou, Xinjiang, and Yunnan, where Gansu is the worst of the 30 cities with an
efficiency score below 0.5 in the full four years, and the efficiency score continually dropped to 0.41 in
2016, suggesting very large room of improvement. In addition to the four regions with an efficiency
score of 1, the four-year efficiency scores of the other 26 regions showed different trends. It can be seen
that only four regions had a total efficiency score that continued to rise or fluctuate including Guizhou,
Heilongjiang, Liaoning, and Sichuan. The biggest increase was in Liaoning, rising from 0.74 in 2013 to
1 in 2016, and the efficiency improvement was significant. The overall efficiency scores of the other 22
regions continued to decline or fluctuate. In most areas, the decline was less than 0.1. Hebei had the
highest decline, from 0.79 in 2013 to 0.66 in 2016.

Table 3. Efficiency in each municipality (m)/province from 2013–2016. DMU—decision-making unit.

No. DMU 2013 2014 2015 2016

1 Anhui 0.6980 0.6680 0.6644 0.6454
2 Beijing (m) 1.0000 1.0000 1.0000 1.0000
3 Chongqing (m) 0.6835 0.6542 0.6598 0.6493
4 Fujian 0.8130 0.7918 0.7760 0.7518
5 Gansu 0.4946 0.4673 0.4371 0.4147
6 Guangdong 0.8528 0.8411 0.8361 0.8264
7 Guangxi 0.7044 0.6921 0.7027 0.7070
8 Guizhou 0.5354 0.5366 0.5480 0.5478
9 Hainan 0.8228 0.8065 0.7693 0.7388
10 Hebei 0.7858 0.7261 0.6992 0.6577
11 Heilongjiang 0.6258 0.6593 0.6398 0.6553
12 Henan 0.6165 0.5955 0.5758 0.5567
13 Hubei 0.7500 0.7311 0.7272 0.7076
14 Hunan 0.8177 0.8008 0.8039 0.7977
15 Jiangsu 0.8475 0.8092 0.8259 0.8043
16 Jiangxi 0.6562 0.6158 0.5926 0.5666
17 Jilin 0.7298 0.7040 0.6829 0.6606
18 Liaoning 0.7399 0.7233 0.7983 1.0000
19 Inner Mongolia 1.0000 1.0000 1.0000 1.0000
20 Ningxia 0.6280 0.5889 0.5818 0.5559
21 Qinghai 0.6083 0.5990 0.5960 0.5918
22 Shandong 0.8248 0.8070 0.7988 0.7808
23 Shanghai (m) 1.0000 1.0000 1.0000 1.0000
24 Shanxi 0.5380 0.5061 0.4759 0.4503
25 Shaanxi 0.6070 0.5875 0.5686 0.5513
26 Sichuan 0.7174 0.7130 0.7099 0.7201
27 Tianjin (m) 1.0000 1.0000 1.0000 1.0000
28 Xinjiang 0.5344 0.5124 0.4755 0.4546
29 Yunnan 0.5725 0.5743 0.5674 0.5677
30 Zhejiang 0.8457 0.8047 0.7992 0.7706

4.3.3. Comparison of Radial and Non-Radial Inefficiency Analysis for the Input and Output Indicators

Table 4 shows the 2013 input indicator inefficiency scores, radial inefficiency scores, and
non-radial inefficiency scores. Gansu (0.35), Guizhou (0.31), Shanxi (0.31), Xinjiang (0.32), and
Heilongjiang, Henan, Ningxia, and Qinghai provinces with inefficiencies of around 0.25 had the highest
input indicator inefficiencies, followed by Chongqing and Jiangxi at around 0.2, with most other
municipalities/provinces being between 0.1 and 0.2. From the comparison of the input indicator radial
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inefficiency and the non-radial inefficiency scores, it can be seen that most municipalities/provinces
had higher radial inefficiency scores than non-radial inefficiency scores. However, the input indicator
non-radial inefficiency scores in seven provinces (Fujian, Guangdong, Hainan, Hebei, Jiangsu,
Shandong, and Zhejiang) were still slightly higher than the radial inefficiency scores. The input
indicator inefficiency scores were mainly caused by the non-radial inefficiency scores, or were partly
caused by the radial inefficiency scores and partly caused by the non-radial inefficiency scores.

The output indicator inefficiency scores, the radial inefficiency scores, and the non-radial
inefficiency scores were above 0.2 in nine provinces or municipalities: Gansu, Guizhou, Heilongjiang,
Henan, Qinghai, Shanxi, Shaanxi, Xinjiang, and Yunnan. Moreover, the radial inefficiency scores were
higher than the non-radial inefficiency scores, which indicated that the output inefficiency scores
in these nine provinces were mainly caused by radial inefficiencies. Other municipalities/provinces
had inefficiencies ranging from 0 to 0.2, with all scores being dominated by the radial inefficiency
scores, as the non-radial inefficiency scores were smaller. Table 5 shows that there were only four
provinces/municipalities with an inefficiency score of 0. These four regions are Beijing, Inner Mongolia,
Shanghai, and Tianjin. There were four regions with the highest inefficiency scores, all with scores
above 0.3, including Gansu, Guizhou, Shanxi, and Xinjiang. The lowest inefficiency score was in
Guangdong, only about 0.11; the second lowest was in Shandong, with an inefficiency score around
0.13. In addition to the lowest inefficiency scores in the above two regions, there were other 11 regions
with an inefficiency score below 0.2. The inefficiency scores for the remaining 13 regions ranged from
0.2 to 0.3. The data in the table analyzed the inefficiency scores for each region and were affected by
radial and non-radial inefficiency scores. The output inefficiency scores of all regions were mainly
affected by the radial inefficiency score.

Table 6 shows that, in 2015, only Beijing, Inner Mongolia, Shanghai, and Tianjin had inefficiency
scores of 0. The radial and non-radial inefficiency scores for the remaining 26 municipalities/provinces
were generally higher than in 2014, with the inefficiency score for the Gansu input index being
0.4 or higher, followed by Shanxi and Xinjiang with an increase of 0.37. The inefficiency score in
Shaanxi was 0.29, while that in Yunnan and Ningxia was 0.28, that in Qinghai was 0.27, and that
in Guizhou and Henan was around 0.22. The input indicator inefficiency scores in the other nine
municipalities/provinces were between 0.1 and 0.2. Gansu, Shanxi, and Xinjiang provinces had output
indicator inefficiency scores above 0.3, whereas the output indicator inefficiency scores in Guizhou,
Henan, Jiangxi, Ningxia, Qinghai, Shaanxi, and Yunnan ranged from 0.3 to 0.2. Anhui, Chongqing,
Guangxi, Hebei, Heilongjiang, Hubei, Jilin, and Sichuan had inefficiency scores of between 0.1 to 0.2,
and Fujian, Guangdong, Hainan, Hunan, Liaoning, Shandong, and Zhejiang had output indicator
inefficiency scores from 0 to 0.1. Only Hainan, Hebei, Hunan, and Jiangsu were mainly affected by the
non-radial inefficiency scores, with the scores in the other municipalities/provinces being mainly caused
by the radial inefficiency scores. The output indicators indicated that, except for Liaoning, the output
inefficiency in the other municipalities/provinces was mainly because of the radial inefficiency scores.

Table 7 shows that, in 2016, only Beijing, Liaoning, Inner Mongolia, Shanghai, and Tianjin
had inefficiency scores of 0. The radial and non-radial inefficiency scores for the remaining
25 municipalities/provinces were generally higher than in 2015. The input indicator inefficiency
scores in Xinjiang, Shaanxi, Shanxi, Ningxia, Guizhou, and Gansu were above 0.3, and those in
Yunnan, Qinghai, Jilin, Jiangxi, Henan, Heilongjiang, Hebei, Chongqing, and Anhui were between 0.2
and 0.3. Some municipalities/provinces had output indicator inefficiency scores exceeding 0.2, with
Xinjiang, Shaanxi, and Gansu having output indicator inefficiency scores higher than 0.3. Except for
Hainan, Hunan, Jiangsu, and Shandong, which were affected by the non-radial inefficiency scores, the
input indicator inefficiency scores in most municipalities/provinces were generated from the radial
inefficiency scores. Only the output indicator inefficiency scores in Shandong were mainly affected by
the non-radial inefficiency scores, with all other municipalities/provinces being mainly affected by the
non-radial efficiency scores.
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Table 4. 2013 input and output indicator radial and non-radial inefficiency scores.

No. DMU Score Input
Inefficiency

Input Radial
Inefficiency

Input Non-Radial
Inefficiency

Output
Inefficiency

Output Radial
Inefficiency

Output Non-Radial
Inefficiency

1 Anhui 0.6980 0.1981 0.1268 0.0712 0.1489 0.1268 0.0221
2 Beijing 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 Chongqing 0.6835 0.2046 0.1516 0.0530 0.1637 0.1516 0.0121
4 Fujian 0.8130 0.1294 0.0641 0.0653 0.0708 0.0641 0.0067
5 Gansu 0.4946 0.3484 0.2912 0.0572 0.3175 0.2912 0.0263
6 Guangdong 0.8528 0.1069 0.0430 0.0639 0.0473 0.0430 0.0043
7 Guangxi 0.7044 0.1889 0.1384 0.0506 0.1515 0.1384 0.0132
8 Guizhou 0.5354 0.3162 0.2412 0.0750 0.2772 0.2412 0.0360
9 Hainan 0.8228 0.1374 0.0348 0.1026 0.0484 0.0348 0.0136

10 Hebei 0.7858 0.1445 0.0462 0.0983 0.0888 0.0462 0.0426
11 Heilongjiang 0.6258 0.2462 0.1789 0.0673 0.2045 0.1789 0.0255
12 Henan 0.6165 0.2503 0.1930 0.0573 0.2161 0.1930 0.0231
13 Hubei 0.7500 0.1652 0.1033 0.0619 0.1130 0.1033 0.0097
14 Hunan 0.8177 0.1227 0.0621 0.0606 0.0728 0.0621 0.0107
15 Jiangsu 0.8475 0.1075 0.0474 0.0601 0.0531 0.0474 0.0057
16 Jiangxi 0.6563 0.2204 0.1739 0.0466 0.1879 0.1739 0.0140
17 Jilin 0.7298 0.1767 0.1023 0.0744 0.1281 0.1023 0.0258
18 Liaoning 0.7399 0.1723 0.0947 0.0777 0.1187 0.0947 0.0240
19 Inner Mongolia 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 Ningxia 0.6280 0.2486 0.1443 0.1044 0.1964 0.1443 0.0521
21 Qinghai 0.6083 0.2613 0.1818 0.0795 0.2144 0.1818 0.0326
22 Shandong 0.8248 0.1180 0.0442 0.0738 0.0694 0.0442 0.0252
23 Shanghai 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
24 Shanxi 0.5380 0.3143 0.2338 0.0806 0.2745 0.2338 0.0407
25 Shaanxi 0.6070 0.2603 0.1921 0.0682 0.2186 0.1921 0.0266
26 Sichuan 0.7174 0.1839 0.1250 0.0589 0.1376 0.1250 0.0126
27 Tianjin 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
28 Xinjiang 0.5344 0.3161 0.2416 0.0745 0.2798 0.2416 0.0382
29 Yunnan 0.5725 0.2858 0.2247 0.0611 0.2476 0.2247 0.0229
30 Zhejiang 0.8457 0.1157 0.0365 0.0793 0.0457 0.0365 0.0092
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Table 5. 2014 input and output indicator radial and non-radial inefficiency scores.

No. DMU Score Input
Inefficiency

Input Radial
Inefficiency

Input Non-Radial
Inefficiency

Output
Inefficiency

Output Radial
Inefficiency

Output Non-Radial
Inefficiency

1 Anhui 0.6680 0.2206 0.1423 0.0783 0.1667 0.1423 0.0244
2 Beijing 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 Chongqing 0.6542 0.2228 0.1765 0.0463 0.1881 0.1765 0.0117
4 Fujian 0.7918 0.1435 0.0737 0.0698 0.0817 0.0737 0.0080
5 Gansu 0.4673 0.3724 0.3142 0.0582 0.3431 0.3142 0.0289
6 Guangdong 0.8411 0.1119 0.0534 0.0585 0.0559 0.0534 0.0024
7 Guangxi 0.6921 0.1970 0.1471 0.0499 0.1601 0.1471 0.0130
8 Guizhou 0.5366 0.3149 0.2378 0.0771 0.2766 0.2378 0.0388
9 Hainan 0.8065 0.1467 0.0428 0.1039 0.0580 0.0428 0.0152

10 Hebei 0.7261 0.1798 0.0855 0.0943 0.1296 0.0855 0.0441
11 Heilongjiang 0.6593 0.2220 0.1416 0.0804 0.1801 0.1416 0.0384
12 Henan 0.5955 0.2652 0.2093 0.0559 0.2338 0.2093 0.0245
13 Hubei 0.7311 0.1775 0.1154 0.0621 0.1251 0.1154 0.0097
14 Hunan 0.8008 0.1330 0.0718 0.0611 0.0827 0.0718 0.0109
15 Jiangsu 0.8092 0.1312 0.0674 0.0637 0.0737 0.0674 0.0063
16 Jiangxi 0.6158 0.2494 0.2048 0.0446 0.2189 0.2048 0.0140
17 Jilin 0.7040 0.1928 0.1163 0.0765 0.1467 0.1163 0.0304
18 Liaoning 0.7233 0.1797 0.1058 0.0739 0.1341 0.1058 0.0283
19 Inner Mongolia 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 Ningxia 0.5889 0.2767 0.1724 0.1043 0.2283 0.1724 0.0560
21 Qinghai 0.5990 0.2674 0.1870 0.0804 0.2230 0.1870 0.0360
22 Shandong 0.8070 0.1278 0.0504 0.0774 0.0808 0.0504 0.0304
23 Shanghai 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
24 Shanxi 0.5061 0.3404 0.2585 0.0819 0.3032 0.2585 0.0446
25 Shaanxi 0.5875 0.2753 0.2034 0.0719 0.2336 0.2034 0.0302
26 Sichuan 0.7130 0.1863 0.1284 0.0578 0.1412 0.1284 0.0128
27 Tianjin 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
28 Xinjiang 0.5124 0.3341 0.2568 0.0773 0.2994 0.2568 0.0426
29 Yunnan 0.5743 0.2834 0.2219 0.0615 0.2477 0.2219 0.0258
30 Zhejiang 0.8047 0.1317 0.0707 0.0611 0.0791 0.0707 0.0084
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Table 6. 2015 input and output indicator radial and non-radial inefficiency scores.

No. DMU Score Input
Inefficiency

Input Radial
Inefficiency

Input Non-Radial
Inefficiency

Output
Inefficiency

Output Radial
Inefficiency

Output Non-Radial
Inefficiency

1 Anhui 0.6644 0.2266 0.1342 0.0924 0.1642 0.1342 0.0300
2 Beijing 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 Chongqing 0.6598 0.2209 0.1672 0.0537 0.1808 0.1672 0.0135
4 Fujian 0.7760 0.1559 0.0787 0.0772 0.0877 0.0787 0.0090
5 Gansu 0.4371 0.4014 0.3378 0.0636 0.3696 0.3378 0.0318
6 Guangdong 0.8361 0.1196 0.0493 0.0703 0.0531 0.0493 0.0038
7 Guangxi 0.7027 0.1936 0.1334 0.0602 0.1476 0.1334 0.0142
8 Guizhou 0.5480 0.3079 0.2215 0.0865 0.2629 0.2215 0.0414
9 Hainan 0.7693 0.1694 0.0635 0.1059 0.0797 0.0635 0.0162

10 Hebei 0.6992 0.1999 0.0956 0.1043 0.1442 0.0956 0.0485
11 Heilongjiang 0.6398 0.2374 0.1482 0.0893 0.1919 0.1482 0.0437
12 Henan 0.5758 0.2821 0.2202 0.0620 0.2467 0.2202 0.0265
13 Hubei 0.7272 0.1837 0.1094 0.0743 0.1225 0.1094 0.0131
14 Hunan 0.8039 0.1361 0.0585 0.0776 0.0747 0.0585 0.0162
15 Jiangsu 0.8259 0.1261 0.0476 0.0785 0.0580 0.0476 0.0104
16 Jiangxi 0.5926 0.2692 0.2154 0.0537 0.2333 0.2154 0.0179
17 Jilin 0.6829 0.2084 0.1241 0.0843 0.1592 0.1241 0.0351
18 Liaoning 0.7983 0.1347 0.0371 0.0976 0.0839 0.0371 0.0468
19 Inner Mongolia 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 Ningxia 0.5818 0.2841 0.1697 0.1143 0.2305 0.1697 0.0607
21 Qinghai 0.5960 0.2707 0.1855 0.0851 0.2238 0.1855 0.0382
22 Shandong 0.7988 0.1356 0.0429 0.0927 0.0822 0.0429 0.0393
23 Shanghai 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
24 Shanxi 0.4759 0.3685 0.2803 0.0882 0.3269 0.2803 0.0466
25 Shaanxi 0.5686 0.2920 0.2105 0.0815 0.2451 0.2105 0.0346
26 Sichuan 0.7099 0.1880 0.1325 0.0555 0.1439 0.1325 0.0114
27 Tianjin 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
28 Xinjiang 0.4755 0.3681 0.2844 0.0837 0.3289 0.2844 0.0445
29 Yunnan 0.5674 0.2899 0.2250 0.0649 0.2516 0.2250 0.0266
30 Zhejiang 0.7992 0.1392 0.0651 0.0741 0.0772 0.0651 0.0121
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Table 7. 2016 input and output indicator radial and non-radial inefficiency scores.

No. DMU Score Input
Inefficiency

Input Radial
Inefficiency

Input Non-Radial
Inefficiency

Output
Inefficiency

Output Radial
Inefficiency

Output Non-Radial
Inefficiency

1 Anhui 0.6454 0.2397 0.1418 0.0979 0.1779 0.1418 0.0361
2 Beijing 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 Chongqing 0.6493 0.2289 0.1682 0.0607 0.1876 0.1682 0.0194
4 Fujian 0.7518 0.1709 0.0925 0.0784 0.1027 0.0925 0.0102
5 Gansu 0.4147 0.4221 0.3566 0.0656 0.3935 0.3566 0.0370
6 Guangdong 0.8264 0.1224 0.0575 0.0649 0.0620 0.0575 0.0044
7 Guangxi 0.7070 0.1924 0.1252 0.0672 0.1423 0.1252 0.0171
8 Guizhou 0.5478 0.3075 0.2178 0.0897 0.2641 0.2178 0.0463
9 Hainan 0.7388 0.1876 0.0805 0.1071 0.0997 0.0805 0.0192

10 Hebei 0.6577 0.2266 0.1219 0.1047 0.1758 0.1219 0.0539
11 Heilongjiang 0.6553 0.2254 0.1241 0.1013 0.1821 0.1241 0.0580
12 Henan 0.5567 0.2970 0.2325 0.0646 0.2628 0.2325 0.0303
13 Hubei 0.7076 0.1962 0.1212 0.0750 0.1359 0.1212 0.0147
14 Hunan 0.7977 0.1405 0.0554 0.0852 0.0774 0.0554 0.0220
15 Jiangsu 0.8043 0.1399 0.0559 0.0840 0.0694 0.0559 0.0135
16 Jiangxi 0.5666 0.2899 0.2306 0.0593 0.2533 0.2306 0.0228
17 Jilin 0.6606 0.2226 0.1341 0.0885 0.1768 0.1341 0.0427
18 Liaoning 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
19 Inner Mongolia 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 Ningxia 0.5559 0.3022 0.1867 0.1155 0.2552 0.1867 0.0685
21 Qinghai 0.5918 0.2714 0.1883 0.0832 0.2311 0.1883 0.0428
22 Shandong 0.7808 0.1468 0.0441 0.1026 0.0928 0.0441 0.0487
23 Shanghai 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
24 Shanxi 0.4503 0.3906 0.3006 0.0900 0.3533 0.3006 0.0527
25 Shaanxi 0.5513 0.3051 0.2193 0.0858 0.2603 0.2193 0.0410
26 Sichuan 0.7201 0.1812 0.1212 0.0600 0.1370 0.1212 0.0158
27 Tianjin 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
28 Xinjiang 0.4546 0.3859 0.2996 0.0863 0.3507 0.2996 0.0511
29 Yunnan 0.5677 0.2880 0.2238 0.0642 0.2541 0.2238 0.0304
30 Zhejiang 0.7706 0.1574 0.0779 0.0795 0.0935 0.0779 0.0156
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4.3.4. Efficiency of the Input and Output Indicators: Fixed Assets, Employees, GDP, Energy, New
Energy, and CO2, SO2, and NO2

Table 8 shows the fixed asset and employment efficiencies in the municipalities/provinces from
2013 to 2016. As can be seen, there were significant fluctuations in the input indicator efficiencies across
the municipalities/provinces. All municipalities/provinces had large fixed asset efficiency fluctuations,
with only Beijing, Inner Mongolia, Shanghai, and Tianjin achieving fixed asset efficiency scores of 1.
All other municipalities/provinces need significant improvement. The areas where the efficiency scores
of fixed assets continued to rise or fluctuate include Guangdong, Guizhou, Hainan, Heilongjiang,
Liaoning, Shandong, Sichuan, and Zhejiang. The efficiency scores of fixed assets in the other 18 regions
showed sustained or fluctuating decline.

Table 8. 2013–2016 asset and employment (em) efficiencies.

DMU 2013 Assets 2014 Assets 2015 Assets 2016 Assets 2013 em 2014 em 2015 em 2016 em

Anhui 0.7356 0.7281 0.7322 0.7308 0.8732 0.8577 0.8660 0.7356
Beijing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Chongqing 0.7337 0.8235 0.8328 0.8318 0.8484 0.8235 0.8330 0.7337
Fujian 0.8294 0.8055 0.7898 0.7946 0.9359 0.9263 0.9210 0.8294
Gansu 0.7088 0.6858 0.6622 0.6434 0.7088 0.6858 0.6620 0.7088

Guangdong 0.7707 0.8714 0.8100 0.9425 0.9570 0.9466 0.9510 0.7707
Guangxi 0.8616 0.8529 0.8184 0.7839 0.8617 0.8529 0.8670 0.8616
Guizhou 0.7588 0.7622 0.7785 0.7822 0.7588 0.7622 0.7790 0.7588
Hainan 0.3228 0.3501 0.3933 0.4648 0.9652 0.9572 0.9370 0.3228
Hebei 0.8111 0.8008 0.7934 0.7840 0.9538 0.9145 0.9040 0.8111

Heilongjiang 0.8211 0.8584 0.8518 0.8759 0.8211 0.8584 0.8520 0.8211
Henan 0.8070 0.7907 0.7798 0.7675 0.8070 0.7907 0.7800 0.8070
Hubei 0.8492 0.8426 0.8283 0.8373 0.8967 0.8846 0.8910 0.8492
Hunan 0.9111 0.9017 0.8739 0.8588 0.9379 0.9282 0.9420 0.9111
Jiangsu 0.9526 0.9326 0.9524 0.9441 0.9526 0.9326 0.9520 0.9526
Jiangxi 0.7798 0.7952 0.7846 0.7694 0.8261 0.7952 0.7850 0.7798

Jilin 0.8977 0.8837 0.8759 0.8659 0.8977 0.8837 0.8760 0.8977
Liaoning 0.7501 0.8561 0.9629 1.0000 0.9053 0.8942 0.9630 0.7501

Inner
Mongolia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Ningxia 0.7033 0.6799 0.6951 0.6890 0.8557 0.8276 0.8300 0.7033
Qinghai 0.6715 0.6391 0.6385 0.6246 0.8182 0.8130 0.8140 0.6715

Shandong 0.9558 0.9496 0.9571 0.9559 0.9558 0.9496 0.9570 0.9558
Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Shanxi 0.7662 0.7415 0.7197 0.6994 0.7663 0.7415 0.7200 0.7662
Shaanxi 0.8079 0.7966 0.7895 0.7807 0.8079 0.7966 0.7900 0.8079
Sichuan 0.8224 0.8306 0.8593 0.8462 0.8750 0.8716 0.8670 0.8224
Tianjin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Xinjiang 0.7584 0.7432 0.7156 0.7004 0.7584 0.7432 0.7160 0.7584
Yunnan 0.7753 0.7781 0.7750 0.7762 0.7753 0.7781 0.7750 0.7753
Zhejiang 0.6749 0.9293 0.9349 0.9221 0.9635 0.9293 0.9350 0.6749

The employment efficiency scores in all municipalities/provinces were higher, with those in Beijing,
Inner Mongolia, Shanghai, and Tianjin achieving 1, while all others scored above 0.6. In most regions,
this indicator fluctuated or continued to decline.

Table 9 shows the new energy, traditional energy consumption, and GDP efficiency scores in the
municipalities/provinces. From the traditional energy consumption efficiency score, it can be seen
that only the efficiency scores of Beijing, Inner Mongolia, Shanghai, and Tianjin were all 1. There is
significant room for improvement in the efficiency of this indicator in other regions. The areas with
a four-year efficiency score below or equal to 0.5 include Anhui, Gansu, Hebei, Heilongjiang, Jilin,
Ningxia, Shanxi, Shaanxi, and Xinjiang. Among them, the least efficient was Shanxi, as its four-year
efficiency score was only about 0.14, suggesting much room for improvement. It can be seen from the
changes that the annual difference in the efficiency scores of each region was also large and presented
different trends. Only seven regions, such as Guangxi, Guizhou, Liaoning, Qinghai, Sichuan, and
Yunnan, had scores that fluctuated or continued to rise. The efficiency scores of the other 19 regions
fluctuated or continued to decline.
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Compared with the traditional energy and other indicator efficiencies, the new energy efficiencies
were generally very low, and had obvious fluctuations. In addition to Beijing, Inner Mongolia, Shanghai,
and Tianjin had new energy efficiencies of 1 for four consecutive years, whereas most other areas have
much room for improvement. Only Henan’s new energy efficiency scores ranged from 0.11 to 0.15 for
all four years. Anhui, Jiangsu, and Shandong had a new energy efficiency score of 0.1 to 0.2 for one or
two years.

The other 23 regions had new energy efficiency scores below 0.1, which suggests great room for
improvement. New energy efficiency scores in all 26 regions suggest room for improvement, as they
continued to decline or fluctuated.

The GDP efficiency scores in all municipalities/provinces were high, with most being over 0.8.
However, there were few fluctuations and the efficiencies generally remained around the same or
slightly declined over the four years, with only Guizou, Heilongjiang, Hunan, and Liaoning showing a
small increase in efficiency and volatility, whereas the efficiency of the other 22 regions continued to
decline or fluctuated slightly.

Table 10 shows the 2013–2016 CO2, SO2, and NO2 efficiency scores in the municipalities/provinces.
The CO2 efficiencies varied significantly across the municipalities/provinces. The CO2 efficiency

scores in Beijing, Inner Mongolia, Shanghai, and Tianjin were 1 for all four years, and the CO2 efficiency
scores in other regions varied widely. For example, Anhui, Gansu, Guizhou, Hebei, Heilongjiang,
Ningxia, Shanxi, Shaanxi, and Xinjiang all had scores lower than 0.4. Among them, Ningxia and
Shanxi’s CO2 emission efficiency was very poor for all four years, with the highest only being 0.13
and 0.14, suggesting much room for improvement. Only the efficiency scores of seven regions
including Guizhou, Qinghai, Sichuan, and Yunnan showed a small fluctuation or continued increase.
The efficiency scores of the other 19 regions fluctuated or continued to decline, and the decline
was significant.

The SO2 efficiencies in all municipalities/provinces were slightly higher than the CO2 efficiencies;
however, there were large differences. While the SO2 efficiency scores in Beijing, Inner Mongolia,
Shanghai, and Tianjin were 1, in the other municipalities/provinces, they tended to fluctuate over time.
The worst performance was in Ningxia, which had an efficiency score of only 0.11 and below for all
four years, followed by Shanxi and Xinjiang, both of which had a four-year efficiency score of less than
0.2 with a lot of room for improvement. There are five regions where all efficiency scores fluctuated or
continued to rise, including Chongqing, Guangdong, Guizhou, Liaoning, and Sichuan. The largest
increase was in Liaoning, rising from 0.44 in 2013 to 1 in 2016. The efficiency scores of the other 20
provinces/municipalities fluctuated or continued to decline. The largest decline was in Anhui, which
fell from 0.64 in 2013 to 0.56 in 2016.

The NO2 efficiencies were relatively higher than the SO2 in most municipalities/provinces; however,
there were also large differences. While the NO2 efficiencies in Beijing, Inner Mongolia, Shanghai, and
Tianjin were 1 across all years, the NO2 efficiencies in the other municipalities/provinces fluctuated
over time. Ningxia had the lowest efficiency for all four years, with the highest score being only 0.15
in 2013. Shanxi and Xinjiang followed, whereby all of its four-year efficiency scores were below 0.28.
Gansu and Hebei’s four-year efficiency score was lower than 0.4, suggesting room for improvement.
The efficiency scores of various regions also showed a large trend, but there were only five regions
that fluctuated or continued to rise, including Guangdong, Guangxi, Guizhou, Henan, and Liaoning.
The biggest increase was still in Liaoning, rising from 0.67 in 2013 to 1 in 2016. The other 21 regions
experienced a small sustained or volatile decline.

The overall pollution analysis and the rankings for the different pollutants in each
municipality/province are shown in Table 11.
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Table 9. 2013–2016 new energy (New), energy (Con), and GDP efficiencies.

No. DMU 2013 Con 2014 Con 2015 Con 2016 Con 2013 New 2014 New 2015 New 2016 New 2013 GDP 2014 GDP 2015 GDP 2016 GDP

1 Anhui 0.5056 0.4822 0.4371 0.4063 0.1842 0.0826 0.0488 0.0213 0.8988 0.8754 0.8942 0.8895
2 Beijing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 Chongqing 0.8484 0.8235 0.7965 0.7282 0.0288 0.0247 0.0298 0.0289 0.8837 0.8500 0.8747 0.8741
4 Fujian 0.8252 0.7872 0.7786 0.7541 0.0167 0.0166 0.0135 0.0135 0.9432 0.9314 0.9320 0.9219
5 Gansu 0.4335 0.4034 0.3603 0.3267 0.0064 0.0063 0.0066 0.0069 0.8160 0.7609 0.7984 0.7919
6 Guangdong 0.9570 0.9466 0.9259 0.8891 0.0240 0.0218 0.0271 0.0190 0.9604 0.9493 0.9552 0.9484
7 Guangxi 0.8133 0.8369 0.8339 0.8257 0.0120 0.0102 0.0093 0.0100 0.8916 0.8718 0.8947 0.8999
8 Guizhou 0.2533 0.2632 0.2648 0.2644 0.0072 0.0058 0.0059 0.0060 0.8373 0.8079 0.8465 0.8483
9 Hainan 0.8132 0.7866 0.7543 0.7164 0.0358 0.0380 0.0731 0.0167 0.9675 0.9590 0.9437 0.9307
10 Hebei 0.3435 0.3445 0.3097 0.2988 0.0705 0.0696 0.0649 0.0459 0.9577 0.9212 0.9197 0.9020
11 Heilongjiang 0.4404 0.3430 0.3023 0.2441 0.0614 0.0644 0.0762 0.0536 0.8682 0.8759 0.8857 0.9006
12 Henan 0.5239 0.5132 0.4871 0.4652 0.1117 0.1451 0.1398 0.1298 0.8608 0.8269 0.8471 0.8413
13 Hubei 0.7540 0.7568 0.6987 0.6825 0.0082 0.0079 0.0089 0.0081 0.9144 0.8965 0.9102 0.9024
14 Hunan 0.8288 0.8356 0.7535 0.7112 0.0093 0.0096 0.0097 0.0099 0.9448 0.9330 0.9476 0.9502
15 Jiangsu 0.7549 0.7306 0.6613 0.6191 0.1075 0.0654 0.0502 0.0376 0.9567 0.9368 0.9565 0.9497
16 Jiangxi 0.8261 0.7851 0.7029 0.6347 0.0441 0.0382 0.0329 0.0224 0.8710 0.8300 0.8494 0.8422
17 Jilin 0.5012 0.4671 0.4390 0.4087 0.0296 0.0430 0.0495 0.0401 0.9151 0.8958 0.9006 0.8943
18 Liaoning 0.6005 0.5621 0.4275 1.0000 0.0477 0.0439 0.0394 1.0000 0.9204 0.9043 0.9655 1.0000

19 Inner
Mongolia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 Ningxia 0.1263 0.1164 0.1049 0.0953 0.0138 0.0106 0.0088 0.0066 0.8880 0.8530 0.8733 0.8641
21 Qinghai 0.4422 0.4811 0.5215 0.5908 0.0021 0.0022 0.0025 0.0027 0.8667 0.8425 0.8647 0.8632
22 Shandong 0.5497 0.4948 0.4371 0.3886 0.1094 0.1379 0.0937 0.0398 0.9594 0.9520 0.9605 0.9594
23 Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
24 Shanxi 0.1449 0.1252 0.1130 0.0986 0.0505 0.0372 0.0257 0.0122 0.8407 0.7946 0.8204 0.8123
25 Shaanxi 0.4063 0.3623 0.3164 0.2786 0.0565 0.0558 0.0482 0.0458 0.8612 0.8310 0.8519 0.8476
26 Sichuan 0.7674 0.7975 0.8663 0.8788 0.0054 0.0049 0.0048 0.0049 0.9000 0.8862 0.8953 0.9024
27 Tianjin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
28 Xinjiang 0.2546 0.2186 0.1804 0.1529 0.0130 0.0123 0.0109 0.0094 0.8371 0.7957 0.8187 0.8127
29 Yunnan 0.5002 0.5294 0.5580 0.5992 0.0030 0.0025 0.0027 0.0023 0.8450 0.8184 0.8448 0.8454
30 Zhejiang 0.7970 0.7703 0.6963 0.6405 0.0671 0.0590 0.0423 0.0353 0.9660 0.9340 0.9424 0.9326
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Table 10. 2013–2016 CO2, SO2, and NO2 efficiencies.

No. DMU 2013 CO2 2014 CO2 2015 CO2 2016 CO2 2013 SO2 2014 SO2 2015 SO2 2016 SO2 2013 NO2 2014 NO2 2015 NO2 2016 NO2

1 Anhui 0.5056 0.4822 0.4371 0.4063 0.6489 0.6426 0.5844 0.5584 0.5415 0.5295 0.5166 0.4991
2 Beijing 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 Chongqing 0.8484 0.8235 0.7965 0.7282 0.3622 0.3936 0.3932 0.3901 0.8270 0.8129 0.8303 0.7789
4 Fujian 0.8252 0.7872 0.7786 0.7541 0.7625 0.7611 0.7462 0.7434 0.9359 0.9263 0.9213 0.9075
5 Gansu 0.4335 0.4034 0.3603 0.3267 0.2052 0.1942 0.1671 0.1514 0.3848 0.3721 0.3385 0.3147
6 Guangdong 0.9570 0.9466 0.9259 0.8891 0.8190 0.8634 0.8403 0.8581 0.9151 0.9375 0.9507 0.9425
7 Guangxi 0.8133 0.8369 0.8666 0.8748 0.5192 0.5066 0.4923 0.4633 0.7010 0.7249 0.7413 0.7602
8 Guizhou 0.2533 0.2632 0.2648 0.2644 0.1423 0.1538 0.1617 0.1691 0.3738 0.4043 0.4467 0.4843
9 Hainan 0.8132 0.7866 0.7543 0.7164 0.9652 0.9572 0.9365 0.9195 0.5514 0.5580 0.5522 0.5359

10 Hebei 0.3435 0.3445 0.3097 0.2988 0.3478 0.3570 0.3312 0.3302 0.3887 0.3790 0.3608 0.3476
11 Heilongjiang 0.4404 0.3430 0.3023 0.2441 0.4847 0.4007 0.3484 0.2901 0.4691 0.3832 0.3640 0.3102
12 Henan 0.5239 0.5132 0.4871 0.4652 0.4245 0.4270 0.4058 0.3952 0.5065 0.5078 0.5110 0.5085
13 Hubei 0.7540 0.7568 0.6987 0.6825 0.6298 0.6431 0.6171 0.6186 0.8967 0.8846 0.8906 0.8788
14 Hunan 0.8288 0.8356 0.7535 0.7112 0.5961 0.6080 0.5775 0.5604 0.9379 0.9282 0.9187 0.8809
15 Jiangsu 0.7549 0.7306 0.6613 0.6191 0.9109 0.8950 0.8713 0.8493 0.9526 0.9326 0.9524 0.9441
16 Jiangxi 0.8261 0.7851 0.7029 0.6347 0.4388 0.4551 0.4163 0.4001 0.6270 0.6177 0.6040 0.5735
17 Jilin 0.5012 0.4671 0.4390 0.4087 0.5612 0.5408 0.4848 0.4546 0.5511 0.4988 0.4679 0.4211
18 Liaoning 0.6005 0.5621 0.4275 1.0000 0.4355 0.4234 0.3052 1.0000 0.6730 0.6300 0.5048 1.0000

19 Inner
Mongolia 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

20 Ningxia 0.1263 0.1164 0.1049 0.0953 0.1136 0.1138 0.1071 0.1045 0.1455 0.1433 0.1383 0.1338
21 Qinghai 0.4422 0.4811 0.5215 0.5908 0.2403 0.2357 0.2136 0.2026 0.4093 0.3648 0.3628 0.3279
22 Shandong 0.5497 0.4948 0.3177 0.2624 0.5156 0.5109 0.4793 0.4634 0.7451 0.6951 0.6852 0.6395
23 Shanghai 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
24 Shanxi 0.1449 0.1252 0.1130 0.0986 0.1713 0.1600 0.1505 0.1410 0.2776 0.2558 0.2513 0.2364
25 Shaanxi 0.4063 0.3623 0.3164 0.2786 0.3566 0.3537 0.3214 0.3083 0.8877 0.5343 0.5094 0.4901
26 Sichuan 0.7674 0.7975 0.8663 0.8788 0.4526 0.4627 0.4675 0.4529 0.8750 0.8716 0.8675 0.8187
27 Tianjin 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
28 Xinjiang 0.2546 0.2186 0.1804 0.1529 0.1771 0.1701 0.1627 0.1534 0.2456 0.2342 0.2355 0.2242
29 Yunnan 0.5002 0.5294 0.5580 0.5992 0.2985 0.2963 0.2970 0.2940 0.5669 0.5351 0.5331 0.5025
30 Zhejiang 0.7970 0.7703 0.6962 0.6405 0.7425 0.7696 0.7441 0.7193 0.9635 0.9293 0.9349 0.9221
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Table 11. Impact and analysis of the contaminant efficiencies.

DMU CO2 SO2 NO2

Anhui All three undesirable outputs had low efficiency scores. The efficiency of CO2
was relatively low and showed a downward trend and should be treated first. N

Chongqing SO2 had the lowest efficiency; NO2 had the best efficiency; therefore, more
effective measures are needed to reduce SO2 emissions. N

Fujian NO2 had the best efficiency; the SO2 efficiency was lower than the others;
therefore, more effective measures are needed to reduce SO2 emissions. N

Gansu
All three emission indicators had poor efficiency scores, but SO2 had the lowest
efficiency, and the CO2 efficiency was better; therefore, more effective measures
are needed to reduce SO2 emissions.

N

Guangdong SO2 efficiency was lower than the others; therefore, more effective measures are
needed to reduce SO2 emissions. N

Guangxi SO2 efficiency was lower than the others; therefore, more effective measures are
needed to reduce SO2 emissions. N

Guizhou
All three undesirable outputs had low efficiencies below 0.4, with the SO2
efficiency being the lowest at below 0.2. Comprehensive management should be
strengthened, after strengthening the governance of SO2 emissions.

N

Hainan NO2 had the worst emission efficiency, The SO2 efficiency was high, but
declined; thus, more effective measures are needed to reduce NO2 emissions. N

Hebei
All three undesirable indicator efficiencies were lower than 0.4, with the NO2
efficiency being slightly higher than CO2 and SO2. Comprehensive management
should be strengthened, after strengthening the governance of CO2 emissions.

N N N

Heilongjiang
All three undesirable indicator efficiencies were lower than 0.4, with the NO2
efficiency being slightly higher than CO2 and SO2. Comprehensive management
should be strengthened, after strengthening the governance of CO2 emissions.

N N

Henan

The SO2 efficiency was the worst at only 0.4, and the CO2 efficiency score was
between 0.4 and 0.6 but declined. The NO2 efficiency was similar to SO2, but
with less fluctuation; Overall, more effective measures are needed to reduce SO2,
CO2, and NO2 emissions, but the governance of SO2 emissions should be
strengthened first.

N

Hubei
The NO2 efficiency was the highest at over 0.8, the CO2 efficiency was slightly
lower, and the SO2 efficiency score was much lower; therefore, more effective
measures are needed to reduce SO2 emissions.

N

Hunan The SO2 efficiency score was much lower at 0.6; therefore, more effective
measures are needed to reduce SO2 emissions. N

Jiangsu
The CO2 efficiency was much lower than the other indicators at between 0.6 and
0.75; the reduction of CO2 emissions should become the focus of governance
in Jiangsu.

N

Jiangxi

SO2 had the lowest efficiency at between 0.4 and 0.5 and declined; therefore,
more effective measures are needed to reduce SO2 emissions. NO2 also declined
at 0.6, with the CO2 efficiency being slightly better, declining to between 0.6 and
0.8; therefore, there is room for improvement.

N

Jilin
The NO2, SO2, and CO2 efficiencies were all between 0.6 and 0.8; therefore, the
room for improvement was similar and these emissions should be treated
equally. CO2 efficiency was slightly lower than others, and can be prioritized.

N N N

Liaoning

The NO2, SO2, and CO2 efficiencies were similar, maintaining a continuous
upward trend and reaching 1 in 2016. The state of input and output should be
maintained in 2016, and attention should be paid to and sufficient measures
should be taken to maintain the existing input and output status.

N N N

Ningxia
All NO2, SO2, and CO2 efficiencies were very low at between 0.1 and 0.2, and
declined; therefore, all three indicators need to improve. CO2 and SO2 emission
efficiency were lower and can be prioritized.

N N N

Qinghai

The SO2 efficiency was below 0.2 and had a downward trend. The CO2 efficiency
was slightly higher at between 0.4 and 0.6, and the NO2 efficiency was between
0.2 and 0.4; therefore, all three indicators need to improve. The governance of
SO2 emissions should be strengthened first.

N

Shandong

The CO2 efficiency score was between 0.2 and 0.8 and declined. The SO2
efficiency also declined; however, the minimum value of 0.4 was slightly better
than the CO2 minimum. The efficiency of CO2 dropped sharply and should be
treated first.

N



Int. J. Environ. Res. Public Health 2019, 16, 1764 20 of 24

Table 11. Cont.

DMU CO2 SO2 NO2

Shanxi

All NO2, SO2, and CO2 efficiencies were very low, with the CO2 efficiency being
the lowest at 0.2 and continuing to decline. The SO2 efficiency was slightly better
at around 0.2, but also decreased, and the NO2 efficiency was slightly better, but
was only 0.3; therefore, all three indicators need to improve.

N N

Shaanxi

The CO2 efficiency was between 0.2 and 0.4, and declined. The SO2 efficiency
also declined, with the minimum value being between 0.2 and 0.4. The NO2
efficiency was between 0.4 and 0.6, but also showed a downward trend;
therefore, all three indicators need to improve.

N N

Sichuan
The SO2 efficiency was 0.5, and the CO2 efficiency was 0.8 and rising. The NO2
had a higher rising efficiency score between 0.8 and 0.9; therefore, more effective
measures are needed to reduce SO2 emissions.

N

Xinjiang

All NO2, SO2, and CO2 efficiencies were very low. The SO2 efficiency score of 0.2
was the lowest and declined. The SO2 efficiency score was the worst overall and
should be prioritized. However, the emission efficiency of the other two
indicators was not high, and comprehensive management is also needed.

N

Yunnan

SO2 had the lowest efficiency at around 0.3 and declined, while the CO2
efficiency was better between 0.5 and 0.8 and rising. The NO2 efficiency at 0.5 to
0.6 was falling; therefore, more effective measures are needed to reduce
SO2 emissions.

N

Zhejiang The CO2 and SO2 efficiencies were between 0.6 and 0.8 and falling; therefore,
more effective measures are needed to reduce CO2 and SO2 emissions. N N

5. Conclusions and Policy Implications

The rapid economic growth in China led to a significant rise in energy consumption, which in turn
led to a rise in pollutant emissions and environmental problems, thereby threatening China’s sustainable
development goals. Therefore, China needs to reduce its energy intensity through investment in
new energy and renewable energy. This study proposed a modified undesirable EBM DEA model to
analyze new and traditional energy efficiencies in 30 municipalities and provinces, the conclusions
from which are given below.

1. The comparison of the input and output indicator radial DEA and non-radial DEA inefficiency
scores found that most input indicator inefficiencies were due to the radial DEA, with only a few
municipalities/provinces having inefficiencies resulting from the non-radial DEA.

2. The annual efficiency was 1 in Beijing, Inner Mongolia, Shanghai, and Tianjin for all four years from
2013–2016. The other 26 municipalities/provinces had large differences and required significant
improvements. The annual total efficiency score changes in most municipalities/provinces had
variable trends.

3. The various input and output indicator efficiencies for employment, GDP, and fixed assets were
generally higher. However, the traditional energy efficiency scores and new energy efficiency
scores were generally low, with the new energy efficiency scores being lower than the traditional
energy efficiency scores.

4. The CO2, SO2, and NO2 efficiency scores varied widely, with the NO2 efficiencies being slightly
better than the CO2 and SO2 efficiencies. However, the efficiency scores for these three undesirable
outputs varied considerably across the municipalities/provinces.

Policy Implications

1. Except for the municipalities/provinces that had efficiency scores of 1, only two or three provinces
had overall upward efficiency trends; however, the overall annual efficiency in most other
provinces declined, indicating that more effective measures are needed to improve the efficiency
of new and traditional energy sources.

2. Industrial restructuring needs to be accelerated and medium- and long-term development plans
and energy plans need to be developed. In combination with the development and utilization of
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new technologies for traditional energy, we should actively promote the adjustment of energy
structure and industrial structure. Traditional energy consumption plays and will continue to
play an important role in urban development and economic growth for decades in the coming
future. However, traditional energy consumption also brings problems such as increased CO2

emissions and air pollution, all of which affect sustainable development. Since China joined
the Paris Climate Change Agreement on 3 September 2016, the Chinese government adopted a
series of measures for domestic greenhouse gas emission reductions. The “13th Five-Year Plan”
carbon intensity reduction target aims at controlling both total energy consumption and total
energy intensity, strengthening low-carbon city pilot demonstrations, promoting the development
of a national carbon trading market, and planning and implementing supporting policies and
measures. At the same time, China is seeking to optimize its energy structure, with the proportion
of coal being used for power generation dropping from 72% in 2005 to 64% in 2015, with a further
drop to 60% expected by 2020. The empirical results suggested that increased CO2 emission
reduction efforts are needed in Anhui, Jiangsu, Shandong, Shanxi, and Shaanxi, and further
improvements are needed in Chongqing, Fujian, Gansu, Guangdong, Guangxi, Henan, Hubei,
Hunan, Jiangxi, Qinghai, Sichuan, Xinjiang, Yunnan, and Zhejiang. NO2 emission reductions
are needed in Guizhou and Liaoning, and all undesirable pollutant output indicators need to be
improved in Jilin, Hebei, and Ningxia.

3. Most regions need to actively strengthen the source control of air pollutant emissions. They need
to actively develop and adopt new technologies and clean energy technologies to control the
air pollutants of high-polluting manufacturing enterprises at the source and discharge process.
The current main governance measure is end-of-pipe governance, whereby once mandatory
end-of-pipe governance is not strictly enforced, as emissions of air pollutants from companies
that need to recover from economic development still exist. Therefore, effective measures should
be to encourage enterprises to adopt new technologies and clean energy use technologies to
establish green ecological enterprise production through the production process of enterprises,
and fundamentally reduce air pollutant emissions in the long run.

4. Actively promoting the research, development, and utilization of clean renewable energy, and
actively promoting the use of new energy in production are positive and effective measures
to improve environmental efficiency. China’s renewable energy installed equipment capacity
currently accounts for 16% to 20% of global capacity. Compared to traditional energy and other
indicators, the new energy efficiencies in most municipalities/provinces were very low, except for
Beijing, Inner Mongolia, Shanghai, and Tianjin, all of which had efficiencies of 1. Therefore, all
municipalities/provinces need to put greater focus on new energy development and improving
traditional energy efficiencies.

5. Comprehensive governance plans and measures need to be developed to jointly manage carbon
dioxide emissions and air pollutant emissions. In most regions, carbon dioxide emissions in
recent years not only have room for improvement, but efficiency scores also showed a downward
trend. Emissions and inefficiencies in air pollutants exacerbate the pressure on environmental
protection efforts. It is necessary to explore and actively promote measures and policies to jointly
manage carbon dioxide emissions and air pollutant emissions.
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