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Abstract: This research examines whether individual exposures to traffic congestion are significantly
different between assessments obtained with and without considering individuals’ activity-travel
patterns in addition to commuting trips. We used crowdsourced real-time traffic congestion data
and the activity-travel data of 250 individuals in Los Angeles to compare these two assessments
of individual exposures to traffic congestion. The results revealed that individual exposures to
traffic congestion are significantly underestimated when their activity-travel patterns are ignored,
which has been postulated as a manifestation of the uncertain geographic context problem (UGCoP).
The results also highlighted that the probability distribution function of exposures is heavily skewed
but tends to converge to its average when individuals’ activity-travel patterns are considered when
compared to one obtained when those patterns are not considered, which indicates the existence of
the neighborhood effect averaging problem (NEAP). Lastly, space-time visualizations of individual
exposures illustrated that people’s exposures to traffic congestion vary significantly even if they
live at the same residential location due to their idiosyncratic activity-travel patterns. The results
corroborate the claims in previous studies that using data aggregated over areas (e.g., census tracts) or
focusing only on commuting trips (and thus ignoring individuals’ activity-travel patterns) may lead to
erroneous assessments of individual exposures to traffic congestion or other environmental influences.

Keywords: traffic congestion; activity-travel patterns; real-time traffic data; the uncertain geographic
context problem (UGCoP); the neighborhood effect averaging problem (NEAP)

1. Introduction

Traffic congestion has long been a serious transportation-related issue that people confront in
their daily life in the U.S. [1–3]. Drivers in the U.S. wasted 7 billion hours on roads in 2015 due to
delays caused by traffic congestion [4]. Moreover, it is expected that traffic congestion will intensify in
the future as more people will move to urban areas [5]. Transportation and health researchers have
thus considered traffic congestion exposure as a critical factor that influences individuals’ physical and
mental health. For example, a number of studies revealed that higher exposure to traffic congestion may
be associated with escalated heart rate and blood pressure [6,7], heightened urinary catecholamine
(a stress-related hormone) [8], and negative health outcomes [9–11]. In addition to these physical
tolls, studies have also shown that exposures to traffic congestion may be linked to psychological
stress [12–17] and reduced well-being [18,19]. Furthermore, some studies have argued that longer
commuting time, which is worsened by traffic congestion, may harm people’s work-family balance [20]
or even increase the likelihood of being involved in domestic violence [21].
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To accurately assess the effects of traffic congestion exposures on human health, it is important
to accurately measure individual exposures to traffic congestion. Specifically, in terms of measuring
traffic congestion exposures, most previous studies used area-based aggregate data (e.g., [9,21,22])
or focused only on commuting trips (and thus disregarded non-commuting trips) (e.g., [11,18,19]).
We argue that these approaches in previous research may lead to erroneous assessments of individual
exposures to traffic congestion, which may in turn lead to erroneous evaluations of the health impacts
of traffic congestion because they did not consider individuals’ unique activity-travel patterns.

To address the limitations of previous studies, this research examines whether individual
exposures to traffic congestion are significantly different between assessments obtained with and
without considering individuals’ activity-travel patterns in addition to commuting trips. We used
crowdsourced real-time traffic congestion data and the activity-travel data of 250 individuals in Los
Angeles to compare these two assessments of individual exposures to traffic congestion. The results
indicate that ignoring individuals’ activity-travel patterns may lead to inaccurate assessments of their
exposures to traffic congestion.

2. Limitations of Previous Studies

Previous studies on traffic congestion have several limitations, some of which this study seeks
to address. First, existing research used data aggregated over areas such as metropolitan areas or zip
(postal) code areas. For example, Levy et al. [9] assessed the health impact of PM2.5 exposure associated
with traffic congestion on mortality and monetized the value of mortality risk in 83 metropolitan areas
in the U.S. By using zip code areas in the Los Angeles Metropolitan Area, Beland and Brent [21] noted
that traffic congestion may lead to a higher risk of being involved in domestic violence. Brauer et al. [22]
examined people’s traffic-related air pollution “exposure zones” (defined as a 500-m buffer zone from
highways or a 100-m buffer zone from major arterials) and observed that 32% of people in Canada live
in exposure zones.

Although these studies provide useful insights into the health impacts of traffic congestion,
their estimations of traffic congestion exposure may be erroneous. Part of the reason for the error is
because the units of analysis are areal units for which individual data are aggregated (e.g., buffer zones,
zip code areas, or metropolitan areas); and the modifiable areal unit problem (MAUP) may contribute
to some of such error. This means that previous studies presumed that individuals in the same areal
unit are exposed to the same level of traffic congestion when estimating traffic congestion exposure.
However, this assumption is problematic because each individual may have distinctive activity-travel
patterns and thus may have different levels of exposure to traffic congestion and experience different
health impacts [23,24]. In other words, since individuals have idiosyncratic activity-travel patterns,
different individuals may be exposed to different levels of traffic congestion in complex and unique
ways even when they live in the same area.

Second, previous research focused only on commuting trips while ignoring other types of trips,
where individuals may also be exposed to significant traffic congestion. For instance, Olsson et al. [25]
found that commuting satisfaction may affect overall happiness based on a survey of 713 commuters.
Using a 23-year longitudinal dataset of 2736 commuters, Sandow et al. [11] showed that there may be
gender differences in mortality risks due to longer commuting. Despite the meaningful results of these
previous studies, focusing exclusively on commuting trips while not considering other components
of individuals’ activity-travel patterns may lead to erroneous estimations of their exposure to traffic
congestion for the following two reasons.

First, commuting trips account for only a small proportion of individuals’ total travel.
Although commuting trips seem to constitute the most significant portion of our trips at first glance,
almost 70% of trips in the U.S. consists of non-work trips according to the 2009 National Household
Travel Survey [26]. Thus, considering only commuting trips may result in erroneous estimations of
traffic congestion exposure because people may also experience traffic congestion when undertaking
other types of trips, which also comprise their travel and are overlooked by previous studies.
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Second, and more specifically, individuals also experience traffic congestion when undertaking
trips during non-peak hours. At first sight, it sounds reasonable that commuting trips in peak hours
(e.g., 7–9 A.M., 3–6 P.M.) are the only time when individuals are exposed to traffic congestion. However,
this may not be true for large cities, where serious traffic congestion occurs almost all day long in
certain road segments (e.g., [27–29]). This suggests that individuals are exposed to traffic congestion
in complex ways in their daily life. They may be exposed to different levels of traffic congestion
when undertaking not only commuting trips during peak hours but also other types of travels during
non-peak hours.

We thus argue that, for these two reasons, the approaches used in previous studies on individual
exposure to traffic congestion and its health impact may exacerbate the uncertain geographic context
problem (UGCoP). The UGCoP is a critical methodological issue, and one of the ways in which it may be
encountered is when people’s exposure to environmental contexts or risk factors (e.g., traffic congestion
and air pollution) is inaccurately estimated as a result of ignoring their activity-travel patterns [23,24].
Recent studies have shown that using inaccurately estimated exposures to environmental pollutants
may lead to serious inferential errors or misleading results when examining the health impacts of such
exposures [30–35].

Further, these approaches in previous studies may aggravate the neighborhood effect averaging
problem (NEAP) that arises when individuals’ unique activity-travel patterns are ignored [36].
The NEAP suggests that when the probability distribution of residence-based exposures approximates
a bell-shaped distribution, individual exposures tend to converge toward the average if individuals’
activity-travel patterns are considered when compared to exposures obtained when such patterns
are not considered. As one of the manifestations of the UGCoP, the NEAP thus suggests that
ignoring individuals’ activity-travel patterns may lead to erroneous exposure estimations because of
neighborhood effect averaging [36]. Eventually, this may also result in inferential errors or misleading
results when researchers investigate the health effects of these exposures [23,24].

In traffic congestion exposure and health studies, these two methodological issues—the UGCoP
and the NEAP—arise because of the following two reasons. First, the issues are caused by the
spatiotemporal variations in traffic congestion intensities. Although at first glance, the levels of traffic
congestion seem to be homogeneous over space and time in large metropolitan areas, this may not be
true. For example, intensities of traffic congestion in non-peak hours may not be as severe as those in
peak hours (i.e., temporal variations). Also, even for the same time of day, people may be exposed
to different traffic congestion intensities based on where trips occur (i.e., spatial variations). Second,
the issues arise because individuals are undertaking various types of trips rather than undertaking
commuting trips only. Therefore, individuals may be exposed to traffic congestion in complex
spatiotemporal ways when they are undertaking commuting trips and other trips [23,37,38].

To sum up, the approaches in previous research examining the effects of traffic congestion
exposure on human health largely ignore the UGCoP and the NEAP. This is because both the
spatiotemporal variations in traffic congestion and individuals’ unique activity-travel patterns increase
contextual complexities when measuring individual exposures to traffic congestion. These complexities
may lead to erroneous assessments of individual exposures to traffic congestion if their activity-travel
patterns are overlooked. Eventually, using inaccurately estimated traffic congestion exposure may
exacerbate inferential errors or lead to misleading results when investigating the health effects of traffic
congestion exposure.

In light of the relative ignorance of critical methodological issues like the UGCoP and the NEAP in
past research on traffic congestion exposure and health, this research seeks to fill this gap. Specifically,
this research examines whether individual exposure to traffic congestion is significantly underestimated
when individuals’ travels beside commuting trips are ignored. To achieve this research goal, we seek
to answer the following three questions in this paper by utilizing crowdsourced real-time traffic
congestion data and activity-travel data of 250 individuals in Los Angeles, California.
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The first question is: Do spatiotemporal variations exist in traffic congestion intensities? In other
words, we will investigate whether traffic congestion intensities are different over space and time.
Spatiotemporal variations in traffic congestion intensities indicate that two approaches adopted by
previous studies (i.e., using data aggregated over areas like census tracts and focusing on commuting
trips only) may exacerbate the UGCoP and the NEAP, which is problematic.

The second question is: Will exposures to traffic congestion based on commute-only assessments
be significantly lower than those obtained from assessments that also consider individuals’
activity-travel patterns in addition to commuting trips? In other words, we will compare individuals’
exposure to traffic congestion obtained from two assessments: one that only considers commuting trips
and one that also considers individuals’ activity-travel patterns in addition to considering commuting
trips. If we find that exposures to traffic congestion based on commute-only assessments are
significantly lower than those obtained from assessments that also consider individuals’ activity-travel
patterns in addition to commuting trips, more attention is needed to address the UGCoP and the
NEAP in future research on traffic congestion exposure and health.

Lastly, the third question is: How are individuals uniquely exposed to traffic congestion as a
result of their activity-travel patterns? In other words, can we observe individuals’ idiosyncratic
activity-travel patterns and their associated exposures to traffic congestion? Answering this question
will help researchers develop an in-depth understanding of the unique characteristics of individuals’
activity-travel patterns and how such unique characteristics may affect the accurate assessment of
traffic congestion exposure.

3. Study Area and Data

3.1. Study Area

The study area for this research is the Los Angeles-Long Beach-Anaheim Metropolitan area in
California, consisting of Los Angeles County and Orange County (Figure 1). We chose the Los Angeles
Metropolitan Area for its renowned severe traffic congestion. According to a recent traffic congestion
assessment study, the Los Angeles region is ranked as the first out of 297 cities in the U.S. as well as
the first out of 1360 cities in the world regarding its severity of traffic congestion [29]. Additionally,
the entire metropolitan area is selected as a study unit as it comprehensively captures individuals’
socioeconomic characteristics and activity-travel patterns [39].

Figure 1. The Los Angeles Metropolitan Area and its major highways.
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3.2. Data

3.2.1. Individual Activity-Travel Survey Data

Since the study seeks to obtain results based on people’s actual activity-travel behaviors (not to
compare the congested and non-congested travel speeds/times of all road segments in the study
area), we employed individual activity-travel survey data accessed via the Transportation Secure
Data Center [40]. This individual activity-travel survey is a part of the “National Household Travel
Survey California Add-On” survey conducted in 2017. The survey data were collected from around
55,800 individuals (about 26,000 households) in California. Participants were asked to report their
activity-travel patterns (e.g., the location of activities, duration of activities, trip purposes, modes of
travel, and the number of accompanying passengers) for one survey day and their socioeconomic
attributes. Note that the survey did not collect or provide any global positioning system (GPS) data for
constructing the space-time trajectories of participants’ trips. Therefore, to estimate the travel time of
participants’ trips and their exposures to traffic congestion, we assumed that they used the shortest
path (in terms of travel time) to travel between all locations and used the Google Maps Application
Programming Interface (API) to derive the travel time for each trip based on the time of day and the
shortest travel route for the trip.

We selected individuals according to the research goal as follows. First, we selected individuals
whose trips were all in the study area (i.e., the Los Angeles Metropolitan Area) on weekdays. We only
focused on weekdays because weekend activity-travel patterns typically consist of non-routine
patterns such as recreational trips and often do not involve any commuting trips [26]. Second,
we selected individuals who were actively employed because unemployed people do not undertake
any commuting trips. Third, we selected individuals who made trips by driving alone without any
accompanying passengers. In other words, all trips in this study were traveled by driving, and trips
made by public transit and non-motorized modes (including buses, taxis, bicycles, and walking) were
not considered. We focused on these individuals to control other possible travel-mode related factors
that may also influence how traffic congestion exposure affects health. For instance, previous studies
found that the effects of traffic congestion exposure on health may be different when individuals are
drivers rather than passengers (e.g., [41,42]). Moreover, they found that the existence of accompanied
passengers may affect drivers’ stress (e.g., [7,42,43]).

Lastly, individuals who did not undertake any commuting trips or who had only commuting
trips were excluded because we seek to generate two exposure assessments, one that considers only
commuting trips and the other considers both commuting and non-commuting trips. Note that we
define commuting trips as trips that are anchored at a workplace so that we can consider trip-chaining
travel behaviors. Before this exclusion criterion was applied, there were 729 individuals in our
subsample. As a result of applying this exclusion criterion, 77 individuals (11%) were excluded
because they did not make any commuting trips (e.g., having a day-off from the work), and an
additional 402 individuals were removed since they only made commuting trips (i.e., no other type
of trips). Note that a considerable portion of the survey participants (34%, 250 individuals) reported
that they made commuting as well as non-commuting trips. This provides a compelling rationale that
individuals’ activity-travel patterns still should be considered to accurately assess their exposure to
traffic congestion.

After this selection process, 250 individuals were finally included in the subsample used in this
study. To avoid sample selections that do not have similar sociodemographic characteristics as the
larger population in the Los Angeles Metropolitan Area, we compared their socio-economic attributes
with those of the larger population in the study area. Note that since our research focuses on employed
individuals, the statistics reported in Table 1 represent only employed workers. Overall, descriptive
statistics of the selected participants showed similarity to those of the larger population in the study
area. The only discrepancy we found is that the median age of the selected participants (45.2 years
old) is higher than that of the larger population in the Los Angeles Metropolitan Area (39.9 years old).
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This can be explained by underrepresentation of the younger generations in our subsample as we
focus on workers who drive their own cars. Recent travel behavior studies revealed that the younger
generation (e.g., millennials) may drive less or not own cars (e.g., [44,45]). Therefore, it is likely that
the younger generation may be underrepresented in our subsample.

Table 1. Comparison of the sociodemographic attributes of the 250 selected participants with those of
the larger population of the Los Angeles Metropolitan Area.

Sociodemographic
Attributes The 250 Selected Individuals Los Angeles Metropolitan Area (a)

Gender
Male Female Male Female
53% 47% 55% 45%

Race
White African-American Asian White African-American Asian
59% 6% 14% 58% 6% 17%

Age (mean) 45.2 years old 39.9 years old

% of people with higher
education (b) 62% 65%

(a) American Community Survey (ACS) 2016 5-year estimates, (b) Higher education indicates education attainment
that is equal to or higher than bachelor’s degree.

3.2.2. Real-Time Traffic Congestion Data

In this study, we estimate individual exposure to traffic congestion for each trip by subtracting
its free-flow travel time from its estimated travel time that considers traffic congestion, following
the framework used in previous studies (e.g., [29,46,47]). For example, imagine an individual who
undertakes 5 trips in his or her daily life (Figure 2). This person travels from the home location to a
workplace (Trip 1), goes back from the workplace to home (Trip 2), goes grocery shopping from home
(Trip 3), goes to the gym after the grocery shopping (Trip 4), and finally goes back home from the gym
(Trip 5). For each of these trips, by subtracting the free-flow travel time from the estimated travel time
(obtained using the Google Maps API (Google, Mountain View, CA, USA) based on time of day and
the origin and destination of the trip), we can estimate this person’s exposure to traffic congestion for
each trip.

Recall that the primary goal of this research is to compare individual exposures to traffic
congestion obtained from two assessments: one that only considers commuting trips and one that also
considers individuals’ activity-travel patterns in addition to considering commuting trips. Assume that
the person in this example is exposed to traffic congestion for 10 min for each of the five trips.
An assessment that only considers the two commuting trips (Trips 1 and 2) estimates that the duration
of exposure to traffic congestion is 20 min (10 + 10), while an assessment that also considers the
non-commuting trips (Trips 3, 4, and 5) as well as the commuting trips (Trips 1 and 2) estimates that
the duration of exposure to traffic congestion is 50 min (10 + 10 + 10 + 10 + 10).
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Figure 2. An example of estimating an individual’s exposure to traffic congestion for two types of
assessments: (a) commute-only versus (b) activity-travel patterns in addition to commuting trips.

To obtain free-flow travel time and estimated travel time, we utilized the Google Maps API
(Figure 3). The Google Maps API estimates driving time between two points when API users provide
departure time, departure/arrival/waypoints locations, and route options (e.g., avoiding toll roads
or highways) [48,49]. The API computes driving time based on two data sources: (1) crowdsourced
real-time traffic data that were submitted by anonymous drivers who consent to send their location
information to Google Maps via their smartphones and (2) historical traffic flow databases that Google
has established [48]. Free-flow travel time is derived as if trips occurred at 2 A.M. when traffic volumes
practically approach 0. To the best of our knowledge, while no study has compared the accuracy of
Google Maps data with those from other sources, it seems that travel times provided by Google Maps are
highly accurate based on several sources on the web. For instance, in one assessment that used 56 trips
with an average journey time of 32 min, the average travel time difference between actual and estimated
travel times is 1.8 min (see https://blog.ancoris.com/how-accurate-is-google-maps-journey-time).

In this research, the departure time and geographic coordinates (e.g., longitude and latitude) of
the origin and destination of each trip of the participants recorded in the travel survey were used to
obtain free-flow travel time and estimated travel time through the Google Maps API. Note that we
did not use the reported travel times from the survey as the actual travel time in this study because
the survey did not provide the travel routes of participants’ trips and it is not possible to estimate
the corresponding free-flow travel time for each of the participants’ trip, which in turn renders the
comparison between the free-flow travel time and the (estimated) travel time that considers traffic
congestion for each trip of the participants impossible. Further, estimating actual travel time using the
Google Maps API serves to avoid the recall and rounding errors common in the reported travel times
of travel surveys.

https://blog.ancoris.com/how-accurate-is-google-maps-journey-time
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Figure 3. A screenshot of a map of typical traffic congestion levels at 6 P.M. on Wednesday in the Los
Angeles Metropolitan Area (Source: Google Maps).

Using the Google Maps API service has several advantages over traditional desktop-based GIS
programs. One compelling advantage is that using the API service does not require researchers
to prepare a considerable amount of data and use considerable computing resources. For example,
the Google Maps API promptly provides users with travel time that considers traffic congestion
between any two given locations (i.e., longitude, latitude) at 20-min intervals.

To obtain this detailed travel time estimate, conventional desktop-based GIS programs require
researchers to prepare a considerable amount of network data (e.g., [50,51]). For example, researchers
need to prepare road network files, estimate the traffic volume and speed on each road segment at
each time interval, and generate penalty information for each street intersection (e.g., one-way roads,
no-left-turn penalty, and so on). Preparing these datasets may not be feasible for large metropolitan
areas such as Los Angeles. Additionally, even if researchers can prepare the required data, it may take
substantial time to run the shortest-path algorithm since the road networks are large and complex.
However, by using the Google Maps API service, researchers only need to develop a simple program
based on easily accessible programming languages (e.g., Python, Java, and so on). Moreover, since
the calculations of travel time are performed inside the API service (where the API uses its own
high-performance computing facilities), researchers can get results immediately. For these reasons,
there has recently been a growing number of studies that extensively employed the Google Maps API
and other map-based API services (e.g., [52,53]).

However, it should be noted that the Google Maps API service has several limitations.
One limitation is that users may not know the detailed mechanism of how it estimates travel
time. However, documentation from API service providers may mitigate this issue (e.g., [49]).
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Another limitation is that API services may charge a fee based on the number of API requests.
For example, Google Maps API users can use 40,000 API requests per month for free. Beyond the
40,000 free requests, users need to pay a fee per single API request (e.g., a single query of travel
time estimation for a single pair of origin and destination) [49]. Thus, the Google Maps API service
may not be a viable option for researchers who want to obtain travel times for a larger number of
origin-destination pairs [54]. However, this limitation did not significantly affect our research because
we did not need a large number of requests; we requested travel time estimates for approximately
1000 trips, which the 250 selected participants undertook.

4. Results

In the first part of Section 4.1 below, we explore whether traffic congestion intensities are different
across space and time in the study area based on data from the INRIX 2017 Global Traffic Scorecard [29].
In the second part of Section 4.1, we examine how traffic congestion levels are different over space
and time based on the 1022 trips made by the 250 selected participants of the survey. In Section 4.2,
we compare two assessments of individual exposures to traffic congestion for the 250 participants:
one that considers only commuting trips and the other one that considers both commuting and
non-commuting trips. In Section 4.3, we explore how three individuals from the same household
are exposed to traffic congestion in unique ways over space and time through visualizations of their
space-time trajectories.

4.1. Spatiotemporal Variations in Traffic Congestion Intensities

In this section, we answer the first research question: Do spatiotemporal variations exist in traffic
congestion intensities? We empirically examine whether traffic congestion intensities are different
across space and time in the study area based on data from the INRIX 2017 Global Traffic Scorecard [29]
and the trips made by the 250 selected participants. Using the first data source, traffic congestion
intensity is assessed in terms of the percentage of congestion travel time that drivers experience
out of gross travel time; using the second data source, traffic congestion intensity is derived as the
ratio of travel time that considers traffic congestion to free-flow travel time. This is an important
question because spatiotemporal variabilities in traffic congestion intensities may exacerbate the
UGCoP. Although it is widely known that traffic congestion intensities are different over space and
time [55], here we empirically investigate its precise spatiotemporal configurations in the study area.

First, we investigate general spatiotemporal variations of traffic congestion intensities in the
study area using data from the INRIX 2017 Global Traffic Scorecard, which provides data on traffic
congestion for over 1360 cities around the world (Table 2) [29]. Although the Los Angeles Metropolitan
Area is globally notorious for its severe traffic congestion, and as these data indicate, we can
observe the spatiotemporal heterogeneity of the traffic congestion in the area: (1) There are temporal
variations in traffic congestion. For instance, inter-city drivers experience traffic congestion for 22%
of their gross travel time during peak hours while 10% of their gross time occurs during non-peak
hours (e.g., around noon) [29]. (2) There are spatial variations in traffic congestion. For example,
during non-peak hours, intra-city drivers experience traffic congestion for 13% of their gross travel
time, while inter-city drivers experience traffic congestion only for 10% of the gross travel time [29].

Second, we examine the spatiotemporal variations in traffic congestion intensities based on the
1022 trips made by the 250 selected participants (note that, here, traffic congestion intensity for a trip is
derived as the ratio of travel time that considers traffic congestion to free-flow travel time; see Figure 2
and earlier description on how these two travel times for each trip are derived). Figure 4 illustrates
traffic congestion intensity (the vertical axis) variations of these 1022 trips by trip departure time
(the horizontal axis). The ratio of congestion and free-flow travel times is widely used in practice to
represent the severity of traffic congestion at the road-segment level (e.g., [29,46,47]). For example,
if traffic congestion intensity is 1.5, it means that the travel time that considers traffic congestion is
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1.5 times longer than the free-flow travel time due to traffic congestion. Therefore, the minimum value
of the traffic congestion intensity is 1.0 because free-flow travels give the minimum travel time.

Figure 4. Observed traffic congestion intensity over space and time.

We can observe the following two things in Figure 4. First, there are temporal variations in
traffic congestion intensity. Not surprisingly, traffic congestion is generally severe during peak
hours (e.g., 7–9 A.M., 3–6 P.M.). Moreover, although traffic congestion during non-peak hours is
less severe than that of peak-hours, traffic congestion is still observed at any time during a day.
This corroborates our earlier observation that there are temporal variations in traffic congestion in
the Los Angeles Metropolitan Area. Second, there are spatial variations in traffic congestion intensity.
Vertical distributions of the observations (i.e., indicated by the range of the boxes) represent various
traffic congestion intensities at different locations at each hour. For example, the range of the box at
6 P.M. is wider than that at 12 P.M., which means more spatial variations in traffic congestion intensities
exist at 6 P.M.

These two findings answer our first research question: Do spatiotemporal variations exist in
traffic congestion intensities? Based on the observations made from Table 2 and Figure 4, it is clear
that spatiotemporal variations of traffic congestion intensities exist in the study area. In what follows,
we continue our analysis to compare individuals’ exposures to traffic congestion obtained from
two assessments based on the trips made by the 250 selected participants: one that only considers
commuting trips and one that considers both commuting and non-commuting trips (i.e., taking into
account individuals’ activity-travel patterns).

Table 2. Spatiotemporal variations in traffic congestion in the study area (Source: [29]).

Types of Trips Peak Hours Non-Peak Hours (Daytime) Non-Peak Hours (Late Nighttime)

Intra-city trips (b) 20% (a) 13% 8%
Inter-city trips (c) 22% 10% 3%

(a) Percentage of congestion travel time that drivers experience out of gross travel time. (b) Intra-trips refer trips that
occur within the city. (c) Inter-trips refer trips that occur into/out of the city.
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4.2. Differences in Individual Exposures to Traffic Congestion between the Two Assessments

We conduct a paired sample t-test to see whether individual exposures to traffic congestion for
each participant are significantly different between the commute-only assessment and the assessment
that also considers participants’ activity-travel patterns (i.e., considering both commuting and
non-commuting trips) (please see Section 3.2.2 and Figure 2 for a detailed explanation of the method).
Here, individual exposure to traffic congestion for each trip is estimated by subtracting its free-flow
travel time from its estimated travel time (which considers traffic congestion and is estimated using
the Google Maps API). This is the additional travel time for a trip due to traffic delay or congestion.

For each participant, we obtain a commute-only exposure measure by adding the additional
travel times incurred by the commuting trips and another exposure measure by adding the additional
travel times of both commuting and non-commuting trips. We then compare the difference between
these two exposure measures for each participant (and thus a paired sample t-test is used).

Table 3 indicates that the mean difference in participants’ exposure to traffic congestion is 6.66 min,
which means that the duration for which a participant experiences traffic congestion increases on
average by 6.66 min (47.78%) when participants’ activity-travel patterns are considered, compared
to the commute-only assessment. The result of the paired sample t-test confirms that the differences
in exposures to traffic congestion between the two assessments are statistically significant (p < 0.001).
Figure 5 visualizes the results presented in Table 3. The box plots also show that the average exposure
to traffic congestion when individuals’ activity-travel patterns are considered is higher than the average
exposure obtained in the commute-only assessment.

Table 3. Mean exposure to traffic congestion in the commute-only assessment and the assessment that
also considers participants’ activity-travel patterns.

Statistics Commute-Only Assessment Activity-Travel Patterns Considered Mean of Differences (a)

Mean 13.94 (min) 20.60 (min) 6.66 *** (b)

Standard Deviation 14.87 18.13 -
(a) Paired sample t-test result, (b) *** p-value < 0.001.

Figure 5. Box plots of individuals’ traffic congestion exposure for (a) the commute-only assessment and
(b) the assessment that also considers participants’ activity-travel patterns. (Outliers are not presented.)
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Moreover, we examine the probability distribution function of individual exposure to traffic
congestion. Figure 6 presents the histograms of individuals’ traffic congestion exposure levels for the
two assessments. As the histograms show, when individuals’ activity-travel patterns are considered
(right histogram), the shape of the probability distribution function becomes less skewed and converges
to its mean. Table 4 shows that skewness (from 2.313 to 1.724) and kurtosis (from 9.766 to 5.982) of
the histogram decrease after activity-travel patterns are considered. The results indicate that the
probability distribution function of individual exposures to traffic congestion shows a tendency to
converge to its average when individuals’ activity-travel patterns are considered.

This phenomenon can also be understood as a manifestation of the neighborhood effect
averaging problem (NEAP) observed by Kwan [36]. However, there are two important differences
between our observations here and the original interpretation of the NEAP put forward by
Kwan [36]. First, both exposure assessments (i.e., one that considers only commuting trips and one
that considers people’s entire activity-travel patterns) in this research are mobility-based. In other
words, the commute-only exposure assessment is not residence-based because it already included
some portion of individuals’ daily mobility (i.e., commuting trips). However, the original articulation
of the NEAP compares residence-based exposures with mobility-based exposures. This indicates that
the NEAP can also be encountered in environmental exposure assessments when only parts (instead
of all) of people’s daily mobility are ignored.

Second, the probability distribution functions of the two exposure assessments in this study are not
bell-shaped but heavily skewed. The original notion concerning the NEAP only focuses on distributions
of individual exposures that approximate a bell-shaped distribution (one such distributions is the
normal distribution), but distribution functions in our research are heavily skewed. This indicates that
the neighborhood effect averaging problem can also be encountered when the probability distributions
of individual exposures are not bell-shaped. These two differences between our observations here
and the original interpretation of the NEAP extends the original interpretation of the NEAP in
important ways.

Figure 6. The histograms of traffic congestion exposure in (a) the commute-only assessment and (b)
the assessment that considers participants’ activity-travel patterns.

Table 4. Skewness and kurtosis of the histograms for both assessments.

Statistics Commute-Only Assessment Activity-Travel Patterns Considered

Skewness 2.313 1.724
Kurtosis 9.766 5.982
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Additionally, we examine in detail how considering individuals’ activity-travel patterns impact
the relative levels of individual exposure to traffic congestion. Figure 7 illustrates the standardized
(z-score) individual exposures to traffic congestion. The horizontal axis displays individual exposures
of the commute-only cases, while the vertical axis represents individual exposures obtained by the
assessment that considers participants’ activity-travel patterns. For example, points in the first quadrant
(top-right) represent cases when individual exposures to traffic congestion are higher than the average
in both assessments. On the contrary, points in the third quadrant (bottom-left) indicates that individual
exposures to traffic congestion are lower than its average in both assessments. A closer examination of
the graph yields a couple of important findings.

First, the standardized (z-score) individual exposures to traffic congestion of most participants
(203 participants, 81% of the selected subsample) range between −1 and 0 (see the focused area in
the inset). Second, a majority of participants (48 out of 69) in the first quadrant are located in the
blue triangular area. This indicates that individual exposures shift much closer to its mean value
when activity-travel patterns are considered. These findings confirm an earlier observation that many
individuals have exposure levels around the average value while fewer individuals have very high or
low exposure levels, and considering individuals’ activity-travel patterns leads the exposure level to
converge to its mean [36].

Based on these results, we also answer the second question: Will exposures to traffic congestion
based on commute-only assessments be significantly lower than those obtained from assessments that
also consider individuals’ activity-travel patterns in addition to commuting trips? We found that this
is indeed the case. There are statistically significant differences between exposures evaluated with and
without considering individuals’ activity-travel patterns, indicating that the UGCoP is a serious issue.
We also found that ignoring individuals’ activity-travel patterns may exacerbate the NEAP. Therefore,
we can conclude that overlooking people’s activity-travel patterns may lead to serious methodological
issues in the form of the UGCoP and the NEAP when assessing their exposures to traffic congestion.

Figure 7. Standardized (z-score) individual exposures to traffic congestion.

4.3. Space-Time Visualizations of Individual Exposures to Traffic Congestion

Figure 8 illustrates the cumulative traffic congestion exposures of 3 individuals from the same
residence (i.e., the same household) over the 24 hours of the survey day. Line A (blue) indicates the
mother’s exposure to traffic congestion, while Lines B (yellow) and C (red) represent the older son and
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the younger daughter respectively. Also, space-time visualizations of these individuals’ activity-travel
patterns are presented in Figure 9. The vertical axis (t) represents time, and the horizontal plane
displays space (x, y). Each dot represents a 1-min interval in the trip trajectories obtained from the
Google Maps API. The size of the dots indicates traffic congestion intensity. For instance, larger dots
represent more intense traffic congestion. The vertical solid lines indicate durations when individuals
are performing activities at fixed locations, as their location (x, y) does not change over time.

Figure 8. Cumulative exposures to traffic congestion of three selected individuals from the same
household (A: Mother, B: Older Son, C: Younger Daughter).

Figure 9. Space-time visualizations of traffic congestion exposures of three individuals from the same
household (A: Mother, B: Older Son, C: Younger Daughter).
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The space-time illustration of individuals’ trajectories clearly shows that individuals are exposed
to traffic congestion in unique ways over space and time. First, although all 3 individuals have a
similar travel-demand environment (e.g., actively employed and driving their own cars), each family
member’s traffic congestion exposure varies because of their idiosyncratic activity-travel patterns.

As Figure 9 shows, for example, the traffic congestion exposure of Person A (mother) ranges
between 10 and 70, while that of Person C (younger daughter) varies between 10 and 20. This difference
can be explained by the different activity-travel patterns between these two persons. Person A takes
longer commuting trips, and she is heavily exposed to traffic congestion especially during her way
back home. Person A is exposed to severe traffic congestion when she takes non-commuting trips,
but the non-commuting trips do not significantly contribute to the total exposure because the length of
the trips is relatively short. By contrast, Person C is less exposed to traffic congestion than Person A.
Most trips that Person C takes are near her residence and relatively short, which enables her to avoid
heavy exposure to traffic congestion.

Specifically, we can observe that the younger son (Person B) is exposed to heavier traffic congestion
than the others in the household. His traffic congestion exposure becomes more severe when his
activity-travel patterns are considered. This drastic increase is mainly because of his work-related trips
happening near areas in South Los Angeles during non-peak hours (e.g., 9 A.M.–2 P.M.), when traffic
congestion there is still severe.

Further, Figure 10 depicts the exposures to traffic congestion of 32 individuals from 15 households
in the subsample for both the commute-only assessments and assessments that also consider their
activity-travel patterns. The bar graph clearly shows that individuals from the same household are
differently exposed to traffic congestion because individuals’ activity-travel patterns are idiosyncratic.

Based on these results, we answer the third question: How are individuals uniquely exposed
to traffic congestion as a result of their activity-travel patterns? The results confirm that individuals
are idiosyncratically exposed to traffic congestion due to their distinctive activity-travel patterns.
The results also corroborate previous studies [37,56], which argue that individuals from the same
household are differently exposed to environmental influences or contexts. Therefore, these results
may cast doubt on the validity of previous studies’ exclusive focus on commuting trips during peak
hours and using data aggregated over areas (e.g., census tracts) because they did not fully reflect
individuals’ unique activity-travel patterns.

Figure 10. Individual exposures to traffic congestion of 32 individuals from 15 households in the
subsample (Same alphabet means the same household.)
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5. Conclusions

This research empirically examined whether the uncertain geographic context problem (UGCoP)
and the neighborhood effect averaging problem (NEAP) are encountered in research on individual
exposures to traffic congestion. We used crowdsourced real-time traffic congestion data and
activity-travel data of 250 individuals in Los Angeles to compare two assessments of individual
exposure to traffic congestions: one that only considers commuting trips and one that also considers
individuals’ non-commuting trips in addition to considering commuting trips (thus taking people’s
activity-travel patterns into account).

First, the results indicated that spatiotemporal variations in traffic congestion intensity exist in
the study area, which calls for the consideration of individuals’ activity-travel patterns when assessing
their exposures to traffic congestion in future research.

Second, the paired sample t-test results revealed that individual exposures to traffic congestion are
significantly underestimated when individuals’ activity-travel patterns are ignored. Further, the results
highlighted that the probability distribution function of individual exposures is heavily skewed
but tends to converge to its average value when individuals’ activity-travel patterns are considered,
which is a manifestation of the neighborhood effect averaging problem (NEAP). These results indicated
that both the UGCoP and the NEAP are critical methodological issues in traffic congestion and
health studies.

Lastly, we presented space-time visualizations of the traffic congestion exposures of 3 individuals
from the same household. The results illustrated that since individuals have idiosyncratic activity-travel
patterns, their exposures to traffic congestion vary significantly even if they live at the same residential
location. These results corroborate the claim in previous studies that using residence-based methods
or data aggregated over areas (e.g., census tracts) may lead to erroneous assessments of individual
exposures to traffic congestion or other environmental influences [31].

The results of our research imply that epidemiological studies should pay more attention to
individuals’ activity-travel patterns when assessing people’s environmental exposures. As the results
of this study illustrated, ignoring individuals’ daily mobility (i.e., activity-travel patterns) may result in
erroneous assessments of their exposures to traffic congestion. Eventually, using inaccurately estimated
traffic congestion exposures may exacerbate inferential errors or lead to significantly misleading results
when investigating the effects of traffic congestion exposures on human health. In addition, the results
imply that researchers who study environmental exposures should focus more on individual-level
analysis, since this study shows that people who live in the same residential location may have
different traffic congestion exposures due to their distinct activity-travel patterns. This implies that
using residence-based methods or data aggregated over areas (e.g., census tracts), which are popular
approaches in previous studies, may lead to critical methodological issues.

Although this study significantly advances our knowledge about two critical methodological
issues (i.e., the UGCoP and the NEAP) in traffic congestion and health studies, it has several limitations
that should be addressed in further studies. First, we presumed that individuals used the shortest
path (in terms of travel time) to travel from one location to another, which may not fully capture
their true activity-travel patterns. Although this assumption is reasonable, people may not necessarily
use the shortest path. One possible solution to this issue may be to employ a space-time prism [57],
as illustrated in Figure 11. A space-time prism consists of points that individuals may possibly visit
given their spatiotemporal constraints [50,58]. Considering possible alternative routes in a space-time
prism may help researchers comprehensively assess traffic congestion exposures.
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Figure 11. An example of a space-time prism.

Second, further studies need to consider the subjective aspects of individual exposures to
traffic congestion. Previous studies revealed that exposures to traffic congestion may go through
subjective perception filters [12,16,59]. This indicates that although people are exposed to the same
level of objective traffic congestion (e.g., 20 min in traffic congestion), the effects of the objective
traffic congestion on health may follow different mechanisms for each individual. However, due to
the limitations of the survey data used in this study (which did not collect or provide any data
on participants’ perceptions), we were not able to address this issue. One possible solution may
be to integrate in-depth interviews about subjective factors with activity-travel surveys [25,60].
By combining the subjective experiences of traffic congestion with objective measures, future research
may further advance our knowledge of the health impacts of exposures to traffic congestion.

Third, more scrutiny is required to unveil the temporal dimension of the effects of traffic
congestion exposures on health [24]. We computed total traffic congestion exposure in minutes because
we presumed that cumulative exposure may influence health. However, the effects of traffic congestion
exposures on health may show “time-lagged response” [24], which means that it may have health
effects afterward. Moreover, not only the duration of traffic congestion but also the variability in driving
time may negatively affect health. Since several epidemiological studies reported such evidence [15,61],
more attention is required to clearly understand the temporal aspect of the effects of traffic congestion
on health. One possible solution is to utilize real-time global positioning system (GPS) technology to
gain clearer pictures and more detailed understanding of these temporal effects of traffic congestion
on health [62,63].
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