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Abstract: With more than 58,000 cases reported by the country’s Centers for Disease Control,
the dengue outbreaks from 2014 to 2015 seriously impacted the southern part of Taiwan. This study
aims to assess the spatial autocorrelation of the dengue fever (DF) outbreak in southern Taiwan in 2014
and 2015, and to further understand the effects of green space (such as forests, farms, grass, and parks)
allocation on DF. In this study, two different greenness indexes were used. The first green metric,
the normalized difference vegetation index (NDVI), was provided by the long-term NASA MODIS
satellite NDVI database, which quantifies and represents the overall vegetation greenness. The latest
2013 land use survey GIS database completed by the National Land Surveying and Mapping Center
was obtained to access another green metric, green land use in Taiwan. We first used Spearman’s
rho to find out the relationship between DF and green space, and then three spatial autocorrelation
methods, including Global Moran’s I, high/low clustering, and Hot Spot were employed to assess the
spatial autocorrelation of DF outbreak. In considering the impact of social and environmental factors
in DF, we used generalized linear mixed models (GLMM) to further clarify the relationship between
different types of green land use and dengue cases. Results of spatial autocorrelation analysis showed
a high aggregation of dengue epidemic in southern Taiwan, and the metropolitan areas were the
main hotspots. Results of correlation analysis and GLMM showed a positive correlation between
parks and dengue fever, and the other five green space metrics and land types revealed a negative
association with DF. Our findings may be an important asset for improving surveillance and control
interventions for dengue.

Keywords: dengue fever; surrounding greenness; spatial clustering; GLMM

1. Introduction

Dengue fever (DF) threatens the health of populations around the world because of the expanding
distribution of the virus and its mosquito vectors over the past 30 years [1–4]. Dengue is a prominent
mosquito-transmitted viral disease in humans that is a significant public health consideration in
tropical and subtropical regions of the world in which it is endemic [5–7]. The true impact of dengue
globally might be underestimated due to inadequate disease surveillance, misdiagnosis, and low levels

Int. J. Environ. Res. Public Health 2018, 15, 1869; doi:10.3390/ijerph15091869 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/1660-4601/15/9/1869?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph15091869
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2018, 15, 1869 2 of 12

of reporting [7–9]. The result of a statistical study has shown that 3.9 billion people, in 128 countries,
are at risk of viral dengue infection, and more than 390 million cases are reported annually, which also
includes Taiwan [3,10].

Dengue outbreaks have occurred every year in Taiwan since 1997, and the constant importation of
cases of the virus from dengue-endemic countries is responsible for the local outbreaks each year [11–13].
Moreover, southern Taiwan’s ecological environment is very suitable for the breeding of both Aedes
aegypti and Aedes albopictus [12,14], which makes it easy to form the human-to-mosquito-to-human
cycle of transmission of DF. In recent years, the dengue epidemic has risen sharply in southern Taiwan.
A total of more than 58,000 cases were reported from 2014 to 2015, which is the highest in Taiwan in
the past decade. Dengue currently represents an important vector-borne disease in Taiwan.

The environmental characteristics and the occurrence and dissemination of disease are
inseparable [15,16]. In previous studies, climatic conditions, including temperature, precipitation,
and humidity, are the major drivers which have been highlighted. In addition to climate drivers,
land use and sociocultural practices also have strong relationships with dengue incidence [17,18].
In recent years, there has been a growing concern that green areas, vegetation, and land-cover
characteristics can influence the risk of contracting dengue, as they modify the mosquito
population [19]. Dengue vectors can be found in vegetation [20,21]. The spatial distribution of
surrounding greenness, mosquitoes, and other insect vectors are interrelated [22,23], since vegetation
can provide resting or feeding sites for mosquitoes, or can be a proxy for the presence of breeding
sites [24]. However, while previous studies have focused on assessing the land use factors associated
with dengue fever, the relationship between green land use factors and DF has not been studied,
yet. Furthermore, the relationship between the dengue epidemic and greenness indexes, such as
normalized difference vegetation index (NDVI) or enhanced vegetation index (EVI), is not consistent.
Some studies indicate that the dengue epidemic reveals a positive association with vegetation [25],
while others have found that low vegetation cover areas present increased dengue incidence
rates [26–28]. This inconsistency may be explained by regional differences.

As there were acute outbreaks of DF in 2014 and 2015 in Taiwan, our study combines geographic
information systems with remote sensing, using spatial autocorrelation analysis, and employs two
different greenness indexes to understand the influence of different types of green space (such as farm,
forest, grassland, and parks) on dengue fever in southern Taiwan.

2. Materials and Methods

2.1. Study Area

Rural and urban areas in Tainan, Kaohsiung, and Pingtung were selected as our study area
(Figure 1). All of them are located in southwestern Taiwan, and within the tropical climate zone
where Aedes aegypti and Aedes albopictus can be found. The average temperature ranges from 17 to
29 ◦C, and annual cumulative precipitation is approximately 1800 mm. The main rainy season is from
June to September. In May and June, through the “plum rains” (also known as the East Asian rainy
season), the continuous accumulation of rainfall and high humidity are usually brought to this region.
Tainan City has an area of 2192 km2, with a population of about 1.89 million people. The proportion
of land covered with high-tech industrial companies is increasing, but there is still a large area of
farming and agriculture land. Kaohsiung City is the largest metropolitan city in southern Taiwan,
with a population of 2.9 million and an area of 2952 km2. It is also well known as a heavy industrial
city, with numerous manufacturing and high-tech industrial areas. Pingtung County covers an area of
2776 km2, and has a population of 84 million people, approximately one-third of whom are farmers.
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Taiwan Centers for Disease Control (CDC) based on the positive results of a serological test (IgM 
Enzyme-Linked Immunosorbent Assay), nucleotide sequence, or viral isolation. To monitor and 
control dengue efficiently, CDC employed the nonstructural protein 1 (NS1) antigen detection as a 
method of rapid diagnosis since 2014. 

For decades, the annual incidence of DF has been the highest among infectious diseases in Taiwan, 
with cases principally clustered in the southern part of Taiwan. According to the reports from CDC [29], 
there were 15,394 confirmed autochthonous cases in southern Taiwan in 2014. In 2015, there were 42,932 
cases autochthonous reported in southern Taiwan. Information of DF patients between 2014 and 2015 
was provided by a computerized database by recording daily notifications of dengue fever cases 
obtained from the CDC in Taiwan. Details like age, sex, county of residence, and time of disease onset 
of each patient were included. Our study modeled the incidence rate and number of cases of DF at the 
village scale. These data serve as a dependent variable in our model. 

2.3. Greenness Index 

Two quantitative metrics were used to evaluate the surrounding greenness in southern Taiwan, 
including NDVI and green land use area. NDVI information was collected from NASA’s Moderate 
Resolution Imaging Spectroradiometer (MODIS). NDVI itself varies between −1.0 and +1.0, based on 
information from visible and infrared red light bands received by satellites, and can be a robust metric 
for estimating photosynthetically active vegetation coverage. NDVI data are generated every 16 days 
at 250 m spatial resolution, providing spatial and temporal comparisons of vegetation canopy greenness, 
the composite properties of leaf area, chlorophyll, and canopy structure [30]. MODIS NDVI Version 6 was 
applied in this study, which allows a higher temporal resolution, since, in the 16 day period, two 8 day 
composite reflectance granules (MxD09A1) were used to generate a 16 day composite from. There were 
two NDVI measures for each cell in every month. Images with the acquisition date closer to mid-month 
(the fifteenth) were collected and used to calculate the annual average NDVI values for each village. 

Green land use area data were obtained from the Taiwan National Land Surveying and Mapping 
Center (NLSC). These data are vector data, not like NDVI, which is raster data. This digital data layer of 
land use in Taiwan is based on the 0.25 m resolution digital orthoimagery. The land use data contains 103 
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2.2. Dengue Data

DF has been classified as notifiable infectious disease category 2 in Taiwan, and suspected cases
must be reported within 24 h of clinical diagnosis. Suspected dengue cases are confirmed by the
Taiwan Centers for Disease Control (CDC) based on the positive results of a serological test (IgM
Enzyme-Linked Immunosorbent Assay), nucleotide sequence, or viral isolation. To monitor and
control dengue efficiently, CDC employed the nonstructural protein 1 (NS1) antigen detection as a
method of rapid diagnosis since 2014.

For decades, the annual incidence of DF has been the highest among infectious diseases in Taiwan,
with cases principally clustered in the southern part of Taiwan. According to the reports from CDC [29],
there were 15,394 confirmed autochthonous cases in southern Taiwan in 2014. In 2015, there were
42,932 cases autochthonous reported in southern Taiwan. Information of DF patients between 2014
and 2015 was provided by a computerized database by recording daily notifications of dengue fever
cases obtained from the CDC in Taiwan. Details like age, sex, county of residence, and time of disease
onset of each patient were included. Our study modeled the incidence rate and number of cases of DF
at the village scale. These data serve as a dependent variable in our model.

2.3. Greenness Index

Two quantitative metrics were used to evaluate the surrounding greenness in southern Taiwan,
including NDVI and green land use area. NDVI information was collected from NASA’s Moderate
Resolution Imaging Spectroradiometer (MODIS). NDVI itself varies between −1.0 and +1.0, based on
information from visible and infrared red light bands received by satellites, and can be a robust metric
for estimating photosynthetically active vegetation coverage. NDVI data are generated every 16 days at
250 m spatial resolution, providing spatial and temporal comparisons of vegetation canopy greenness,
the composite properties of leaf area, chlorophyll, and canopy structure [30]. MODIS NDVI Version
6 was applied in this study, which allows a higher temporal resolution, since, in the 16 day period,
two 8 day composite reflectance granules (MxD09A1) were used to generate a 16 day composite from.
There were two NDVI measures for each cell in every month. Images with the acquisition date closer
to mid-month (the fifteenth) were collected and used to calculate the annual average NDVI values for
each village.
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Green land use area data were obtained from the Taiwan National Land Surveying and Mapping
Center (NLSC). These data are vector data, not like NDVI, which is raster data. This digital data
layer of land use in Taiwan is based on the 0.25 m resolution digital orthoimagery. The land use data
contains 103 different land uses, including agricultural, forest, public utility, residential areas, and so
on. Exhaustive descriptions and definitions for every land use are provided on the NLSC website.
In this study, we divided green land use into four major categories: farm, forest, park, and grassland.
The farm category included paddy fields, wheat fields, and so on. The forest category included
combinations of broad-leaf forest, coniferous forest, bamboo forest, and mixed forest. Park was defined
as an area of general green amenity space. The grassland category included low vegetation with thick
regenerated cover but lacking tall vegetation (trees). Green land use areas within each village were
expressed according to area ratio and size, i.e., the percentages and areal sizes of different categories in
each village.

2.4. Risk Factors

As there are other cofactors that might influence the incidence of DF, risk factors like precipitation,
air temperature, population, and income level were added into the model for adjustment. We selected
monthly data from 532 meteorological stations and then used kriging estimates to obtain temperature
and rainfall data at the village scale in the areas of study. Water body data were obtained from the
NLSC, including rivers, reservoirs, lakes, canals, and so on. Population and economic data were
gathered from the Fiscal Information Agency of the Ministry of Finance in Taiwan in 2014 and 2015.
This dataset comprises the spatial distributions of 12 socioeconomic attributes, such as per capita
income, and average population density in each village. Personal economic conditions were expressed
based on income tax information. The population densities were derived using the number of people
living permanently in the villages in 2014 and 2015, divided by the area (km2), which were used to
adjust the model and calculate the incidence.

2.5. Statistical Analysis

In this study, the Spatial Statistics module of ArcGIS 10.2 software (ESRI Inc., Redlands, CA, USA)
was employed to apply spatial autocorrelation analysis. Through Moran’s I, high/low clustering,
and hot spot analysis (Hot Spot), we analyze the spatial resolution of the villages in the studied areas
in 2014 and 2015, to investigate the spatial agglomeration of dengue fever. Among them, the Moran’s I
indicator can indicate whether DF is dispersed or clustered; the high/low analysis can test whether
the clustering phenomenon is a high or low value aggregation; lastly, hot point analysis further points
out where clustering of hot and cold areas is located.

We use Spearman’s rho to quantify the strength of the relationship between two variables when
one or both variables in a correlation analysis is/are not normally distributed. The coefficient of
correlation indicates the amount of information common to two variables. This coefficient takes values
between −1 and +1, with −1 indicating perfect negative linear association, +1 indicating perfect
positive linear association, and 0 indicating no linear relationship.

Generalized linear mixed models (GLMMs) was applied to assess the association between
surrounding greenness (represented as NDVI and green land use area) and the dengue epidemic.
A negative binomial model was used to explain the overdispersion found in dengue fever count
data [31,32]. These models can handle erroneous data that do not follow a normal distribution,
and contain random items (grouping variables) to account for temporal or spatial correlation in the
data [33,34]. All statistical analyses were performed using the statistical software R (R Foundation for
Statistical Computing, Vienna, Austria, version 3.2.2), with the mgcv library.

To confirm the robustness of the associations, sensitivity analysis was performed under two
approaches: (1) using the number of cases instead of the incidence rate; and (2) using Kaohsiung City
to represent the overall performance of the study area.



Int. J. Environ. Res. Public Health 2018, 15, 1869 5 of 12

Stratified analysis was performed to test the effect on the association between greenness and
dengue epidemics in distinct regions, to see if it has the same impact on different areas. Stratification
variables include (1) incidence rate of dengue fever in different years, 2014 and 2015, and (2) number
of cases in each year.

3. Results

3.1. Descriptive Statistics

Figure 2 shows the results of spatial-temporal analysis in southern Taiwan. The dengue epidemic
was mainly concentrated in urban areas of Tainan and Kaohsiung, while the distribution in Pingtung
was rather scattered. The NDVI in mountainous areas was relatively high, while NDVI in urban
areas was generally low. From the results of green land use, most of the farmland is located in
lower elevations, and the forests are mostly located at higher altitudes. Park resources are mainly
concentrated in urban areas, and grasslands were negatively associated with DF.
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Figure 2. The spatial-temporal analysis of the (a) incidence of dengue fever, (b) NDVI, and (c) green
land use.

On average, Table 1 shows that Pingtung County has the highest percentage of farm, forest,
and grassland. Kaohsiung has the highest proportion of recreational area. The ratios of farm and
grassland of Tainan City were greater than those of Kaohsiung City, whereas the rate of the forest land
was higher in Kaohsiung than in Tainan. Therefore, from our observation, Pingtung had the highest
percentage of greenness, followed by Kaohsiung City and, in last place, Tainan City.

Table 1. The Descriptive Statistics of Different Types of Surrounding Greenness in Southern Taiwan.

Greenness Type
Mean ± Standard Deviation

Tainan Kaohsiung Pingtung

Farm % 36.2 ± 9.5 17.4 ± 7.0 41.7 ± 9.4
Forest % 8.8 ± 3.9 12.2 ± 7.3 20.3 ± 12.8
Park % 1.5 ± 0.1 4.4 ± 1.1 1.0 ± 0.1
Grass % 3.5 ± 0.3 1.8 ± 0.2 4.2 ± 0.3

All green land use % 52.5 ± 13.3 40.2 ± 16.6 68.7 ± 10.4
NDVI 0.45 ± 0.04 0.41 ± 0.04 0.59 ± 0.03
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3.2. Spatial Autocorrelation Analysis

Results of spatial autocorrelation analysis showed a high aggregation of the dengue epidemic in
southern Taiwan, and the metropolitan districts of the three studied areas were the main hotspots.

The value of the Moran’s I test for dengue incidence was 0.46, indicating that there was
occurrence of spatial clustering in Taiwan. In addition, the result of the high/low aggregation analysis,
called Observed General G, and was 0.41, meaning the dengue epidemic was highly aggregated.
Finally, based on the result of hot spot analysis (Figure 3), the hot spots of the dengue epidemic were
mainly located in urban areas, which is very similar to the result of spatial analysis. All test results
were statistically significant (p < 0.001).

Int. J. Environ. Res. Public Health 2018, 15, x  6 of 12 

Int. J. Environ. Res. Public Health 2018, 15, x; doi: www.mdpi.com/journal/ijerph 

epidemic were mainly located in urban areas, which is very similar to the result of spatial analysis. 
All test results were statistically significant (p < 0.001). 

 
Figure 3. The results of hot spot analysis: (a) number of dengue cases; (b) dengue fever incidence. 

3.3. Spearman’s Rank Correlation Coefficient 

In this study, we calculated Spearman’s correlation coefficients between surrounding greenness 
and the dengue epidemic. We found that there was a significant negative correlation between the 
incidence of dengue fever and farm, forest and grassland (values between −0.30 to −0.38), however, 
parks showed a significant, positive correlation with dengue fever (value is 0.21). All green land use 
(including farms, forest, parks, and grass) and NDVI indicated the overall status of the surrounding 
greenness in the studied area, and both of them are negatively correlated with the dengue epidemic. 
That is, when there is lower level of greenness, the dengue fever epidemic becomes more serious. 

3.4. Generalized Linear Mixed Models 

We used GLMM to adjust the social and environmental covariates, which are associated with 
the incidence rates while considering temporal and spatial correlation (Table 2). There are two types 
of models, crude models and adjusted models. A crude model examines how a single factor 
influences the outcome and ignores other socioeconomic covariates. An adjusted model contains 
potential relevant covariates. 

Overall, the results of the model support previous analysis of the relationship between DF and 
surrounding greenness. The outcomes of the crude model and the adjusted model share the same 
influence trends, which show significant positive associations among parks and DF, while farm, 
forest, and grassland were negatively associated with DF, and all analyses reached statistically 
significant levels (p < 0.001). 
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3.3. Spearman’s Rank Correlation Coefficient

In this study, we calculated Spearman’s correlation coefficients between surrounding greenness
and the dengue epidemic. We found that there was a significant negative correlation between the
incidence of dengue fever and farm, forest and grassland (values between −0.30 to −0.38), however,
parks showed a significant, positive correlation with dengue fever (value is 0.21). All green land use
(including farms, forest, parks, and grass) and NDVI indicated the overall status of the surrounding
greenness in the studied area, and both of them are negatively correlated with the dengue epidemic.
That is, when there is lower level of greenness, the dengue fever epidemic becomes more serious.

3.4. Generalized Linear Mixed Models

We used GLMM to adjust the social and environmental covariates, which are associated with the
incidence rates while considering temporal and spatial correlation (Table 2). There are two types of
models, crude models and adjusted models. A crude model examines how a single factor influences
the outcome and ignores other socioeconomic covariates. An adjusted model contains potential
relevant covariates.
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Table 2. Relative Ratios (RR) and Coefficients for Number of Dengue Cases and Different Types of
Greenness in Generalized Linear Mixed Models.

Type

Incidence

Model 1 Model 2

RR Coefficients p-Value RR Coefficient p-Value

Farm h 0.999 −0.001 <0.001 0.999 −0.001 <0.001
Forest h 0.999 −0.001 <0.001 0.999 −0.001 <0.001
Park h 1.002 0.002 <0.001 1.001 0.001 <0.001
Grass h 0.996 −0.004 <0.001 0.997 −0.003 <0.001

All green land use h 0.999 −0.001 <0.001 0.999 −0.001 <0.001
NDVI 0.782 −0.246 <0.001 0.998 −0.244 <0.001

1 Crude models. 2 Adjusted for temperature, rainfall, economy, and bodies of water.

Overall, the results of the model support previous analysis of the relationship between DF and
surrounding greenness. The outcomes of the crude model and the adjusted model share the same
influence trends, which show significant positive associations among parks and DF, while farm, forest,
and grassland were negatively associated with DF, and all analyses reached statistically significant
levels (p < 0.001).

3.5. Sensitivity Test and Stratified Analysis

The outcomes of sensitivity analysis are similar to those of the main model (Table 3), i.e., farm,
forest, and grasslands still show significant, negative correlations with dengue fever, while parks show
positive correlations.

Table 3. The Association between Surrounding Greenness and the Dengue Epidemic Kaohsiung and
Number of Cases.

Type
Kaohsiung 1 Number 2

RR Coefficients p-Value RR Coefficients p-Value

Farm % 0.998 −0.002 <0.001 0.999 −0.001 <0.001
Forest % 0.998 −0.002 <0.001 0.999 −0.001 <0.001
Park % 1.001 0.001 0.021 1.001 0.001 <0.001
Grass % 0.996 −0.004 <0.001 0.997 −0.003 <0.001

All green land use % 0.999 −0.001 <0.001 0.999 −0.001 <0.001
NDVI 0.802 −0.221 <0.001 0.998 −0.244 <0.001

1 Adjusted for temperature, rainfall, economy, and bodies of water. 2 Adjusted for temperature, rainfall, economy,
bodies of water, and population.

For the stratified analysis of the number of cases and incident rates of DF in 2014 and 2015 (Table 4),
even though some of the results have not achieved significant levels, most of the outcomes show the
same trend as the main model, which points out that green land uses like, farm, forest, and grassland,
as well as the sum total of greenness area and NDVI, are inversely related to DF, and recreational green
areas, like parks, are positively linked with DF.
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Table 4. The Association between Surrounding Greenness and the Dengue Epidemics in 2014 and 2015.

Type
2014 2015

Number 1 Incidence 2 Number 1 Incidence 2

RR Coefficients p-Value RR Coefficients p-Value RR Coefficients p-Value RR Coefficient p-Value

Farm % 0.978 −0.022 <0.001 0.999 −0.001 <0.001 0.976 −0.024 <0.001 0.998 −0.002 <0.001
Forest % 0.955 −0.046 0.532 0.999 −0.001 <0.001 0.960 −0.041 0.702 1.000 0 0.016
Park % 1.003 0.003 0.478 1.001 0.001 <0.001 1.016 0.016 <0.001 1.001 0.001 0.049
Grass % 0.984 −0.016 0.288 0.999 −0.001 <0.001 0.970 −0.030 <0.001 0.996 −0.004 <0.001

All green land use % 0.980 −0.020 <0.001 0.999 −0.001 <0.001 0.978 −0.022 <0.001 0.999 −0.001 <0.001
NDVI 0.047 −3.052 <0.001 0.913 −0.091 <0.001 0.025 −3.674 <0.001 0.688 −0.374 <0.001

1 Adjusted for temperature, rainfall, economy, and bodies of water. 2 Adjusted for temperature, rainfall, economy, bodies of water, and population.
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4. Discussion

Many studies have focused on land use factors of dengue vector abundance, yet, few have
studied the relationship between green land use factors and DF. Consequently, this study aimed to
characterize associations between different types of greenness indexes and the dengue epidemic at
the village scale in southern Taiwan, in 2014 and 2015. Spearman’s rho was conducted to reveal the
relationship between DF and green land use. Moreover, spatial autocorrelation analysis was used
to confirm that dengue fever exhibited a spatial clustering effect in each village, and that hot spots
were concentrated in metropolitan areas. Therefore, we further utilized GLMM to adjust the spatial
autocorrelation problem.

Risk factors in GLMMs were selected based on the following rationale: First of all, climate factors,
like temperature and precipitation, were regarded to be the main contributors to the occurrence of
DF [3,26,35]. Temperature can have a considerable impact on mosquito population dynamics [36–38].
All stages of the mosquito life cycle, including eggs, immature mosquito development, and survival
are partly determined by temperature [39–41]. In addition, abundance of the predominant vector,
Aedes aegypti, is partly regulated by precipitation [42]. Precipitation usually provides water in
the container as a breeding site [43]. Several studies have linked poverty or relative poverty
to DF, for instance, since poorer areas are characterized by factors that may favor higher DF
transmission [29,44,45]. Studies have also revealed that water-related facilities are closely associated
with an abundance of Aedes aegypti [46,47], particularly in areas with numerous water-holding
containers [48], because it provides a suitable habitat for the vector [49].

The results of GLMM and Spearman’s rho were employed to examine the level of contribution of
greenness to favorable habitats, which facilitate the life-cycle development of dengue-transmitting
mosquitoes, and they share consistent results. According to the results, parks had a significantly
positive correlation with the dengue epidemic, while the other five green space metrics and land
types were negatively correlated with DF. That is, the more parks in the neighborhood, the higher
the dengue fever infection risk among people. While parks are recreational areas where people
congregate during their leisure time for recreational uses, such as playing sport, picnicking, relaxing,
and so on [50], more people are exposed to mosquitos, leading to a higher biting risk. The increase
of biting risk offers opportunities for the mosquitoes to acquire DF by biting an infected person,
becoming a virus carrier, and then transmitting the virus to other uninfected individuals [51]. Likewise,
those areas with more green spaces (except parks) are mainly located suburban areas in southern
Taiwan, where the population density is rather low. Even though some people are infected by dengue
virus, since population density is lower, it may be difficult for the virus to transmit and spread.
Therefore, negative associations were shown between DF and other green spaces.

Many studies in Taiwan show that the elderly had a higher prevalence rate than those in younger
dengue patients, which was in contrast to other Southeast Asian countries [52–54]. The length of time
that people spend in green spaces may be an important factor that affects incidence of DF. In order
to obtain a more precise result, we suggest that future studies conduct surveys to examine personal
activity patterns, like the amount of time exposed to greenness within a week, which type of green
spaces were involved, are other factors that can be added to the model for further adjustment.

5. Conclusions

In this study, many analyses, such as Spearman rho and GLMM, were applied to investigate the
relationship between greenness and DF. We hope that our results can serve as a reference for public
health departments, and help them to design and implement more effective DF prevention and control
measures. As our findings point to a positive correlation between DF incidence and parks, we suggest
that control means, such as combined vector control, should focus on park areas.
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