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Abstract: Analyzing the association between fine particulate matter (PM2.5) pollution and 

socio-economic factors has become a major concern in public health. Since traditional analysis 

methods (such as correlation analysis and geographically weighted regression) cannot provide a 

full assessment of this relationship, the quantile regression method was applied to overcome such 

a limitation at different spatial scales in this study. The results indicated that merely 3% of the 

population and 2% of the Gross Domestic Product (GDP) occurred under an annually mean value 

of 35 μg/m3 in mainland China, and the highest population exposure to PM2.5 was located in a 

lesser-known city named Dazhou in 2014. The analysis results at three spatial scales (grid-level, 

county-level, and city-level) demonstrated that the grid-level was the optimal spatial scale for 

analysis of socio-economic effects on exposure due to its tiny uncertainty, and the population 

exposure to PM2.5 was positively related to GDP. An apparent upward trend of population 

exposure to PM2.5 emerged at the 80th percentile GDP. For a 10 thousand yuan rise in GDP, 

population exposure to PM2.5 increases by 1.05 person/km2 at the 80th percentile, and 1.88 

person/km2 at the 95th percentile, respectively. 

Keywords: spatial heterogeneity; population exposure; economic effects; quantitative analysis 

 

1. Introduction 

Fine particulate matter (PM2.5) has become the primary pollutant of air pollution in China [1]. 

Evidence has shown that long-term exposure to PM2.5, even at concentrations common to US urban 

areas, leads to increased risk of mortality [2,3] and cardiovascular disease [4,5]. In addition, PM2.5 

also impacts atmospheric visibility [6] and regional climate [7]. So, public opinion has been paying 

more and more attention to PM2.5 pollution. As a result, many researches were performed to analyze 
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the characteristics, sources, and chemical compositions of PM2.5 based on site monitoring. For 

example, many mega-cities and heavily polluted regions (e.g., Beijing [8–10], Shanghai [11], Nanjing 

[12]) and urban agglomerations (e.g., the Jing-Jin-Ji region [13,14], Yangtze River delta [15], Pearl 

River delta [16], and Chang-Zhu-Tan region [17]) in China have been investigated. Other studies 

explored the spatiotemporal characteristics of PM2.5 in the whole of China based on remote sensing 

data [18,19], indicating that the spatial distribution of annual mean PM2.5 concentration coincides 

with China’s three gradient terrains. Besides, there are several studies based on specific surveys 

[20,21], a spatially aggregated level on specific regions [22,23]. Lin et al. [24] studied the 

spatiotemporal variation of PM2.5 and its relationship with geographic and socioeconomic factors in 

China based on PM2.5 concentration dataset released by the Center for International Earth Science 

Information Network (CIESIN)/Columbia University [25]. The results showed that high PM2.5 

concentrations are mostly found in regions with high populations and rapid urban expansion in 

China for years of 2001–2010 [24]. 

Population exposure is often used to quantify the adverse health impacts of regional 

environment pollution. The variations of population exposure to PM2.5 across mega-cities [26], 

typical urban agglomerations [27], and mainland China [28] have been analyzed with gridded 

satellite retrievals or interpolated PM2.5 data. Shen and Yao [27] compared the correlation coefficient 

between population exposure to PM2.5 on the grid-level and the city-level, indicating the existence of 

the spatial heterogeneity of the relationship. So, the spatial scale seems to be a fundamental factor 

which cannot be ignored in creating and analyzing the relationship between environmental 

exposure and socio-economic factors [29]. 

The geographically weighted regression (GWR) model is commonly used to detect the spatial 

relationships between environmental and socioeconomic factors (or other ones) [24,30]. The GWR 

model is developed to explore the spatial heterogeneity, producing a set of local estimates of the 

parameters which demonstrate the spatial inhomogeneity of the relationship. This method cannot 

give the quantitative assessment of the relationship, although it can determine whether the 

relationship is positive or negative. 

The objective of this study is to determine the appropriate spatial scale for analysis and then to 

conduct quantitative evaluation of the connection between population exposure to PM2.5 pollution 

and socio-economic factors. Three kinds of gridded data with 1 km spatial resolution were used, 

which are annual average PM2.5 concentration, population, and Gross Domestic Product (GDP) in 

mainland China for 2014. Three different methods were implemented for analysis, which are spatial 

correlation analysis, cumulative percent distribution, and quantile regression. The above approach 

is more likely to deeply understand the quantitative impact of socio-economic factors on population 

exposure to PM2.5. It is hoped that these analyses can provide a meaningful reference for decision 

making in the process of urbanization. 

The remainder of this paper is organized as follows: a brief description of the data sources and 

methodologies is given in Section 2. Then in Section 3.1 the spatial distributions of population 

exposure and economic effects on PM2.5 over mainland China in 2014 are demonstrated. Section 3.2 

discusses the spatial correlation between population exposure to socio-economic factors, and the 

optimal spatial scale and a further quantitative assessment is given in Section 3.3. Finally, the 

conclusions are drawn in Section 4. 

2. Data and Methods 

2.1. Datasets 

The China National Environmental Monitoring Center (CNEMC) has been providing hourly 

PM2.5 observations in China since 1 January 2013 [31]. The systematic air quality monitoring network 

was composed of approximately 1497 monitoring sites by the end of 2014 [27]. In this study, the 

annual mean PM2.5 concentration was calculated at each site by averaging the hourly observations 

from 1 January to 31 December in 2014 (with the absence rate less than 1%). Furthermore, a 

co-krigin method was introduced to estimate grid-level PM2.5 concentration (1 × 1 km) based on site 
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observations and digital elevation model (DEM) data. The gridded DEM data with a spatial 

resolution of approximately 90 m was extracted from the Shuttle Radar Topography Mission 

(SRTM) digital elevation product released by the National Aeronautics and Space Administration 

(NASA). Figure 1 shows the spatial distribution of annual PM2.5 concentration in 2014. It can be seen 

that mid-eastern China suffers more serious PM2.5 pollution than other areas (over 90 μg/m3), 

especially in the southern area of Hebei province, and this pattern has persisted for several years 

[18]. 

 

Figure 1. The spatial distribution of PM2.5 (suspended particles with aerodynamic diameter less that 

2.5 μm) concentration in China in 2014. 

Gridded population and GDP data were provided by the National Earth System Science Data 

Sharing Infrastructure. They were transformed from census data with a spatial resolution of 1 km, 

considering the relationship among demographical, GDP, and land use types, and were adjusted 

with nighttime lights data derived from National Oceanic and Atmospheric Administration 

NOAA’s National Center for Environmental Information (NCEI) [24]. It can be seen from Figure 2 

that the population distribution in mainland China in 2014 was divided into two parts by the 

“Heihe-Tengchong Line” (also known internationally as the Hu line), which is a geo-demographic 

demarcation line proposed by Hu [32]. Most of the Chinese people live in the eastern region marked 

by this line. Figure 3 shows the GDP distribution in mainland China in 2014. Each provincial capital 

contributed much more GDP than other cities in all provinces. 

In this study, population data were applied to calculate the population exposure of PM2.5, while 

GDP data were used to characterize the economic development level of China. Because of the lack of 

population and GDP data from Hongkong, Macau, and Taiwai, the following analyses were carried 

out only in mainland China. Then, the population exposure and its relationship with socio-economic 

factors were analyzed at three spatial scales, which were grid level, county level, and city level. 



Int. J. Environ. Res. Public Health 2018, 15, 58 4 of 13 

 

 

Figure 2. Gridded population density in mainland China in 2014 with a spatial resolution of 1 km. 

The black dotted line represents the “Heihe-Tengchong Line”. 

 

Figure 3. Gridded Gross Domestic Product (GDP) in mainland China in 2014 with a spatial 

resolution of 1 km. Blank in the figure means areas without GDP. 

2.2. Population Exposure Calculation 

Population exposure (PE) is often used as an indicator of exposure assessment. If there is no 

population, there is no exposure [33]. In this paper, the population exposure to PM2.5 was illustrated 

at three different spatial scales, which were grid-level, county-level, and city-level. Grid-level 

population exposure to PM2.5 can be calculated as, 
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𝑃𝐸𝑖 = 𝑃𝑖𝐶𝑖 (1) 

where i stands for each grid cell; PEi represents the population exposure at gird i; Pi is the 

population density; and Ci is the PM2.5 concentration. 

County-level and city-level population exposure to PM2.5 are calculated with the zonal statistics 

method based on grid-level PE. These statistics were performed using the software environment 

ArcGIS and the Zonal Toolset (version 10.2; http://resources.arcgis.com/en/help/main/10.2/). 

2.3. Spatial Correlation Analysis 

On the basis of grid-level PM2.5 concentration and socio-economic data, the band collection 

statistics method was introduced to acquire the general correlation between PM2.5 concentration and 

socio-economic factors. The relationships can be depicted with a correlation matrix, which is a 

measure of dependency between the factors. 

First, the covariance between bands i and j can be determined by the following formula, 

𝐶𝑜𝑣𝑖𝑗 =
∑ (𝑍𝑖𝑘 − 𝜇𝑖)(𝑍𝑗𝑘 − 𝜇𝑗)𝑁

𝑘=1

𝑁 − 1
 (2) 

where Covij represents covariance between bands i and j; Z is the value of a given grid cell; i, j are 

bands of a stack (e.g., GDP and PE); μ stands for the mean value of a band; N is the number of grid 

cells; k denotes a particular grid cell. 

Then, the equation to calculate the correlation is as follows, 

𝐶𝑜𝑟𝑟𝑖𝑗 =
𝐶𝑜𝑣𝑖𝑗

√𝑉𝑎𝑟𝑖√𝑉𝑎𝑟𝑗

 (3) 

where Covij represents covariance between bands i and j; √𝑉𝑎𝑟𝑖  and √𝑉𝑎𝑟𝑗  are standard deviations 

of the given bands. The calculated correlation ranges from −1 to +1, indicating whether the 

correlation is positive or negative. The magnitudes of the covariance matrix are dependent on units, 

while the ones of the correlation matrix are not. 

2.4. Quantile Regression Method 

In this research, the quantile regression method was applied to the further analysis of economic 

effects on PM2.5. Unlike ordinary linear regression, quantile regression essentially transforms a 

conditional distribution function into a conditional quantile function of the response variable by 

slicing it into segments [34], and is not based on parametric assumptions regarding specificities of 

the underlying data distributions. In ordinary linear regression, the conditional mean of a response 

random variable Y is modelled as linearly related to a random variable X, which is, 

𝐸[𝑌|𝑋] = 𝛽𝑋 + 𝛾 = 𝑓((𝛽,𝛾))(𝑋) (4) 

where 𝛽 denotes the slope and 𝛾 is the intercept. They are estimated by minimizing the sum of 

the squared residuals for a realization (x, y) of (X, Y). 

(𝛽, 𝛾) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝛽′, 𝛾′) ∑(𝑦𝑖 − 𝑓(𝛽′,𝛾′)(𝑥𝑖))2

𝑖

 (5) 

In the case of quantile regression, 𝐸[𝑌|𝑋] is instead by a quantile of the response variable Y 

conditional on X, 𝑄𝜏[𝑌|𝑋]. For each quantile τ   [0, 1], the linear quantile regression can be 

described as, 

𝑄𝜏[𝑌|𝑋] = 𝑓((𝛽𝜏,𝛾𝜏))(𝑋) (6) 

for a (x, y) the slope 𝛽𝜏  and intercept 𝛾𝜏  are obtained by minimizing the sum of the 

asymmetrically weighted absolute residuals, 
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(𝛽𝜏, 𝛾𝜏) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝛽𝜏
′, 𝛾𝜏

′) ∑ 𝜌𝜏 (𝑦𝑖 − 𝑓(𝛽𝜏
′
,𝛾𝜏

′)
(𝑥𝑖))

𝑖

 (7) 

with 𝜌𝜏 denoting the tilted absolute value function, which gives differing weights to residuals 𝑟𝑖 

depending on the quantile under consideration [35], that is, 

𝜌𝜏(𝑟𝑖) = {
𝜏𝑟𝑖            𝑟𝑖 ≥ 0

(𝜏 − 1)𝑟𝑖 𝑟𝑖 < 0
 (8) 

3. Results and Discussion 

3.1. Population Exposure and Economic Effects on PM2.5 

The annual average concentrations of PM2.5 was 49.6 μg/m3 over mainland China, which is 

approximately 5 times the air quality guidelines (AQG) set by The World Health Organization 

(WHO) of 10 μg/m3. The total population of mainland China in 2014 was about 1.368 billion. Figure 4 

showed the spatial distribution of population exposure to PM2.5 in mainland China for 2014. It can be 

obviously seen that mega-cities often suffered higher population exposure, and the two mega-cities 

of Pearl River Delta (Guangzhou and Shenzhen) enjoyed much lower population exposure to PM2.5 

than other provincial capitals. 

However, it is found that the highest population exposure to PM2.5 appeared in a lesser-known 

city, Dazhou city, located in Sichuan province, rather than any other mega-cities or second-tier 

cities. This phenomenon was imputed to two factors. One reason was that industry pollution (e.g., 

steel, mining, fossil-fuel power, cement) was really heavy here in 2014, the other reason was the 

unfavorable topographic factor in this region. As a highly built-up and densely populated city 

surrounded by mountains on three sides, Dazhou city depends on strong winds to disperse air 

pollution. In recent years, as a result of drastic measures of environmental protection taken by the 

local government, the percentage of days with air quality indexes (AQIs) reaching defined standards 

in Dazhou city achieved 83.6% in 2017. 

 

Figure 4. Gridded population exposure to PM2.5 in mainland China in 2014 with a spatial resolution 

of 1 km. Blank in the figure means areas without population exposure to PM2.5. 



Int. J. Environ. Res. Public Health 2018, 15, 58 7 of 13 

 

The cumulative percentage of the population and GDP (0–100%) in mainland China was 

calculated based on the grid-level data to express the frequency distribution of annual mean PM2.5 

concentration (Figure 5). The results demonstrated that the WHO AQG (10 μg/m3) for PM2.5 was 

exceeded for 100% of the population in mainland China. An existing research indicated that there 

were about 70% population of East Asia living above the WHO Interim Target-1 of 35 μg/m3 [36]. It 

should be noted that the proportion of the population of mainland China living above this level 

was exceeded by 97%. There were even 58% of the population of mainland China living in a PM2.5 

concentration of 60 μg/m3, while all populations in the three major urban agglomerations (Jing-Jin-Ji, 

the Yangtze River delta, and Sichuan-Chongqing region) lived under the WHO Interim Target-1 (35 

μg/m3). Figure 5 also showed that only 2% of the GDP was produced in mainland China with 

annual mean PM2.5 concentration under the WHO Interim Target-1, while all GDP exceeded the 

WHO AQG of 10 μg/m3. There were more than half of the total GDP of mainland China generating 

within a PM2.5 concentration of 60 μg/m3, and 14% of the GDP producing above 80 μg/m3. 

 

Figure 5. Cumulative distribution of annual mean PM2.5 in mainland China for 2014 refer to the 

WHO air quality guidelines (AQG) of 10, and 35 μg/m3. POP stands for population. 

3.2. Spatial Correlation between PM2.5 and Socio-Economic Factors 

In this section, the correlation between PM2.5 and socio-economic factors was examined with the 

band collection statistics method based on grid-level data. Table 1 showed the statistical results. All 

of the associations among the involved variables present a positive relation. The formula of 

population exposure can explicitly explain the weak relation with PM2.5 and the strong relation with 

population, considering the different orders of magnitude between PM2.5 concentration and 

population. The correlation coefficient between GDP and population (R = 0.74) indicates that people 

gather in the areas with high GDP in mainland China. 

A previous study hypothesized that higher populations and GDP may cause higher PM2.5 

concentrations [20]. However, as can be seen from Table 1, the correlation coefficients for 

population, GDP, and population exposure to PM2.5 are 0.07, 0.19, and 0.3, respectively, which 

indicates that they have a weak correlation with PM2.5 in mainland China for 2014. In contrast, an 

obviously positive correlation between GDP and population exposure to PM2.5 with a correlation 

coefficient of 0.88 is observed, which is statistically significant. Another study revealed the similar 

results in the four typical urban agglomerations of China [22]. However, the magnitude of 
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correlation coefficients cannot quantify the influence among variables directly [14], but just provides 

a valuable hint for the following quantile regression analysis between GDP and population exposure 

to PM2.5. 

Table 1. The correlation matrix of the band collection statistics. 

Variable PM2.5 Population GDP Population Exposure 

PM2.5 - 0.07 * 0.18 * 0.3 * 

Population 0.07 * - 0.73 * 0.66 * 

GDP 0.19 * 0.74 * - 0.88 * 

Population Exposure 0.3 * 0.66 * 0.88 * - 

Notes: * p < 0.05. All results have statistical significance. 

3.3. Quantile Regression Analysis of Economic Effects on PM2.5 Exposure 

To quantify how population exposure to PM2.5 is affected by GDP, Figure 6 showed the 

respective quantile regression slopes. A quantile is a point taken from the inverse cumulative 

distribution function of the set of GDP so that, for example, the 0.8 quantile is the value such that 

80% of the GDP samples are below this value (80th percentile). The value of GDP over the entire 

dataset corresponding to the selected quantiles are also displayed in Figure 6. For the observations, 

the 95% confidence intervals of the estimated slopes are also shown as shading, under the 

assumption that the errors are independent and identically distributed. Significant slopes (5% 

significance level, two-tailed test) are highlighted with bold dots. For comparison, the solid red lines 

are from a least-squares regression of GDP as a function of population exposure and the dashed red 

lines delineate the 95% point-wise confidence band about this trend. These analyses are shown at 

three spatial scales (based on the gridded data, county-level, and city-level data). 

As in Figure 6a,b, trends significantly above zero are seen for all quantiles. Gradually increasing 

positive slopes for increasing GDP and population exposure to PM2.5 quantiles are identified from 

the datasets. The strong relation of upper quantiles of GDP with population exposure to PM2.5 is 

found to be a robust feature on both grid-level (Figure 6a) and county-level (Figure 6b) spatial scales. 

The upward trends are similar for the grid-level and county-level, the trend raised from 0.13 to 2.15 

on the county-level, while the trend rose from 0.07 to 1.88 on the grid-level. However, the confidence 

intervals showed that the inferred slopes were slightly more pronounced and significant for the 

grid-level. The best estimates on both the grid-level and the county-level indicated that the highest 

population exposure to PM2.5 were getting higher with increasing GDP, but the ranges of uncertainty 

were relatively large on the county-level. 
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Figure 6. (a) Quantile regression slopes of the 0.1–0.95 quantiles of GDP in relation to population 

exposure to PM2.5 on the grid-level spatial scale. (b) Quantile regression slopes of the 0.1–0.95 

quantiles of GDP in relation to population exposure to PM2.5 on the county-level spatial scales. (c) 

Quantile regression slopes of the 0.1–0.95 quantiles of GDP in relation to population exposure to 

PM2.5 on the city-level spatial scale. Upper quantiles are displayed with smaller step length (such as 

0.85, 0.9, 0.95). 

In contrast, a weak relationship between GDP and population exposure to PM2.5 quantiles is 

identified, which is generally insignificant at the city-level spatial scale (Figure 6c). At this scale, the 

relations of the quantiles of GDP with population exposure to PM2.5 do not exhibit a clear tendency 

with increasing quantiles (p > 0.1 for almost all quantiles). It illustrated that the spatial variation of 

population exposure and GDP was ignored to some extent at the larger scale, and the width of the 

confidence intervals provided an evidence that analysis on the grid-level seemed to be the optimal 

spatial scale while investigating the economic effects. Thus, the spatial scale effect indeed seems 

critical for explaining the identified relationship between GDP and population exposure to PM2.5 in 

mainland China. Moreover, the results indicated that the quality of the gridded population and GDP 

data used in this research, which were adjusted with the nighttime lights data, can meet the 

precision requirements for data analysis. 

For further analysis, trends, associated standard errors and p values for upper-quantile 

(≥85th-percentile) GDP as a function of population exposure to PM2.5 are displayed in Table 2. 

Sample size (number of samples) is given in parentheses next to the spatial scale level. Values are 

shown for selected upper quantiles (0.80, 0.85, 0.90, and 0.95). For each quantile, Trend denotes the 

inferred slopes at all spatial scales in the analysis. We noted significant (p < 0.01) trend increases for 

all quantile levels, and upward trends at all spatial scales for the highest quantile considered (95th 

percentile), although not all trends at this extreme quantile are statistically significant (insignificant 

on the city-level). For a 10 thousand yuan rise in GDP, the results showed an increase of 1.05, 1.33 

person/km2 in the value of the 80th percentile and 1.88, 2.15 person/km2 in the value of the 95th 
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percentile, respectively, on the grid-level and the county-level. This means that the economic 

growth in areas with high GDP in China is at the cost of the heavier population exposure, which is 

typical of the extensive economic growth. 

Table 2. Summary statistics results of upper-quantile (≥80th-percentile) GDP (including trends, 

standard errors, and p values) as a function of population exposure to PM2.5. 

Statistic 
Quantile 

80% 85% 90% 95% 

Grid (2,759,981 samples) 

GDP (10 thousand yuan) 585.89 906.79 1678.91 5246.21 

Trend (person km−2 10 thousand yuan−1) 0.87 * 1.05 * 1.31 * 1.88 * 

Std. Error 0.005 0.0076 0.009 0.018 

p <0.001 <0.001 <0.001 <0.001 

County (2375 samples) 

GDP (10 thousand yuan) 3,356,513.64 4,397,744.36 6,241,262.98 9,844,463.44 

Trend (person km−2 10 thousand yuan−1) 1.16 * 1.33 * 1.47 * 2.15 * 

Std. Error 0.125 0.173 0.22 0.71 

p <0.001 <0.001 <0.001 0.003 

City (349 samples) 

GDP (10 thousand yuan) 26,716,747.01 32,623,702.94 46,608,724.75 69,396,042.94 

Trend (person km−2 10 thousand yuan−1) 0.022 0.012 0.001 0.124 

Std. Error 0.018 0.017 0.12 0.275 

p 0.225 0.48 0.99 0.65 

Notes: * p < 0.05. Trend without * is not significant. 

4. Conclusions 

In this study, spatial characteristics in mainland China for 2014 were evaluated based on the 

gridded PM2.5 concentration, population, and GDP data with 1 km spatial resolution. The economic 

effects on PM2.5 were investigated by cumulative percent distribution, as well as spatial correlation 

coefficients, and economic effects on population exposure to PM2.5 were estimated with the quantile 

regression method at three spatial scales. The main findings were as follows: 

(1) Quantile regression demonstrated that the highest population exposure to PM2.5 was rising 

with increasing GDP in mainland China for 2014. The tiny uncertainty on the grid-level suggested 

the optimal spatial scale for socio-economic effects analysis. 

(2) A violent upward trend of population exposure to PM2.5 appeared at the 80th percentile 

GDP. For a 10 thousand yuan rise in GDP, an increase in population exposure to PM2.5 of 1.05 

person/km2, 1.88 person/km2 in the value of the 80th percentile and the extreme value (95th 

percentile) GDP, respectively, on the grid-level spatial scale. 

(3) Population exposure to PM2.5 was commonly higher in mega-cities in mainland China. 

However, a lesser known city named Dazhou suffered the highest population exposure to PM2.5 for 

2014, as a result of its pollution from industry and unfavorable terrain. 

This study presents the quantitative assessment of the relationship between GDP and 

population exposure to PM2.5 from a new perspective. In future research, a time series analysis will 

be performed to acquire a deeper understanding of the complex effects between air quality, 

socio-economic effects, and public health. 
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