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Abstract: Fine particulate matter (PM2.5, diameter ≤2.5 µm) is implicated as the most health-damaging
air pollutant. Large cohort studies of chronic exposure to PM2.5 and mortality risk are largely confined
to areas with low to moderate ambient PM2.5 concentrations and posit log-linear exposure-response
functions. However, levels of PM2.5 in developing countries such as India are typically much higher,
causing unknown health effects. Integrated exposure-response functions for high PM2.5 exposures
encompassing risk estimates from ambient air, secondhand smoke, and active smoking exposures have
been posited. We apply these functions to estimate the future cause-specific mortality risks associated
with population-weighted ambient PM2.5 exposures in India in 2030 using Greenhouse Gas-Air
Pollution Interactions and Synergies (GAINS) model projections. The loss in statistical life expectancy
(SLE) is calculated based on risk estimates and baseline mortality rates. Losses in SLE are aggregated
and weighted using national age-adjusted, cause-specific mortality rates. 2030 PM2.5 pollution in India
reaches an annual mean of 74 µg/m3, nearly eight times the corresponding World Health Organization
air quality guideline. The national average loss in SLE is 32.5 months (95% Confidence Interval (CI):
29.7–35.2, regional range: 8.5–42.0), compared to an average of 53.7 months (95% CI: 46.3–61.1) using
methods currently applied in GAINS. Results indicate wide regional variation in health impacts, and
these methods may still underestimate the total health burden caused by PM2.5 exposures due to model
assumptions on minimum age thresholds of pollution effects and a limited subset of health endpoints
analyzed. Application of the revised exposure-response functions suggests that the most polluted
areas in India will reap major health benefits only with substantial improvements in air quality.
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1. Introduction

A wealth of epidemiological research over the past two decades indicates that both acute and
chronic exposure to ambient air pollution is associated with adverse health effects [1]. Fine particulate
matter (PM2.5, particles of aerodynamic diameter ≤2.5 microns) is consistently implicated as the
most damaging pollutant to human health. The World Health Organization (WHO) has estimated
that ambient air pollution contributes to 3.2 million premature deaths and 76,163 disability adjusted
life years annually, largely due to the impacts of cardiovascular disease [2]. Of this staggering total,
two-thirds of the burden falls in Asia, where PM2.5 concentrations are some of the world’s highest [3].

Fossil fuel combustion contributes the majority of hazardous PM2.5, at the same time generating
earth-warming greenhouse gases. The Greenhouse Gas-Air Pollution Interactions and Synergies
(GAINS) model identifies emission control strategies that maximize co-benefits from the control of local
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air quality, specifically in mitigation of greenhouse gas emissions and reduced human mortality from
exposures to air pollution. GAINS utilizes a detailed spatial and sector-specific emissions inventory to
calculate annual average ambient concentrations of PM2.5 with the use of source-receptor relationships
from the TM5 model [4], which calculates PM2.5 concentrations at a 1◦ spatial resolution. The TM5
approach is augmented by a special routine to identify sub-grid differences in PM2.5 concentrations
as a function of local emission densities and the spatial extensions of urban areas within each grid
cell. Through this method, GAINS applies population data from the CIESIN 2.5◦ database to calculate
an urban increment of PM2.5 that can be applied to major population centers [4].

The Indian subcomponent of GAINS encompasses 553 1◦ grid cells, and also considers transboundary
air pollution spanning neighboring countries. PM2.5 pollution in India is primarily sourced to fuel
combustion in non-industrial plants and the manufacturing industry [5]. Another important source is
solid fuel combustion for cooking and heating in homes; indoor air pollution is a significant source of
all air-related health impacts in the country [6–8]. Increasing industrialization, urbanization, population
growth, and demand for transportation also exacerbate PM2.5 concentrations. While the link between
indoor PM2.5 exposures and health effects is well established [7], there remains a dearth of evidence on
the specific sources and chemical properties of PM2.5 that are most hazardous [9].

1.1. Current GAINS Health Impact Assessment Methodology

Prospective cohort studies largely confined to Western countries provide the epidemiological basis
for health impact assessments of PM2.5 [10,11]. The GAINS model includes a health impact module
that quantifies the effects of chronic exposure to air pollutants (ozone and PM2.5) on reduced life
expectancy for adults aged 30 and older [12]. Due to the lack of region-specific epidemiologic evidence
identifying associations with mid- and high-level PM2.5 exposures and health impacts, GAINS applies
the PM2.5 relative risk function for all-cause mortality derived by Pope et al., (2002) [13], a robust
estimate that is in agreement with other long-term studies. However, this methodology does not
constrain the accumulation of health impacts related to PM2.5 exposures at any level, contrary to the
evidence from proxy exposures of a plateau in relative risk the due to a combination of factors (see
Section 1.3) [14–20]. Therefore, the health impact estimates from GAINS and other models like it may
not accurately reflect the human health toll of air pollution in highly polluted settings. The limitations
of current extrapolation techniques are a focus of attention from pollution regulators and researchers
in India, who have called for more investigation into the particular exposures and vulnerabilities of
populations in the region [21,22].

1.2. All-Cause vs. Cause-Specific Mortality

A review of PM2.5-related health studies provides estimates of log-linear concentration-response
functions for three categories of cause-specific mortality: cardiovascular disease (ischemic heart
disease and cerebrovascular disease/stroke), respiratory disease (acute lower respiratory infection
and chronic obstructive pulmonary disease), and lung cancer [3,23]. The relative risks associated with
PM2.5 exposure as specified in the American Cancer Society’s Cancer Prevention Study-II (CPS-II) are
indicated below in Table 1. Compared to the all-cause risk estimate, the relative risk values are higher
for cardiovascular disease and lung cancer, due to the fact that the baseline annual mortality incidence
rates for these specific outcomes are by definition lower than annual all-cause mortality incidence (see
Table 2 for estimates of cause-specific mortality rates in India).
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Table 1. Relative risk factors for specific causes of death for a 1 µg/m3 change in PM2.5 exposure from
the American Cancer Society Cancer Prevention Study-II [3,24].

Cause of Death Relative Risk
(Central Estimate) 95% Confidence Interval

All-Cause 1.006 1.002–1.100

Cardiovascular Disease
(Ischemic Heart Disease and Stroke) 1.017 1.011–1.024

Respiratory Disease
(Chronic Obstructive Pulmonary Disease
and Acute Lower Respiratory Infection)

1.006 0.097–1.016

Lung Cancer 1.014 1.006–1.023

1.3. Risk at High Levels of Pollution

Most prospective cohort studies exploring health risks from chronic exposure to PM2.5 have been
conducted in developed countries, where ambient PM2.5 concentrations commonly range between
5–30 µg/m3. However, PM2.5 levels in developing countries commonly exceed this range [25,26], and
current health impact estimation techniques in GAINS do not adequately adjust for this important
difference. Estimates of urban air pollution derived from direct monitoring [27,28] and satellite
measurements of aerosol optical depth [29,30] indicate that PM2.5 levels in Indian cities routinely
exceed levels deemed unsafe for human health, according to the country’s national ambient air quality
standards and intermediate guideline levels recommended by the WHO [9,27,31–33]. To date, no large
epidemiological cohort studies have estimated the effect of chronic exposure to PM2.5 on risk of death at
these high concentrations, though state-specific estimates of health impacts using statistical modeling
have recently been published [8].

The most recent Global Burden of Disease (GBD) analysis continued the cause-specific analysis to
hypothesize about the relative risk functions at higher doses of PM2.5 in ambient air. The assessment
posited integrated exposure-response functions for specific causes of death [2]. Under this approach,
the source and precise chemical composition of fine particles is of secondary concern to the absolute
quantity of inhaled pollution; as a result, health impacts due to exposure from ambient air, secondhand
smoke, and active cigarette smoking can be aggregated and analyzed along a unified exposure-response
curve [20,34,35]. The integrated exposure-response model is posited because the risk of death is not
seen to rapidly increase across the range of human exposures, as would be implied by the current
log-linear relative risk methodology implemented in GAINS and other related models [20,34,36].
The integrated model is consistent with a biological saturation hypothesis for exposures to fine
particles and the mechanisms underlying respiratory and cardiovascular disease [14–16].

While PM2.5 is regulated by mass concentration, studies indicate that the chemical composition of
inhaled pollution (especially transition metals, organic compounds, semiquinones, and endotoxins)
also directly influences cardiovascular risks [37]. Despite mounting toxicological evidence lending
credence to the saturation hypothesis, the observed risk pattern across the range of documented
human exposures to PM2.5 may also reflect exposure misclassification at high PM2.5 levels, competing
mortality risks at high levels, and/or decreased inhalation rates for the heaviest of smokers that skew
risk estimates downward [34]. While recent evidence implicates specific chemical components of PM2.5

in health risks [38], the dearth of species-specific knowledge in exposure patterns (from emissions
and atmospheric modeling) and health risks (from epidemiologic studies) precludes a comprehensive
analysis of the collective impact of PM2.5 constituents in a health impact assessment framework.
This study aims to better quantify the effects of applying the integrated exposure-response functions
on life expectancy in India by illuminating effects beyond average national impacts. By better spatially
characterizing future risks associated with exposures to high levels of PM2.5 based on specific health
endpoints, this work responds to calls for a more context-specific approach to health impact assessment
for air pollution in India [21,22,39,40].
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2. Materials and Methods

Estimates of air pollution-related health impacts are calculated using three sets of relative risk
factors: the log-linear all-cause premature mortality estimate from Pope et al., (2002) [24], the log-linear
cause-specific premature mortality estimate from CPS-II, and the integrated cause-specific premature
mortality functions posited in the GBD assessment. These three approaches for estimating the
health impacts of chronic exposure to PM2.5 are compared to demonstrate the range of uncertainty
characteristic of health impact assessments. Specifically, as shown in Figure 1, exposure scenarios for
India in GAINS are utilized to estimate the population health impact of PM2.5 pollution in 2030. Health
impacts are estimated both in reduced statistical life expectancy (SLE) and cumulative years of life lost
(YOLL). This work explores the impacts of both the newly-proposed shape of the exposure-response
function as well as the disaggregation of all-cause mortality analysis into mortality estimation for
specific causes of death.
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Figure 1. Steps in a comparative health impact analysis utilizing PM2.5 exposure estimates for India
from the Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) model, three distinct
exposure-response functions, and baseline population mortality rate estimates. Through this sequence,
we estimate losses in statistical life expectancy (SLE) and years of life lost (YOLL) due to ambient
exposures in 2030.

2.1. Baseline Mortality Rates

In order to calculate changes in mortality patterns due to chronic exposure to PM2.5, annual
cause-specific mortality rates were first calculated. WHO cause-specific mortality data for India
in 2008 were used for two age groups (15–59 and 60–100) and three categories of death: lung
cancer (malignant neoplasms of the trachea, bronchus, and lung), cardiovascular disease (ischemic
heart disease and cerebrovascular disease), and respiratory disease (chronic obstructive pulmonary
disease, and acute lower respiratory infection) [41]. Table 2 includes these values along with their
population denominators.

Table 2. Estimated deaths in India (2008) by cause [41]. Age-specific 2008 population estimates for
India from the International Data Base (IDB) of the U.S. Census Bureau [42]. * Population estimate for
population aged 30–59, used in age-adjusted mortality rates for population aged 30–100 (Table 3).

Age Group Cause of Premature Mortality Mortality Estimate Total Deaths Population

15–59

Ischemic Heart Disease 672,000

3,092,700
720,694,000

(391,440,200*)

Stroke 180,200
Acute Lower Respiratory Illness 214,400
Chronic Obstructive Pulmonary Disease 44,900
Lung Cancer 20,600

60–100

Ischemic Heart Disease 826,000

4,678,400 90,312,849
Stroke 646,400
Acute Lower Respiratory Illness 870,300
Chronic Obstructive Pulmonary Disease 220,000
Lung Cancer 31,500

The total number of estimated deaths for each specific cause was divided by the annual estimate
of total deaths in each age group to arrive at an age-specific, cause-specific annual mortality rate.
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The mortality rates for the age 15–59 group were scaled to reflect the overall mortality rate for all adults
above age 30 using weighting based on age-specific population counts (see Section 2.5). Age-specific
mortality rates for the two age-groups were summed and weighted by the 2008 population shares of
each group (30–59 year olds and 60–100 year olds) to arrive at an annual age-adjusted cause-specific
proportion of the total mortality rate (Table 3). The adjusted rates were applied uniformly to the above-30
population. For the log-linear cause-specific estimates, age-adjusted mortality rates were consolidated
into three categories: cardiovascular disease (ischemic heart disease and stroke), respiratory disease
(chronic obstructive pulmonary disease and acute lower respiratory infection), and lung cancer.

Table 3. Annual age-adjusted proportion of mortality rate for India in 2008 for adults aged 30–100
in 2008.

Cause of Premature Mortality Age-Adjusted Share of Annual Mortality Rate (%)

Ischemic Heart Disease 21.0
Acute Lower Respiratory Illness 9.1

Stroke 7.3
Chronic Obstructive Pulmonary Disease 2.1

Lung Cancer 0.7

Age-adjusted mortality shares of mortality rates for air pollution-related disease indicate that
ischemic heart disease accounts for the majority of deaths, followed by acute lower respiratory
infections, stroke, chronic obstructive pulmonary disease, and lung cancer.

2.2. Assumptions in GAINS

Health impact assessment for PM2.5 in GAINS assumes human exposure to PM2.5 from both
primary sources (black carbon, organic carbon, other organic matter, and mineral dust) and secondary
inorganic aerosols formed from the emissions of SO2, NOX, and NH3. No health impacts are quantified
for exposure to PM2.5 stemming from natural sources and secondary organic aerosols, as it is assumed
that these emissions are not as amenable to human interventions. Moreover, adverse health effects
are not quantified for concentrations lower than 7 µg/m3; although there is not convincing evidence
that a safe threshold for PM2.5-related health effects exists [43–47], this level is consistent with the GBD
counterfactual concentration of 5.8–8.8 µg/m3 used for health impact estimates [2,47–49]. In urban areas,
health effects are correlated with annual mean urban background levels. Health impacts and baseline
mortality rates are calculated for the exposed population aged 30–100 years. This calculation assumes
that all individuals will remain exposed to the exposure level calculated for the rest of their lifetimes.

2.2.1. Point Estimates of Relative Risk

GAINS estimates long-term health impacts from PM2.5 exposure based on a single, large-scale
cohort study estimating a concentration-response function for all-cause mortality [24]. Such studies
utilize the Cox proportional hazards model, which relates changes in a stress variable (here,
PM2.5 concentration) to a proportional increase in the underlying hazard (here, mortality rate) by
a proportionality factor (also known as the relative risk) [50]. This model expresses the number of
fatalities in a time period Y (usually defined as one year) as a function of baseline mortality rates (Y0),
PM2.5 concentrations, and the relative risk factor (β) for an exposure (PM) in µg/m3 is:

Y = Y0 * eβ*PM

In this model, the annual baseline death rate changes as a function of level of PM2.5 exposure, and
the associated relative risk (RRLOGLINEAR) is:

RRLOGLINEAR (PM) = exp(β*PM)
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While β is small and behaves quasi-linearly in the exposure range studied in the United States
(average of 17.7, SD of 3.7 µg/m3), the GBD assessment posited a power function for the relative
risk pattern, so that risk of death increases at marginally lower rates as PM2.5 concentrations increase
(Figure 2) [20,24]. For the power function model, risk plateaus at high exposures and the posited
relative risk (RRPOWER) is:

for PM < PMcf: RRPOWER (PM) = 1

for PM > PMcf: RRPOWER (PM) = 1 + α(1 − exp−γ [(PM− PMcf )δ])

where PMcf is the counterfactual concentration (7 µg/m3, Section 2.2) in GAINS below which no
additional health risk is conferred. For this model, γ indicates the RR ratio comparing low to high
exposure scenarios. The power of PM concentration term (δ) is used in order to better estimate risk
over a wide range of exposures, and we apply estimates for α, γ, and δ from Burnett et al., (2014) [20],
each derived using nonlinear regression methods.
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Figure 2. Integrated exposure-response relative risk estimates for PM2.5 exposure (ALRI, acute lower
respiratory infection; COPD, chronic obstructive pulmonary disease; IHD, ischemic heart disease; LC,
lung cancer; STR, stroke) [20]. For concentrations below 7 µg/m3, log-relative risk is assumed to be 1.

In comparison to the all-cause mortality relative risk estimate currently deployed in GAINS, the
integrated exposure-response power functions for specific causes of death are considerably steeper
in slope at low exposure levels. However, the baseline mortality rate for each specific disease is
by definition lower than the all-cause population mortality rate. Therefore, it is not clear whether
a cause-specific health impact assessment of air pollution-related disease results in lower or higher
estimates due to these compensating factors. From these models, point estimates of risk were calculated
at baseline (natural background), 2020, and 2030 PM2.5 levels.

2.2.2. Incremental Risk

Once point estimates of relative risk were determined, incremental risk slopes were calculated to
linearly approximate the concentration-response power functions between the three points. Slopes
were log-transformed for application in later calculations of SLE and for comparison with parameter
estimates in the current literature. The general formula for the incremental risk value (R) is:



Int. J. Environ. Res. Public Health 2019, 16, 60 7 of 20

R = Log (RR1 − RR2 + 1)/ ∆PM

where the RR subscripts indicate point estimates of relative risk for specific causes of death for scenarios
considered in pairs (baseline PM2.5 levels and 2020 levels, 2020 levels and 2030 levels).

2.2.3. Urban and Rural Shares of Pollution

GAINS accounts for spatial heterogeneity of PM2.5 levels within each grid cell through its
incorporation of urban shares for the year 2030. As a result, model predictions include PM2.5 levels
for both rural and urban areas within each grid (these values coincide if the urban share is zero),
enhancing geographic resolution of exposure assessment compared to past approaches. For estimates
of relative risk, separate rural and urban PM2.5 estimates were utilized. Estimates of grid-averaged
SLE were based on weighting of relative risks using the urban share fraction.

2.3. Scenario Selection

GAINS modeling of future PM2.5 levels in India is conservative because it only incorporates
emissions trends but does not explicitly calculate future climate change impacts on pollution, even
though climate change could exacerbate surface concentrations of this pollutant [51,52]. Global
climate modeling suggests a future increase in the frequency of stagnant air masses for mid-latitudes
worldwide, suggesting further accumulation of fine particles [53,54]. Moreover, changes in north-south
gradients of sea surface temperatures could inhibit summer monsoon circulation and thus decrease
rainfall (a key driver of particle deposition) over land [51]. In addition to direct effects of climate
forcing on reduced precipitation rates, satellite data reveal that urban and industrial air pollution
can suppress precipitation, as polluted plumes are comprised of many, but inefficiently small, cloud
condensation nuclei [55,56]. These findings support the view that PM2.5 pollution will remain an
important air quality threat in India even if emissions do not drastically rise in the future.

In order to estimate health impacts in 2030 in light of the integrated exposure-response functions, we
used GAINS estimates of annual PM2.5 concentrations in each grid under baseline natural background
conditions, in 2020 under a maximum feasible reduction scenario, and in 2030 under a business-as-usual
emissions scenario. Point relative risk values were calculated for each of these three PM2.5 levels, and
log-linear estimates of risk were calculated for use in incremental life expectancy calculations. Choice of
the intermediate scenario for 2020 allowed us to better capture the shape of the revised exposure-response
power function with log-linear slope estimates between point estimates of relative risk. In contrast to
the current method, the integrated exposure-response functions display higher slopes at lower levels of
PM2.5, and flatter slopes as high levels. The point estimate with the intermediate 2020 value also reduces
error in approximating the revised curve with piecewise log-linear functions.

In grid cells with urban populations, an average annual PM2.5 level for the entire grid was
calculated by summing the urban and rural shares and weighting the urban PM2.5 level by the
urban fraction factor. The use of this piecewise function allowed us to capture health impacts at
lower exposure levels, where the new exposure-estimates suggest that incremental health impacts are
proportionally higher. Moreover, the choice of these scenarios for 2020 and 2030 represents a realistic
estimate of future Indian air pollution levels and therefore a reasonable case study for health impact
analysis. We also calculated SLE impacts using both log-linear, all-cause and log-linear, cause-specific
models, each comparing 2030 pollution levels to baseline natural background levels. The log-linear
form of these models obviates the need for 2020 pollution and risk point estimates.

2.4. Statistical Life Expectancy

Changes in SLE in India due to increased pollution between baseline natural background
levels and 2020 and between 2020 levels and 2030 levels were calculated for each of five specific
outcomes implicated in air pollution-related mortality. The basic methodology follows the approach
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recommended by the Task Force on Health [57]. This method uses cohort- and country-specific
mortality data to estimate a survival function over time. This function is modified by exposure to PM2.5

pollution, in a relationship that can be simplified to losses in SLE for an individual. The calculation uses
life table analysis and an approximation method for the calculation of the change in SLE [58]. These life
expectancy values were weighted by their age-adjusted mortality rates, derived from WHO data [41].
Changes in SLE were calculated separately for each cause-specific outcome, and then multiplied by
proportional factors from Table 3 and summed to arrive at cumulative estimates of changes in SLE
for 2030.

2.5. Years of Life Lost

Because of spatial heterogeneity in the distribution of air pollution and human populations, it is
important to assess the total burden of air pollution on society in addition to impacts on SLE. To assess
the cumulative burden of PM2.5 air pollution on the Indian population, we calculated the YOLL in
each grid [59]. We multiply the loss in SLE (expressed as fractions of years) by the total population
(age 30–100) in each grid cell as currently estimated by GAINS. Population estimates for India from
the International Data Base (IDB) of the U.S. Census Bureau were used to calculate a proportional
factor of above-30 population in 2030 [42]. This factor (0.422) was applied to population estimates
from GAINS to reflect the above-30 population total in each grid cell. In the YOLL estimate, we
applied national-level age distribution data to calculate the total number of exposed individuals within
each grid.

3. Results

Application of the three sets of exposure-response functions to GAINS-estimated PM2.5

concentration data led to health impact estimates for both changes in SLE impacts and cumulative
YOLL in the Indian population.

3.1. National Health Impacts

PM2.5 pollution is predicted to reach an annual mean of 74 µg/m3 in 2030, nearly eight times
the corresponding WHO air quality guideline [10]. Nationally, the average loss in SLE (aggregated
from cause-specific outcomes) is 32.5 months (95% Confidence Interval: 29.7–35.2), compared to an
average of 53.7 months (95% CI: 46.3–61.1) currently estimated in GAINS using the log-linear, all-cause
mortality risk estimate. Table 4 compares the health impacts estimated by the single all-cause and two
cause-specific exposure-response functions.

Table 4. Changes in statistical life expectancy (SLE) using log-linear= all-cause, log-linear cause-specific,
and power function cause-specific exposure-response functions for premature mortality and GAINS PM2.5

exposure estimates. National averages calculated from population-based weighting of individual grids.

Exposure-Response Function Average National Loss in SLE
(Months)

95% Confidence Interval
(Months)

Log-Linear, All-Cause 53.7 46.3–61.1
Log-Linear, Cause-Specific 49.4 42.7–56.1

Power Function, Cause-Specific 32.5 29.7–35.2

3.2. Regional Health Impacts

The different SLE impacts estimated by the three models are depicted for each GAINS region
in Figure 3. Regions are sequenced from lowest to highest PM2.5 level in 2030. Figure 4 displays the
aggregation of cause-specific SLE impacts using the power function.
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3.3. Grid Comparison

Figure 5 displays the contrast in SLE estimates for each grid cell in GAINS between the integrated
exposure-response power function and the log-linear function. For the same level of 2030 pollution,
SLE impacts peak at a much lower level using the power function.
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3.4. Years of Life Lost

Table 5 displays the YOLL results for each GAINS region, applying both the power and log-
linear functions.

Table 5. Years of Life Lost (YOLL) estimated for the year 2030 due to PM2.5 pollution in India using
integrated, cause-specific exposure-response functions compared to the current (log-linear, all-cause)
GAINS approach. Regional averages calculated from population-based weighting of individual grids.

Region Population
Age 30–100

YOLL
(Power Function,

Cause-Specific Mortality)

YOLL
(Log-Linear, All-Cause

Mortality)

Andaman & Nicobar 100,330 71,041 75,405
Andhra Pradesh 31,334,161 76,806,481 105,513,079

Arunachal Pradesh 626,257 852,835 1,168,634
Assam 10,700,667 29,603,288 45,577,660
Bihar 33,518,253 105,402,006 177,643,919

Chandigarh 188,466 593,341 1,052,555
Chhattisgarh 8,681,291 24,396,711 35,680,365

Dadra & N. Haveli 48,125 100,420 118,675
Daman & Diu 48,744 85,837 94,496

Delhi 4,988,542 17,486,999 43,833,733
Goa 528,426 962,794 1,061,004

Gujarat 20,791,047 43,259,945 54,757,350
Haryana 9,389,899 28,457,447 56,689,670

Himachal Pradesh 2,604,428 6,119,326 7,806,830
Jammu & Kashmir 4,047,044 9,127,280 12,470,991

Jharkhand 11,598,975 38,033,918 72,210,222
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Table 5. Cont.

Region Population
Age 30–100

YOLL
(Power Function,

Cause-Specific Mortality)

YOLL
(Log-Linear, All-Cause

Mortality)

Karnataka 21,664,583 43,394,208 50,991,253
Kerala 13,238,535 28,926,694 36,050,459

Madhya Pradesh 24,900,682 58,026,813 74,456,342
Maharashtra 38,349,724 89,336,917 118,150,353

Manipur 954,847 2,538,910 4,224,297
Meghalaya 1,176,235 3,702,158 5,955,767
Mizoram 359,130 877,077 1,168,562
Nagaland 717,811 1,330,132 1,721,418

Orissa 15,167,417 47,199,759 79,501,011
Pondicherry 55,121 90,030 103,332

Punjab 10,172,018 31,863,412 60,150,281
Rajasthan 23,317,953 45,789,791 69,256,961

Sikkim 241,827 356,728 435,056
Tamil Nadu 25,184,943 49,909,735 60,974,345

Tripura 1,314,249 4,179,375 6,652,071
Uttar Pradesh 68,524,470 225,900,339 450,382,887
Uttarakhand 3,574,632 9,192,348 13,715,040
West Bengal 32,806,548 114,273,583 233,985,679

National Total 420,915,379 1,106,384,265 1,883,629,702

4. Discussion

4.1. Three Exposure-Response Models

Three models for impacts of PM2.5 on health (reduced life expectancy) are represented in Figure 3.
These three models (log-linear all-cause, log-linear cause-specific, and power function cause-specific)
represent increasingly precise estimates of the cumulative health impacts of PM2.5 pollution. Results
from these exposure-response functions align most in areas with relatively low levels of pollution
(generally in southern India, as other studies have found, [8]). In the least polluted areas, the difference
between the lowest and highest SLE estimates (log-linear cause-specific and log-linear all-cause,
respectively) is 0.60 months (in the Andaban and Nicobar islands). However, in areas with poorer air
quality, model estimates diverge considerably, with a difference of 63.4 months between the lowest and
highest SLE estimates in Delhi (power function cause-specific and log-linear all-cause, respectively).
Overall, the central estimate of 32.5 months (2.7 years) of SLE loss in 2030 is consistent with other recent
national analyses of present-day air pollution impacts, which have estimated SLE losses ranging from
1.5 years to 5.3 years [8,60–62]. While some of these studies also considered indoor air pollution and
ozone (O3) exposures, our finding is comparable to a PM2.5-only life expectancy impact of 3.2 years as
calculated by Greenstone et al. [63].

4.2. Incremental Impacts

In assessing the consequences of applying revised exposure-response functions, it is important to
distinguish between incremental and cumulative health impacts. The posited power function implies
that the risk of death is not constant along the continuum of exposure to PM2.5. As a result, adverse
health impacts rapidly accrue at the lower end of the exposure spectrum, but increase more slowly as
one proceeds to higher levels of exposure. For example, for chronic obstructive pulmonary disease,
the log-relative risk approximately triples between 10 µg/m3 and 20 µg/m3, but only increases by 7%
between ambient concentrations of 100 µg/m3 and 110 µg/m3. Therefore, it is essential to consider
the baseline air quality situation in assessing health benefits that might be achieved from reducing
air pollution. The most striking consequences of the revised functions are seen in estimates of these
incremental impacts. Given these patterns and future exposure risks [64], it is apparent that, in order
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to achieve the biggest health gains, ambitious actions are needed to significantly reduce the overall
magnitude of ambient PM2.5 air pollution in India.

4.3. Statistical Life Expectancy

The cause-specific analysis results in health impacts that are on the same order of magnitude but
generally lower than estimates using the old methodology (see Figure 3). Regional SLE impacts across
all causes and ages ranged from 8.5–42.1 months, with a population-weighted mean of 32.5 months
(standard deviation of 8.2 months). The regions in Figure 3 are sequenced by 2030 PM2.5 level; in the
most polluted regions, the impacts on SLE are (as expected) highest. It is also in these places where the
loss in SLE due to lung cancer is highest, accounting for 0.6 months of the total loss in SLE in Delhi.

There are, however, interesting exceptions to the general trend of increasing health effects by 2030
pollution level. The clearest example is in Rajasthan, where the 2030 PM2.5 level is 74.4 µg/m3 and
cumulative SLE loss is estimated at 23.6 months. While Assam and Tripura are expected to experience
similar pollution levels in 2030 (68.9 and 77.7 µg/m3, respectively), the latter regions are anticipated to
suffer higher SLE losses (33.2 and 38.2 months, respectively) than Rajasthan. This contrast is due to
differences in modeled pollution changes between the baseline natural background concentrations
and 2030 business-as-usual scenario. Relative to baseline background levels, PM2.5 levels in Assam
increased by 67.5 µg/m3 and Tripura by 75.6 µg/m3, while Rajasthan only increased 45.7 µg/m3.
Because natural background pollution is high to begin with in Rajasthan, health impacts due to
anthropogenic emissions are relatively lower. The results in Figure 3 demonstrate that the divergence
between the new exposure-response methodology and current GAINS approach is greatest in areas
with high levels of PM2.5 pollution. In Delhi, for example, the revised estimate for SLE impacts is 40%
of the current GAINS estimate. By comparison, in the least polluted region (Andaman and Nicobar),
the power function estimate is 95% of the SLE impact projected using current GAINS methodology.

4.4. Years of Life Lost

Cumulative impacts of population exposures to air pollution are helpful in conveying the total
burden of human-driven PM2.5 pollution to policymakers. The YOLL estimate (Table 5) places the
statistical life expectancy calculation in a human context, taking into account spatial heterogeneity
in population density. Just as the cause-specific life expectancy results are lower than under current
GAINS assumptions, when population estimates are applied to calculate cumulative Years of Life Lost
(YOLL), the health impacts are diminished. Amongst regions, Andaman and Nicobar had the lowest
YOLL toll (71,041) due to its small population and relatively modest PM2.5 levels. Uttar Pradesh had the
highest YOLL burden (225,900,339) and Delhi, the location with the highest loss in SLE, accumulated
17,487,000 YOLL by 2030. Overall, 1.1 billion YOLL can be attributed to long-term exposure to ambient
PM2.5, or roughly one year for each person in India (including those under age 30).

4.5. Sensitivity Analysis

To place revised health impact estimates in the context of current GAINS calculations, a sensitivity
analysis was conducted by comparing exposure-response methodology. Overall, the revised method
results in consistently lower estimates in India (67% ratio of new method to old) of losses in SLE due
to ambient concentrations of PM2.5. Nevertheless, application of the power function in less polluted
settings could result in SLE estimates that are larger than those calculated here. Nationally, the revised
method projects that chronic exposure to human-driven PM2.5 pollution reduces the average Indian
citizen’s life by about 32.5 months (Table 4, Figures 3 and 4). Of this total, the largest contributor to
premature mortality is ischemic heart disease (15.0 months, 46.1% of total average life-shortening),
followed by acute lower respiratory infection (9.5 months, 29.3%), stroke (5.1 months, 15.5%), chronic
obstructive pulmonary disease (2.6 months, 8.1%), and lung cancer (0.3 months, 0.01%). The log-linear
method estimated a national loss in life expectancy in 2030 at 53.7 months. However, the national
picture obscures important regional variation, reflected in the relatively large standard deviation of
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the estimate. At the extremes, the integrated exposure-response method results in a 60% lower health
impact estimate in Delhi, and a 5% lower estimate in Andaman and Nicobar. However, alternate
estimates utilized in the sensitivity analysis reflect the largest population health estimate included in
GAINS, utilizing the highest reported relative risk estimate from Pope et al. (2002) [24].

4.6. Trends in Urbanization and Population Growth

The rapid pace of economic growth on the Indian subcontinent suggests that air quality issues
and their public health impacts will remain central over coming years due to increasing emissions,
especially if fossil fuels remain a large portion of India’s energy portfolio [4,52]. The Indian government
has championed a goal of maintaining annual economic growth above 8% for the next two decades,
which would increase per-capita income by a factor of five and stimulate an increasing demand for
energy [4]. India’s population is increasingly urban, and patterns of air pollution exposure are expected
to shift away from indoor air towards problems of ambient PM and O3 in cities [10]. As a result, fine
particulate matter pollution may worsen in coming decades due to continuing urban expansion and
India’s reliance on coal for electricity generation [65]. By 2030, high levels of PM2.5 are projected to
pervade across most of the country, with concentrations in the Ganges Valley increasing to more than
150 µg/m3 [4].

Regional variation in the concentration of PM2.5, combined with an increasingly urbanized Indian
population, results in important geographic disparities in health. In 2030, for example, life-shortening
in the city of Delhi is estimated at 108 months, in comparison to about 10 months in the Andaman and
Nicobar islands [4]. The impact of lower levels of air pollution on life expectancy in India is consistent
with patterns in the United States between 2000–2007: in one study, a decrease of 10 µg/m3 in the
concentration of PM2.5 was associated with an increase in life expectancy of about four months [48].

4.7. Limitations: Model Assumptions and External Validity

The spatial resolution of the GAINS model is a key shortcoming, as combination of 1◦ population
and exposure estimates with national incidence data provide a limited degree of spatial specificity.
While GAINS provides robust national estimates of air pollution exposures, improvement in the
spatial coverage and resolution of ambient air quality and baseline health incidence data is vital for
estimating human exposures and health impacts more accurately [66,67]. While restricting the health
impact analysis to the age 30+ group is consistent with other studies of this kind [68–71] and GAINS is
not equipped to consistently apply age-specific relative risk functions for all health endpoints, this
simplification biases health impact estimates.

The national-level age-specific population distributions from data extrapolated by the U.S. Census
Bureau are useful for describing the country-level impacts of air pollution on life expectancy, but
not for spatially-explicit estimates of the future disease burden and intervention opportunities for
specific age groups. As an example of this limitation, our broad application of the health impacts of
ALRI (Tables 2 and 3) does not reflect the disproportionate burden of this category of infections on
the very young (0–5 years), including a higher burden of YOLL in this age subgroup. This limitation
of our study is complicated by the fact that we did not apply exposure-response analysis to other
diseases like asthma and pneumonia that also contribute to premature mortality from PM2.5, with
important age-specific effects [72,73]. Nevertheless, the relative proportion of ALRI-associated impacts
is consistent with a city-specific analysis in Varanasi, India [74]. Stratification of health estimates by
age group and consideration of a wider range of impacts for the entire population would allow for
a more complete understanding of the cumulative impacts of national PM2.5 exposures.

Moreover, this study does not apply the integrated exposure-response functions to estimates of
indoor air pollution. Solid fuel combustion is still widespread in India, and a large share of health
impacts from outdoor exposure to PM2.5 has been linked to this source [4,75]. Future research efforts
using GAINS could more fully consider the health impacts of both indoor and outdoor air pollution to
better quantify the burden for both children and adults. The integrated exposure-response function
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may be deployed in health impact analyses of indoor air pollution exposures, although the exposure
patterns for women and children may be distinct from those for ambient air pollution.

In addition to causing premature mortality, the morbidity impacts of PM2.5 pollution are
well-documented [76]. These effects include irregular heartbeat, aggravated asthma, airway irritation,
and decreased lung function. None of these impacts are addressed under current GAINS methodology
despite their contribution to ill health and reduced human productivity. Moreover, exposure to
PM2.5 is known to cause adverse health impacts on both acute and chronic time scales. In this work,
acute impacts are assumed to be embedded in annual mortality estimates, but air quality and health
intervention planning would benefit from a quantitative understanding of the temporal dynamics of
health effects.

Calculations for the total losses in SLE attribute health impacts to PM2.5 sourced from
anthropogenic activities, but background levels of this pollutant within the model are already at
dangerous levels at several places in Northwest India. Moreover, evidence indicates no safe threshold
for chronic PM2.5 exposure below which no adverse health impacts (e.g., a relative risk ≤1) would be
expected [47,48], so total population health impacts quantified here are conservative estimates.

Although the GAINS model considers urban and rural concentrations of PM2.5, urban fractions are
held constant in this study between baseline conditions and the future. In reality, the urban population
is expected to grow by an estimated 400 million between now and 2050 to more than 700 million in
total [77]. As a result, changing patterns of urbanization in the country are not adequately captured,
biasing health impact results downward [78]. It is important to recognize that because outdoor air
pollution-related mortality was the health outcome of interest in this study, estimates are only for
the population aged 30–100. India still growing quickly and has a large youth population. The total
fertility rate in 2003 ranged between 2.2 children per woman in urban areas to 3.2 in rural settings, with
a national average of 3.0 [79]. In coming years, a surge in the above-30 population is anticipated [42].
The above-30 population estimates applied in this study use current GAINS population totals for ease
of comparability; in truth, future health impacts will be larger due to population growth. Moreover,
none of the morbidity impacts of PM2.5 are addressed under current GAINS methodology despite
their contribution to ill health and reduced human productivity.

In considering the results of this modeling, we also acknowledge the overall health burden
in South Asia and some unique risks to its population. A 2007 study found that people native
to India, Pakistan, Bangladesh, Nepal and Sri Lanka typically die from heart disease five to ten
years earlier than those from other ethnic groups [80]. Moreover, there is increasing evidence that
traditional risk factors for acute myocardial infarction (including obesity, high blood pressure, elevated
cholesterol levels, and diabetes) attack the cardiovascular system more aggressively in this population.
These findings, and those of related studies on lung function and underlying environmental health
determinants ([81,82]), suggest that the application of cohort study results estimating premature
mortality from cardiovascular disease due to PM2.5 exposure may underestimate the health risk for
particular populations in South Asia.

4.8. Policy Implications

The integrated exposure-response functions have important implications for air quality
management and public health policy. Under the assumption of biological saturation and a plateau of
health risk, areas with more polluted air at baseline are less amenable to improvements in health relative
to their cleaner counterparts, because marginal health impacts are highest at relatively low levels of
PM2.5 [83]. In contrast to the current log-linear, all-cause mortality risk function, the new methods
indicate that once a threshold of PM2.5 has been passed, health impacts accrue at a declining rate
(Figure 5). As a result, in areas experiencing high levels of pollution, only substantial improvements
in air quality will produce desired dividends in improvements to population health. Nevertheless,
application of the integrated exposure-response functions estimated a global total of 3.2 million
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premature deaths and identified of outdoor air pollution as the ninth leading risk factor for disease
and early death in 2010 [2].

More broadly, trends in air pollution and associated health impacts are only a component of the
entire burden of disease in India. As the country continues to progress through the epidemiologic
transition, the health sector is tasked with addressing threats to well-being from a number of sources.
Better estimates of the long-term impact of PM2.5 exposure will allow for improved public health
planning, and could motivate policies to further improve air quality. It is unclear how helpful the
quantification of specific-cause mortality risks is in the absence of baseline incidence data at a more
local level. Moreover, in communicating health impact assessments to policymakers, premature
mortality estimates linked to air pollution should be put in adequate context. This study did not
consider lag effects in relating health outcomes to pollutant exposures, as long-term exposures are
related to average impacts on SLE.

In addition to cause-specific mortality estimates, recent studies posit age-specific exposure-response
functions for ischemic heart disease as a function of chronic exposure to fine particulate matter [20].
Incorporation of age-specific exposure-response functions was outside of the scope of this study, but
would be useful in determining the proportional impacts of cause-specific mortality from air pollution
exposures. Because ischemic heart disease comprises such a large percentage of air pollution-related
disease, application of these new functions could have important implications for population health
impact assessments in this region.

5. Conclusions

We applied integrated exposure-response functions to estimate the cause-specific mortality risks
associated with ambient PM2.5 exposures in India in 2030 using Greenhouse Gas-Air Pollution
Interactions and Synergies (GAINS) model projections. Losses in statistical life expectancy (SLE)
were calculated based on population-weighted exposure estimates, relative risk estimates for mortality
(all-cause and cause-specific), and baseline national mortality rates. Calculated reductions in SLE
were aggregated and weighted using national age-adjusted, cause-specific mortality rates. In our
modeling, 2030 PM2.5 pollution in India reached an annual mean of 74 µg/m3, nearly eight times
the corresponding World Health Organization air quality guideline. The average loss in SLE was
32.5 months (95% Confidence Interval: 29.7–35.2, regional range: 8.5–42.0), compared to an average
of 53.7 months (95% CI: 46.3–61.1) using methods currently applied in GAINS and similar models.
Although these impacts are large, our transparent methods likely underestimate the total health burden
caused by PM2.5 exposures due to model assumptions on minimum age thresholds of pollution effects
and a limited subset of health endpoints analyzed. Application of the revised exposure-response
models suggest that the most polluted areas in India will reap major health benefits only with
substantial improvements in air quality.
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