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Abstract: Foodborne diseases have a big impact on public health and are often underreported. This is
because a lot of patients delay treatment when they suffer from foodborne diseases. In Hunan Province
(China), a total of 21,226 confirmed foodborne disease cases were reported from 1 March 2015 to 28
February 2016 by the Foodborne Surveillance Database (FSD) of the China National Centre for Food
Safety Risk Assessment (CFSA). The purpose of this study was to make use of the daily number of
visiting patients to forecast the daily true number of patients. Our main contribution is that we take
the reporting delays into consideration and apply a Bayesian hierarchical model for this forecast
problem. The data shows that there were 21,226 confirmed cases reported among 21,866 visiting
patients, a proportion as high as 97%. Given this observation, the Bayesian hierarchical model
was established to predict the daily true number of patients using the number of visiting patients.
We propose several scoring rules to assess the performance of different nowcasting procedures.
We conclude that Bayesian nowcasting with consideration of right truncation of the reporting delays
has a good performance for short-term forecasting, and could effectively predict the epidemic trends
of foodborne diseases. Meanwhile, this approach could provide a methodological basis for future
foodborne disease monitoring and control strategies, which are crucial for public health.

Keywords: Bayesian hierarchical model; foodborne disease; nowcasting; reporting delay;
right truncation

1. Introduction

Patients with foodborne diseases often have a lack of awareness about the severity, which may
cause them to delay seeing a doctor. Such kinds of delay may easily cover up the outbreak of food
safety incidents, which is not conducive to the timely control of the disease outbreaks. Taking the
occurred but not yet reported events into account, and tracking the true number of daily cases are
essential to rapidly and accurately evaluate current epidemic trends. This stimulated us to study
foodborne surveillance data to provide up-to-date information on the growth of the epidemic and
current trends, so that from the local health department agency to the national public health agency
or institute (e.g., the Center for Disease Control and Prevention in the USA, European Food Safety
Agency, the European Centre for Disease Prevention and Control, etc.) can judge whether an outbreak
is ongoing, assess the impact of control measures and implement capacity planning.

Previous studies on foodborne disease events have mainly focused on analyzing public surveillance
data, estimating the actual incidence of foodborne disease in a country [1–5], and evaluating the burden
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of disease caused by various types of pathogens [6–10]. Heino et al. [11] proposed a randomized
framework to identify the increasing number of foodborne disease events; Neill et al. [12] and
Xiao [13,14] applied spatial statistical methods to explore the spatial aggregation of foodborne diseases.
When diseases broke out in a certain area, the number of reported cases would surge correspondingly
compared to the baseline data, which could be detected by anomaly pattern algorithms through
numerical changes [15,16]. Guo et al. [17] designed a detection model of foodborne disease events
and risk assessment by integrating the big-data of population, traffic, food production and sales and
social media data under a spatio-temporal framework. The above studies ignore the reporting delay
factor. However, the additional delays between onset date and reporting date in the public health
surveillance database should not be ignored when processing tracking procedures. Lawless [18]
firstly estimated the number of events that had occurred but not yet been reported and developed an
approach to conduct robust predictions when incorporating random effects based on lately reporting
data. Later, a robust algorithm to perform tracking procedures called “nowcasts” was used to correct
for reporting delays [19]. Based on such concept, Höhle and an der Heiden [20] proposed a Bayesian
nowcasting algorithm to deal with the short-term forecasting of the daily number of reported cases.
Salmon et al. [21] improved the outbreak detection algorithms by taking reporting delays into account.
Considering that the number of cases can increase dramatically in a matter of days in emerging food
safety incidents, in this paper, we focus on how to make use of the daily number of visiting patients to
forecast the daily true number of the patients, and we present how the proposed Bayesian nowcasting
model could provide a more precise information of epidemic trends.

2. Data Material for Foodborne Diseases

Our data, collected from the Foodborne Surveillance Database (FSD) of the China National Centre
for Food Safety Risk Assessment (CFSA, Beijing, China), covered confirmed cases in all cities in Hunan
Province, China, spanning a year from 1 March 2015 to 28 February 2016. Table 1 shows examples of
our collected data information. Each confirmed case consists of symptom onset date (the self-reported
date when the patient was attacked by a foodborne disease), and the visit date (when the patients
went to see a doctor). The reporting delay is divided into two phases (Figure 1): Phase 1 is the delay
between the onset date and visiting date; phase 2 is the delay between visiting date and the reporting
date. In our data set, there are 21,866 patient visits and 21,226 reported confirmed cases.

Table 1. Example of the information collected for the Data set.

Patient ID
Hospital Information

Onset Date Visit Date Confirmed
Province City Sentinel Hospital

HN073408-
2015-00040 Hunan Changsha The Fourth Hospital

of Changsha
10 September

2015
11 September

2015 Yes

HN073402-
2015-00086 Hunan Hengyang Hengyang Centre

Hospital of Hunan 7 June 2015 10 June 2015 Yes

HN073002-
2015-00128 Hunan Yueyang Yueyang Second

People’s Hospital
30 September

2015
30 September

2015 Yes
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Figure 1. Illustration of reporting delay phases. 
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Figure 1. Illustration of reporting delay phases.

Generally, the monitoring at the CFSA can be performed on time series aggregated by the date
of symptom onset and the date of report arrival at the surveillance database. Specifically, till one
day, we define “reported cases” as the currently available counts of patients confirmed by a doctor;
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and define “occurred cases” as the real number of patients attacked. The goal of nowcasting is to
predict the true number of counts from the currently available counts.

Figure 2 plots the trend of foodborne disease, where the blue lines indicate the daily number
of “occurred cases” and the red lines indicate the trend line. The curve of “occurred cases” starts
to get into a high growth phase from May, and continues to peak till the beginning of November.
From the end of November, the number of cases begins to decrease. Figure 3 shows the daily counts
of “reported cases” (blue bar) and “occurred cases” (red bar); on 20 July 2015, 371 reported cases of
430 occurred cases (i.e., 86.3%, from 16 July to 20 July) have information available due to the reporting
delay. As more reported data comes in, the number of reported cases (blue bar) is getting closer to the
number of occurred cases (red bar) in Figure 3.
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Figure 4 shows the histogram of observed frequency of delay on the basis of all cases, from which
we see that many patients go to see a doctor on the first day when they have foodborne disease,
more people have a few days’ delay and seldom have delays of more than one week. To facilitate
understanding, we assume the maximum delay occurs up to 5 days due to the 3σ principle getting
from the information in Figure 4. Note that the data will become less reliable and the information
contained is not accurate when the delay becomes very large. We denote pd, d = 0, 1, . . . , 5, as the
observed proportion of the number of patients with delay d days to the total number of patients given
a time span. Note that p5 includes delay with days larger than or equal to 5 days, and

∑5
d=0 pd = 1.
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From a seasonal perspective of delay distribution, Figure 5 suggests that the distribution of
reporting delay does not change significantly with time, which therefore motivates us to assume that
the patient behavior (corresponding to delay distribution) in a given region is stable with four seasons,
if nothing else intervenes (e.g., policy).
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of delay with d days. Category p5 includes delay with days larger than or equal to 5 days.

3. Bayesian Nowcasting

Nowcasting is defined as the prediction of the present—the very near future or the very recent
past. Recently, it has been regarded as a useful tool to real-time monitor the disease surveillance
data [19,20], personal pro-health outdoor activities [22], and forecast the epidemics in public health
settings [23]. In this paper, we apply a Bayesian nowcasting model proposed by Höhle and an der
Heiden [20] to forecast the daily total number of cases. Thanks to Salmon et al. [24] who provided a
convenient R package “surveillance” and the inference for the model could be easily implemented.
The R package surveillance also contains a few other nowcasting methods which we also tried and
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did comparisons with using the scoring rules implemented in the package. The results are shown in
Section 4. Below we review the model.

3.1. Notation and Assumptions

We place our study in a discrete time setting where each unit represents a day. We use the notation
of Lawless [18] to describe the prediction of the currently actual number of patients in the presence of
delay. Let nt,d be the number of patients with foodborne disease at time t but reported with a delay
of d days, which means that, these nt,d patients get foodborne disease at time t, but they arrive on
hospital at time t + d. t takes values on {0, · · · , T}, T denotes the current day or “now”, and d takes
values on {0, · · · , D}. Typically, one can assume that the maximum delay occurs up to D days since
the data will become less reliable and the information contained is not accurate when the delay time d
becomes very large. In our study, reports with a delay larger than D are included in the category of
delay being “D days”. Note that when d > T − t, we could not know nt,d, because at time T, the patients
have not gone to hospital yet. So our data is right-truncated type of data. Formally, we devote
Nt,T , N(t, T) =

∑min(T−t,D)

d=0 nt,d to be observed cases reported (those who go to hospital already) until
time T. Thus with the limit of maximal delay, the real number of cases occurred at time t, 0 ≤ t ≤ T, is:

Nt ,
D∑

d=0

nt,d =


D∑

d=0
nt,d, T − t ≥ D, e.g., full data

T−t∑
d=0

nt,d +
D∑

d=T−t+1
nt,d, T − t < D, e.g., truncated data

Note that Nt is right-truncated for t larger than T −D. Our goal is to estimate the unobserved
right-truncated Nt. We use Figure 6 to visualize the data structure. Each row indicates the total
number of cases occurred at time t, the shaded box Nt −Nt,T represents the cases that occurred
but not yet reported. In order to facilitate model description, we divided the solution space into
three parts: At =

{
(t, d) : 0 ≤ t ≤ T, 0 ≤ d ≤ D

}
covers all observed data and unobserved data while

Ot =
{
(t, d) : 0 ≤ t ≤ T, 0 ≤ d ≤ min(T − t, D)

}
contains observed nOt only and Ut = At\Ot contains

unobserved nUt only. We draw them as the light gray trapezoid and as the darker gray triangle in
Figure 6 respectively.
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3.2. Predict the Distribution for Nt

For the convenience of the reader, we describe the inference approach stated in Section 3.2 of
Höhle and an der Heiden in [20] in some greater detail.

Define pd as the (time-homogeneous) probability that a case will have a reporting delay of d days.
The pd’s satisfy the following equation:

∑D
d=0 pd = 1. Following Kalbfleisch and Lawless’s [25] and

Zeger et al.’s [26], we assume that the occurrence time of cases follows an underlying inhomogeneous
Poisson process. A reasonable data generating process for the daily number of cases is thus as follows:

Nt|λt∼ Po(λt)

(nt,D, nt,D−1, · · · , nt,0)
′
∣∣∣Nt, p∼MN

(
Nt, (pD, pD−1, · · · , p0)

′
) (1)

where Po(λ) denotes the Poisson distribution with expectation λ > 0 and MN(N, p) denotes the
multinomial distribution with size parameter N and probability vector p. Nowcasting for a given time
T can thus be divided into steps of determining the λt’s, estimating the unknown delay distribution (i.e.,
the pd’s) and finally predicting the unobserved nt,d’s in order to compute the total Nt. As T increases,
and if the assumption about a time-homogeneous delay distribution is acceptable, the available data
make it possible to estimate the delay distribution better and better and, hence, the quality of the
predictions near T improves with time.

Consider a fixed time T and define pT = (pT,D, pT,D−1, · · · , pT,1)’ as the probability vector denoting
that a case is reported with a delay of d days given the observed incomplete information at time T, i.e.,
the set of nt,d, where t + d ≤ T. We choose as prior distribution the generalised Dirichlet distribution
GD(α,β) with fixed constants α = (α0,α1, · · · ,αD)

′ and β = (β0, β1, · · · , βD)
′. Now we use Property

3 in the Web appendix of [20] that shows that the posterior of p under right-truncated multinomial
sampling is again a GD distribution with parameters α∗T,β∗T given by

α∗T,i= αi +
T−D+i∑
τ=0

nτ,D−i

β∗T,i= βi +
T−D+i∑
τ=0

(Nτ,τ+D−i − nτ,D−i), i ∈ {0, · · · , D− 1}.

(2)

Hence, for a given T we can assume the following model hierarchy for the time points
t ∈ {T −D, · · · , T}:

pT∼ GD
(
α∗T,β∗T

)
λt∼ Ga(aλ, bλ)

Nt|λt∼ Po(λt)

Nt,T
∣∣∣Nt, pT∼ Bin(Nt, qT,T−t),

(3)

where qT,d =
d∑
δ=0

pT,δ is the proportion reported within a delay of d days. We denote by Ga(aλ, bλ)

the Gamma distribution with parameters aλ > 0, bλ > 0. For this hierarchical model, the marginal
distribution of Nt is a negative binomial distribution with the following mean and variance:

E(Nt)= µλ = aλbλ

Var(Nt)= µλ +
µ2
λ

aλ
.

(4)

To estimate Nt given the observed counts nt,d at time T, we have to perform two steps: (1) update
the delay distribution qT and (2) update the prediction for Nt:
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1. For the given T we compute α∗T, β∗T as stated above. We then We draw for k = 1, . . . , K random

vectors p(k)
T ∼ GD

(
α∗T,β∗T

)
by the algorithm of Wong (1998) and calculate

q(k)T,d =
d∑
δ=0

p(k)T,δ. (5)

2. Given the updated delay distribution q(k)
T and the observed counts nt,d, we can now update the

prediction of Nt, t = T −D, · · · , T.

For n ∈ {0, 1, 2, · · ·}we approximate by Monte Carlo sampling

f (Nt = n|Nt,T) ≈
1
K

K∑
k=1

f (k)n,t , t ∈ {T −D, · · · , T} (6)

An application of Bayes theorem provides f (k)n,t = f̃ (k)n,t /c(k)t , where c(k)t =
∑
∞

n=0 f̃ (k)n,t is the
normalization constant and

f̃ (k)n,t = f (Nt,T |Nt = n, q(k)T,T−t) f (Nt = n|λt) f (λt) (7)

for all t ∈ {T −D, · · · , T}. The factors of the last equation can be evaluated using the distributional
assumptions of the model hierarchy. For numerical convenience we do not sum over the entire support
{0, 1, 2, · · ·} to get the normalization, but instead approximate

c(k)t ≈

Nmax∑
n=0

f̃ (k)n,t , (8)

where Nmax is chosen sufficiently large.

4. Main Results

4.1. Setup for Hyper-Parameters

We applied the Bayesian hierarchical model described above to the foodborne surveillance data
time series of Hunan Province in China. To decide the hyper-parameter α,β in the prior of p and
aλ, bλ in the prior of λt, we use the empirical Bayes ideas. Analyzing the observed data from 1 March
2015 to 28 February 2016, we found that the mean and variance of Nt from the dataset are 57 and 982
respectively. Thus solving the following equations, we get the values for hyperparameters aλ, bλ:

57 ≈ E(Nt) = µλ = aλbλ,

982 ≈ Var(Nt) = µλ +
µ2
λ

aλ
By the delay distribution shown in Figure 4, we take the maximum delay D = 5 days.

Retrospectively, we can transform the historical available data into a final reporting triangle, which
clearly shows the delay information. For example, in Figure 7, each cell nt,d indicates a count number
that occurred at a given time point t but reported with a delay of d while the sum over all counts in a
row is the corresponding Nt,T for each day t shown on the right bars, where T = “31 July 2015”. Also
we can work out the cumulative frequency for each delay based on the whole dataset, which provides
informative prior for p.
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4.2. Daily Surveillance

Below we apply the described BNT approach to the data set of foodborne patients described
above. Here we set a time span 5 days to do the nowcasting. For each current day T, we try to predict
the unobserved occurred cases Nt’s for t ∈ {T − 4, T − 3, T − 2, T − 1, T}. We give an animation of the
details of our nowcasting process in the Supplementary Materials File S1. To explain the animation,
we show four pictures for the continuous four days from 15 to 18 July in Figure 8. These pictures
give the nowcasting process for predicting the numbers Nt’s of cases really occurred to the current
days in July. Figure 8a takes 15 July as the current day, the numbers of reported cases until 15 July are
drawn in blue, and the numbers of real occurred cases are drawn in red. Since there are 5 days for
occurred cases to be reported, the accurate numbers of occurred cases for the current 5 days from 11 to
15 July may not be available as of 15 July. The goal is to predict the numbers of occurred cases for these
current 5 days. In Figure 8a, the prediction of these numbers are drawn in yellow, the bold yellow
bar indicates the median of the prediction distribution of occurred cases, the two short yellow bars
indicate the 2.5% and 97.5% quantiles of the prediction distribution. The predicted number of occurred
cases for 15 July is very close to the real number, although the interval between two bounds of the
prediction distribution for 15 July is longer. The predicted number for 14 July is a little higher than the
real number, although the interval is much shorter than that for 15 July. Similarly, Figure 8b–d show
the predictions on 16–18 July, respectively, and it can be seen that interval for 15 July becomes shorter
and shorter. From the four pictures drawn from the animation given in the Supplementary Materials
File S1, we can see the predicted numbers are quite close to the real numbers of occurred cases for
these four days, and the intervals all cover the real numbers of occurred cases.
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4.3. Evaluating the Nowcasting

In this section, three different nowcasting procedures will be compared: the Lawless [18] frequency
(LF) method with the consideration of the right-truncated nature and two Bayesian procedures, one is
BNT method described in this paper and Bayesian nowcasting with no truncation (BNnT) method by
Höhle and an der Heiden [20] ignoring the right truncation.

Before doing comparisons, we predict the numbers of occurred cases for 5 days on each current
day T. We take T from 30 June 2015 to 30 August 2015, totally 63 days and so 5 × 63 = 315
nowcastings will be calculated. Considering a specific time T (for example “now”) we predict Nt’s
for t ∈ {T − 4, T − 3, T − 2, T − 1, T}. To evaluate the performance of different nowcasting approaches,
we use three scoring rules:

(i) Logarithmic score (logS) [27]:

logS
(
PT

t , Nt
)
= − log

(
fPT

t
(Nt)

)
(ii) Ranking probability score (RPS) [28,29]:

RPS
(
PT

t , Nt
)
=

N∑
k

(
FT

t (Nt) − 1(Nt ≤ k)
)

where PT
t is the predictive distribution for time t based on the information available at T and

with Nt being the number of occurred cases. fPT
t
(·) is the probability mass function (PMF) of

the predictive distribution PT
t , and where FPT

t
(·) denotes the cumulative distribution function

(CDF) of the predictive distribution PT
t . And from the data prior information, here we choose

Nmax = 300.
(iii) The proportion of times that the observed value lay outside the equal-tailed 95% predicted

interval (OutCI).
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Such rules allow investigating calibration and sharpness of predictive distribution. The higher
probability of the forecast distribution for the actual observed value is, the better the prediction is.
It means that the lower the score is, the better the performance is. Table 2 gives the mean scores
obtained by averaging over the 315 nowcastings, which illustrates that BNT method described in this
paper has an overall best performance based on these three evaluation rules compared to other existing
methods (BNnT method and LF method).

Table 2. Mean scores for different nowcasting methods.

Method RPS logS OutCI

BNT 2.63 2.52 0.07
BNnT 2.81 2.80 0.12

LF 3.27 2.58 0.07

We consider the comparison among LF method, BNT method described in this paper and BNnT
method, here we also predict the numbers of occurred cases for 5 days from the current day 0 to 4 days
ago. Figure 9 shows the mean scores of RPS obtained by averaging for t ∈ {T − 4, T − 3, T − 2, T − 1, T}
from 315 nowcastings. The mean scores are the largest for delay = 0 among all delays. When the delay
increases, more information is collected, and the LF method (red line) and BNT method (blue line) have
a better performance with delay ≤ 2. When delay ≥ 2 days, the BNT method appears to perform best.
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Finally, we compare the mean scores of RPS among LF method, BNT method described in this
paper and BNnT method with considering the time span from 1 July to 30 August. Figure 10 shows
that BNT method (blue line) outperforms the LF method (red line) and BNnT method (green line).
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5. Discussion

In this paper, we introduced a Bayesian hierarchal approach to monitor and forecast in real-time
Chinese foodborne disease outbreaks based on the public health surveillance data if reporting delays
are present. Such delay-adjusting tracking procedures can provide daily information on the epidemic
trends by predicting the daily true number of patients.

In fact, the delay could be divided into two phases. Phase 1 is the delay from the onset to the
doctor visit, and this is the delay of the patients in seeking medical treatments. Since the foodborne
disease is not a serious disease requiring immediate emergency, many patients are not in a hurry to
go to the hospital for treatment, which may cover up the outbreak of a food safety incident. Phase
2 is the delay between the visit date and the hospital reporting date. The delay distribution in this
stage is very complicated. Due to the difference for medical level of each hospital, the efficiency of the
experiment, the doctor’s understanding of the foodborne disease and the definition of the cases, etc.,
the diagnosis report will be delayed. This is the delay in phase 2. References [19–21] used the number
of patients reported in the hospital to predict the number of occurred cases. The cycle is very long from
the onset to the diagnosis reported, which couldn’t predict the number of cases, or grasp the trends
of the disease in a timely way. Therefore, in view of this, our model has the following advantages:
First, when the data is complete and there is hospital-confirmed report data in hand, our model uses
the number of confirmed patients to predict the number of occurred cases, a procedure similar to
that of [20,21]. Then, if the data is incomplete, for example, we only have the visiting data till today,
we could use the number of visiting patients to predict the occurred cases, which may lead to a very
small overestimation of the number of occurred cases, but least not underestimate them. However,
it makes the prediction ahead of days (the delay in Phase 2). In fact, our collected data shows that there
are 21,226 confirmed cases among 21,866 visiting patients, a proportion as high as 97%. Early warning
of disease outbreaks could avoid long delays from patient visit to disease confirmation, which can
greatly shorten the forecast period, detecting possible food safety incidents in a more timely fashion.
It is very significant in this regard.

As future work, since the number of visits is used to predict the number of occurred cases that will
be overestimated (at least not underestimated), we will use the empirical data to obtain the proportion
of confirmed cases among the visiting patients. Under this condition, the information of the proportion
can be used to predict the number of occurred cases. We will also consider applying a compound
Poisson model to solve the problem of overestimation of the number of occurred cases. Meanwhile,
other covariates including city, age, occupation, etc., will also be considered. How to analyze and
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model the foodborne disease surveillance data, and how to detect the outbreak based on historical
data, even the casual inference to pathogenic factors, are all issues to be studied in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/8/1740/s1,
File S1. Nowcast Animation. This PDF file contains an animation of available reports as a function of time (in days)
in the period 1 July 2015 to 30 July 2015.
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