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Abstract: As a high-risk occupation, coal mining has many accidents, primarily due to the unsafe
behavior of coal miners. Based on the research of analysis of unsafe behavior and pan-scenario
data of miners, a theoretical framework for the analysis of unsafe behavior characteristics was
proposed in this paper. The collected data were divided into realistic scenes and abstract scenes
according to different manifestations; the pan-scene data were described from the eight dimensions
of time, behavioral trace, location, behavioral property, behavioral individual, degree, unsafe action,
and specialty using a quantitative method for the structure conversion; and the rules were discovered
through cluster analysis and association analysis. A total of 225 coal mine gas explosion accidents were
used for analysis, and the pan-scene data description and structure conversion of unsafe behavior
that caused these accidents were realized. In a certain cluster, the distribution rules of dimensions
and the interaction between different dimensions of unsafe behavior were explored after analysis.
The results show that the proposed eight dimensions can fully explain the basic characteristics and
attributes of the unsafe behavior of coal miners. The structure conversion can reduce the workload
of managers and effectively improve the safety data processing capabilities, and the result of data
analysis can provide data support and a management basis for safety management. A new method
and thought for the data analysis of miners’ unsafe behavior is provided.

Keywords: coal miner; unsafe behavior; multi-dimensional; pan-scene data

1. Introduction

In recent years, safety and health of work have gradually become the focus of attention in the
development of industry [1]. Especially the coal industry, which has the most serious accidents
in industrial production. Approximately one-half of Chinese major disasters occur in coal mines.
The death toll from coal mine accidents exceeds that of all other accidents combined in China [2].
Coal mining is also considered one of the most dangerous jobs in the world [3]. Compared with other
industries, coal mine workers face a relatively more dangerous working environment [4]. The frequent
occurrence of coal mine accidents seriously affects the security situation of China’s coal industry and
the sustainable development of the whole society’s economy [5].

Over the years, the Chinese government has continuously increased the intensity of safety
management of coal enterprises, to a large extent, has improved the performance of coal mine safety
production [6]. Many experts and scholars have also made a lot of important contributions in coal
mine safety management and accident prevention. Mahdevari et al. put forward an evaluation
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method based on fuzzy TOPSIS to solve the health and safety problems of underground coal mine
workers. This method can support the decision-making of coal mine management measures and
provide an appropriate balance between different issues such as safety and cost of coal mines [7].
In the experimental study of physiological changes of personnel related to coal mine accidents,
Nie et al. obtained the rules of physiological changes of injured personnel through quantitative
analysis, which provided scientific basis for the training of employees’ emergency response ability
in coal mine enterprises. It can effectively reduce the coal mine accidents caused by the staff’s
physiological ability defect [8]. Chu et al. investigated the global problems related to coal mining,
analyzed frequent accidents, occupational diseases and environmental impacts and put forward some
targeted suggestions for controlling and preventing coal mine accidents [9]. Sanmiquel et al. used
Weka software to analyze mining accidents in Spain and obtained some behavior patterns based on
some rules, thus helping coal mining enterprises to formulate appropriate accident prevention policies
and effectively reduce accidents and casualties [10]. Meanwhile, with the rapid development of the
Chinese economy and the continuous construction of digital mines, the safety production techniques
and the level of management of coal mines have risen. The total number of coal mine accidents and
the occurrence of serious accidents have been greatly checked. However, the Chinese coal mining
safety situation remains quite serious compared with the international level. The number of deaths is
much higher than those in other large coal-producing countries, such as the US, Russia, South Africa,
and India [11–13].

The reliability of humans introduces considerable uncertainty into the complex human-machine-
environment system. Heinrich found that 88% of accidents were caused by unsafe human behavior
from a statistical analysis of 75,000 accident cases [14]. Willamson et al. confirmed that 91% of the
causes of accidents included behavioral factors after analyzing all occupational deaths from the years
1982–1984 in Australia [15]. Christina determined that the number of incidents involving unsafe
behavior increased from approximately 20% to 80% after an analysis of technical system incidents
from the 1960s to the 1990s [16]. Chen et al. revealed that 97.67% of coal mine accidents may be
attributed to unsafe behavior [17]. Chidambaram also confirmed that investigating the human factors
is of great significance to reducing the number of accidents; as a systematic and complex process,
coal mining has a close relationship with people in every aspect of safe production [18]. The above
rules are also applicable in coal mine accidents. More than 80% of the total number of accidents in
China are caused by unsafe behavior [19]. According to the analysis of major accidents in China from
1980 to 2010, the proportion of human factors is 96.5% [20], and the unsafe behavior of human factors
is the direct cause of most accidents in coal mines. Reducing the number of accidents and improving
safety performances can only be achieved by systematically focusing on that unsafe behavior [21].
In the study of unsafe behavior factors in underground coal mine safety management, Paul et al. found
that many unsafe factors are the direct causes of accidents and industrial injuries, and some unsafe
behavior factors will still make the production of coal mine enterprises in dangerous state even if they
do not lead to accidents and injuries [22]. If the unsafe behavior of miners cannot be forewarned and
controlled in time, it may have serious consequences on the safety of production and safety of workers
in coal mines [23]. Therefore, the study on unsafe behavior by coal miners has important practical
significance for preventing and reducing the number of accidents.

Scene is the summation of the relationships between humans, surroundings and objects and
can be divided into two types: a realistic scene and an abstract scene [24]. Realistic scenes include
patrol photos, video data and others, while abstract scenes include accident investigation reports
and related statistical data [25]. Guo et al. developed a personalized behavioral safety training
system by identifying the picture scene of subway construction and established a framework system
for unsafe worker behavior training [26]. Yin et al. analyzed the deep causes of the accidents by
combining the behavior safety model with the reports and the cases of gas explosion accidents. As the
application basis of statistical data, the specific scene includes the scene data, which can be understood
as the structure statistics of the information. Based on the four dimensions of time, location, human,
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and action, taking the unsafe behavior of the human in the scene as the core, the internal information of
the scene data is extensively explored, and the multi-dimensional description of the scene is realized to
form richer pan-scene data. Wang et al. put forward the concept of emergency scene in the framework
of structural error behavior analysis method in the research of subway accident investigation traffic
dispatcher error behavior and put forward the structural transformation of subway accident data.
It is easy for safety managers to understand the common error behavior more clearly and provide a
more detailed method to collect and store the wrong behavior data in the subway traffic scheduling
system [27]. Kumar et al. put forward a framework of data mining for road traffic accidents in the
analysis and research of road traffic accidents. The inherent laws and hidden characteristics of road
traffic accidents are analyzed by cluster analysis and other data processing methods. Based on the
research of structured data, this study provided a new idea for data feature analysis [28].

The multiple accidents of a coal miner, the predominance of accidents caused by unsafe worker
behavior, the complexity of the environment, and the explosion of data all propose new requirements
for the traditional methods of statistical data on behavior-based safety. Improving the processing ability
and analyzing the information resources to form effective management strategies and improve the level
of safety management has become a topic for many scholars. Meanwhile, the theory of pan-scene data
remains imperfect at home and abroad for the security sciences’ generalized data mining. There is a
lack of research on the characteristics of unsafe behavior of miners based on structured data. Therefore,
in this study, the unsafe behaviors of coal mine workers are taken as the research object to construct the
theoretical framework for analysis of unsafe behavior characteristics based on pan-scene data. Finally,
with China’s 225 coal mine gas explosion accident reports as an example, the description of the scene
data and structural transformation are realized, and the regularities and the characteristics of the unsafe
behavior that caused these accidents are obtained through cluster analysis and association analysis.

2. Theoretical Framework

The theoretical framework for analysis of unsafe behavior characteristics based on pan-scene data
shown in Figure 1 primarily includes four parts: pan-scene data source; pan-scene data description;
pan-scene data structure conversion; and pan-scene data analysis. The first part is for collecting the
realistic scene and abstract scene data from a coal mine enterprise or a certain type of accident and
screening the useful data resources for subsequent data processing. The second part is the description
of the pan-scene data, which is done using the eight dimensions. The third part is the structural
transformation of the pan-scene data. The level of concept and granularity of each dimension are
clarified, and the value of each attribute is encoded and quantified. The fourth part is the pan-scene
data analysis. Cluster and association analyses are used to mine data rules to realize the visualization
of unsafe behavior data.
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2.1. Pan-Scene Data Source

Scene is the purpose of statistical data application. The occurrence of unsafe coal miner behavior
can be seen as a scene. According to different manifestations, pan-scene data sources can be divided
into two categories:

2.1.1. Realistic Scene

Behavior monitoring and observation can be used as tools for internal inspection and feedback [29].
Combined with the safety management of coal mines in China, the safety managers of coal mine
enterprises will take photos to obtain evidence when they conduct safety supervisions and then fill in
the inspection certificate according to the process of BBS. At the same time, coal mining enterprises in
China install several camera devices for video surveillance as part of the construction of intelligent
mines. Therefore, a considerable amount of unsafe behavior video data is preserved. The research value
of inspection photos was gradually discovered [30]. Field inspection photos and video surveillance
data can fully reflect some factors of behavior, such as place and time, which is first-hand information
on the unsafe behavior pan-scene data.

2.1.2. Abstract Scene

Safety standards and operating regulations are important for determining unsafe behavior [31].
Studies show an internal relationship between “rules and regulations” and behavior, and this is a
finding that implies “a restriction of rules and regulations on the behavior” exists [32]. China regulates
coal miner behavior by revising and improving the legal status of “coal mine safety regulations.”
Coal enterprises and relevant departments have formulated “the coal mine working standard” and
“the coal miners’ unsafe behavior management manual” to manage the behavior of coal miners;
scholars and experts have also obtained statistics and conducted analyses on the unsafe behavior of
coal miners, and they have proposed relevant management countermeasures and targeted preventive
measures [33]. Furthermore, the process of the accident, the cause of the accident, the rectification
measures, and the result of accident handling have been recorded in the accident investigation
reports [34], which are an important source of unsafe behavior pan-scene data that includes the unsafe
behavior of the human and the unsafe conditions of the material.

2.2. Description Model

Through the analysis of data sources of unsafe behavior, it is found that the difference between
the recording mode of the realistic scene and the abstract scene and the difference between the realistic
and abstract scenes in the form of unstructured or semi-structured data have made it difficult to
describe unsafe behavior. Therefore, it is important to explore a method to express the coal mine unsafe
behavioral pan-scene data and to standardize and quantify the data from different sources.

The unsafe coal miner behavior pan-scene data structured description should reflect the behavior
itself as comprehensively as possible. Based on the Lasswell “5W analysis method,” the unsafe coal
miner behavior pan-scene data description model was proposed to describe the characteristics of
unsafe behavior through practice and communication with safety management workers at the coal
mine site and the summary of the related literature about unsafe behavior in this paper; moreover,
this method highlighted the following eight dimensions:

• Time: describe the time when the unsafety behavior occur.
• Behavioral trace: describe the traceability of unsafety behavior.
• Location: describe the location of the area where the unsafety behavior occur.
• Property: describe the type of unsafety behavior.
• Behavioral individual: describe the individual who have an unsafety behavior.
• Degree: describe the severity of unsafety behavior.
• Unsafety action: describe the specific unsafety behavior.
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• Specialty: describe the stage where the unsafety behavior occurs and the specialty of the coal
mine work operation.

2.3. Structure Conversion

The description of unsafe behavior in coal mines is more systematic and standardized through
the model. However, it does not achieve a structured and coded quantitative description. Therefore,
it is necessary to analyze the level of concept and the value of attributes for each dimension of the
unsafe behavior guided by the method of quantification.

2.3.1. Time (T)

The continuity of time is a common characteristic in the development of anything. Some scholars
have extensively studied the rules of time for human behavior, and these rules are used in various
fields [35,36]. It is also important for safety management to define the rules for the occurrence time
of unsafe behavior through pan-scene data mining. The time dimension has a different division for
granularity and levels, such as quarter, month, day, and shift. The smaller the granularity is, the lower
the level. Predictions from low levels to high levels can be achieved to improve the accuracy of
information based on statistical data. Based on the characteristics of the information expressed by
the source data, the structural conversion of the time dimension is shown in Table 1 combined with the
reality of the coal mine.

Table 1. Structured conversion of the time dimension of unsafe coal miner behavior pan-scene data.

Coding Time Value

T1 Quarter 01 = First quarter; 02 = Second quarter; 03 = Third Quarter; 04 = Fourth quarter
T2 Month 01 = January; 02 = February; 03 = March; 04 = April; . . . ; 12 = December
T3 Day 01 = 1; 02 = 2; 03 = 3; . . . ; 31 = 31

T4 Shift

“three and eight” working form: 101 = morning shift; 102 = night shift;
103 = maintenance shift

“four and six” working form: 201 = morning shift; 202 = afternoon shift;
203 = night shift; 204 = maintenance shift

Note: “three and eight” working form: three shifts including two working shifts and one maintenance shift,
which work eight hours per shift every day; “four and six” working form: four shifts including three working shifts
and one maintenance shift, which work six hours per shift every day.

2.3.2. Behavioral Trace (BT)

Behavioral trace indicates the traceability after the occurrence of the behavior. Based on the
behavioral trace, the behavior can be divided into traced unsafe behavior and non-traced unsafe
behavior. The characteristic of traced unsafe behavior is that the certain behavioral traces will be left
after the occurrence of the behavior within a certain period of time; in contrast, the characteristic of
non-traced unsafe behavior is that the unsafe behavior can only be found as it occurs and will not be
traceable. Safety managers can use appropriate methods to infer the cause of unsafe behavior according
to the characteristics of different behavioral traces. For the traced unsafe behaviors, the focus is on the
identification of responsibility and the corresponding timely punishment. However, for the non-traced
unsafe behaviors, the focus is to strengthen the supervision and inspection of the field. Therefore, it is
particularly necessary to take behavioral traces as a dimension of unsafe behavioral pan-scene data.
The structural conversion of the behavior trace dimension is relatively simple: Bt1 represents traced
unsafe behavior, and Bt2 represents non-traced unsafe behavior.

2.3.3. Location (L)

This dimension is used to identify the location of the region where the unsafe behavior occurs.
Relevant studies have shown that work environments have a significant effect on the behavioral
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choices of workers [37,38]. Therefore, the study on the dimensions of work sites is of great significance.
Based on the characteristics of accidents in the past and the location where unsafe behavior in coal
mines occurs frequently, similar to the time dimension, the regional locations are stratified according
to different levels of granularity to clarify the differences in the occurrence of unsafe behavior and
to improve safety management efficiency. Combined with the reality of the coal mine, the structural
conversion of the location dimension is shown in Table 2.

Table 2. Structured conversion of the location dimension of coal miner unsafe behavior pan-scene data.

Coding Location Value

L1 Tunneling working site 01 = Tunneling working site roadway; 02 = Tunneling working face

L2 Coal face 01 = Working face; 02 = Head gate; 03 = Tailgate; 04 = Goaf

L3 Haulage roadway 01 = Main haulage roadway; 02 = Haulage drift; 03 = Centralized main
roadway; 04 = Main roadway for single seam

L4 Room 01 = Skip loading pocket; 02 = Underground locomotive repair room; 03 = Shaft
coal pocket; 04 = Main pumping room; 05 = Underground charging station

L5 Airway 01= Main return airway; 02 = District return airway; 03 = Section return airway;
04 = Ventilation shaft

L6 Others 01 = Crossheading; 02 = Cross-cut; 03 = Shaft bottom; 04 = Open-off cut;
05 = Blind roadway; 06 = Others

Note: (1) Divide the tunneling working site into two parts: tunneling working site roadway and tunneling working
face. Tunneling working face refers to the range of the region where the heading is continuing but the roadway is
not permanently supported; the tunneling working site roadway refers to the roadway at the tunneling working site
except the tunneling working face. (2) This paper defines the coal face as a space for direct coal work and mining
including four parts: working face, head gate, tailgate, and goaf.

The names of the accident sites in this research are standard, for they are derived from Terms
relating to coal mining (GB/T 15663-2008), National Standard of the People’s Republic of China.

2.3.4. Behavioral Property (BP)

Behavioral property reflects the category of unsafe coal miner behavior combined with relevant
research [39,40], including violation of commands, violation of operation, violation of action and
non-violation unsafe behavior. Among them, violation of commands refers to the behavior of
management personnel who order other people to conduct illegal operations; violation of operation
refers to the behavior of the workers who violate the operating procedures to operate the specific object,
such as “the sledgehammer of dangerous rock”; violation of action refers to the unsafe actions of the
workers who do not involve the object, equipment or facility in the work, such as “the distance from the
blasting does not meet the requirement”; and non-violation unsafe behavior refers to behavior that does
not violate laws and regulations (excluding the company’s internal regulations), but the action itself is
unsafe and provides impetus to the occurrence of accidents, such as “without careful inspection after
blasting.” The structural conversion of the behavioral property is as follows: Bp1 represents violation of
command, BP2 represents violation of operation, BP3 represents violation of action, and Bp4 represents
non-violation unsafe behavior.

2.3.5. Behavioral Individual (BI)

The behavioral individual dimension refers to the different individual attributes of the worker’s
unsafe behavior. Factors such as age [41,42], working age, and physical status at work all affect unsafe
behavior [22,43]. This paper only analyzes the three attributes of age, working years, and job type
in the individual dimension. According to the division of the property of unsafe behavior and the
function, behavioral individuals can be divided into three categories: managers, field commanders,
and grassroots workers. The structural conversion of the behavioral individual is shown in Table 3.
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Table 3. Structured conversion of the behavioral individual dimension of the unsafe coal miner
behavior pan-scene data.

Coding Behavioral Individual Value

BI1 Age (year-old) 01 = 20–30; 02 = 30–35; 03 = 35–40; 04 = 40–45; 05 = 45–50; 06 = Over 50
BI2 Working age (years) 01 = 0–5; 02 = 5–10; 03 = 10–15; 04 = 15–20; 05 = 20–25; 06 = Over 25
BI3 Function 01 = Managers; 02 = Field commanders; 03 = Grassroots workers

Age and working years can be queried in the coal company employee management system.
However, the classification of coal mines for job type remains unclear. Through the investigation of
key coal mines in major coal-producing regions in the provinces of Shanxi, Anhui, Inner Mongolia
Autonomous Region, and Henan in China, the classification of job types is shown in Table 4 combined
with the “Management Regulations for the Examination and Evaluation of Safety Technologies for
Special Operators” promulgated by the “State Administration of Work Safety” on 26 April 2010 in
China. Thus, the grassroots workers are coded according to job type in Table 4.

Table 4. Classification and structural conversion of grassroots workers in a coal mine.

Coding Type Value

01 Transportation 01 = Mine track worker; 02 = Hauler; 03 = Conveyor operator; 04 = Hoist driver;
05 = Mine winding operator;

02 Geologic measurement 01 = Driller; 02 = Mine geologic worker; 03 = Mine measurement worker

03 Outburst prevention 01 = Gas outburst prevention worker; 02 = Water injection worker

04 Gas extraction 01 = Gas extraction worker; 02 = Drilling machine operator; 03 = Gas pump operator

05 Blasting 01 = Blaster; 02 = Mine powder magazine worker

06 Mining
01 = Coal mining worker; 02 = Support worker; 03 = Coal winning machinery driver;
04 = Crusher driver; 05 = Hydraulic support worker; 06 = Roadway repairman;
07 = Common worker

07 Safety check 01 = Safe inspector; 02 = Ventilator; 03 = Roadway excavation and masonry worker;
04 = Explosion-proof electric apparatus inspector; 05 = Bolting and shotcreting worker

08 Gas inspection 01 = Gas inspector; 02 = Mine dust testing worker; 03 = Mine dust removal worker

09 Electric 01 = Electric installer; 02 = Electric operator; 03 = Electric maintenance worker

10 Safety observation
and monitoring

01 = Observation and monitor operator; 02 = Safety instrument monitor;
03 = Equipment maintenance worker

2.3.6. Degree (D)

The degree dimension is used to reflect the severity of unsafe behavior. Based on the more
mature division method of accident classification and hidden risk classification, and the analysis and
assessment of the risk [44], the definition of degree dimension is the level of risk combining the practice
of coal mine safety management, which is based on the direct or indirect potential severity of the
consequences of unsafe behavior. Thus, the unsafe behavior is divided into five levels: serious-risk,
major-risk, medium-risk, general-risk, and low-risk levels. The structural conversion is shown in
Table 5.

2.3.7. Unsafe action (UA)

The unsafe action dimension describes the specific unsafe behavior that may lead to accidents,
casualties and environmental disruption. According to the purpose of the action, the unsafe actions
are divided into four categories: safety, operation, management, and general type. The structural
conversion of unsafe action is shown in Table 6.
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Table 5. Structured conversion of degree individual dimension of unsafe coal miner behavior
pan-scene data.

Coding Degree Explanation

D1 Serious risk Unsafe behavior that is highly likely to cause serious accidents and is
extremely difficult to repair afterwards

D2 Major risk Unsafe behavior that may cause serious accidents and is difficult to
repair afterwards

D3 Medium risk Unsafe behavior that may cause major accidents and is difficult to
repair afterwards

D4 General risk Unsafe behavior that may cause general accidents and is not difficult to
repair afterwards

D5 Low risk Unsafe behavior that is less likely to cause accidents and is easy to
repair afterwards

Table 6. Structured conversion of the unsafe action dimension of unsafe coal miner behavior
pan-scene data.

Coding Unsafe Action Value

UA1 Safety 01 = Safety inspection; 02 = Safety working; 03 = Hidden trouble
treatment; 04 = Instruction; 05 = Escape; 06 = Adventure

UA2 Operation 01 = Supporting; 02 = Heading; 03 = Blasting; 04 = Mining

UA3 Management 01 = Regulatory measures; 02 = Labor organization; 03 = Monitoring

UA4 General type 01 = General-type

2.3.8. Specialty (S)

The specialty dimension is used to represent the work stage and the specialized category of the coal
miner when unsafe behavior occurs. According to the “Coal Mine Safety Risk Pre-control Management
System” promulgated by the “State Administration of Work Safety” in 2011, the coal mine production
system is divided into 14 management elements. Combining the characteristics of the unsafe coal miner
behavior, causes of accidents, and previous research results [45], the specialty dimensions are divided
into heading, mining, electric, transportation, “one ventilation and three preventions,” waterproofing,
blasting, and others. The structural conversion of the specialty is shown in Table 7.

Table 7. Structured conversion of the specialty dimension of unsafe coal miner behavior pan-scene data.

Coding Specialty Explanation

S1 Heading The unsafe behavior occurs during operations such as heading, roof
supporting, and refuse transportation at the tunneling working site

S2 Mining The unsafe behavior occurs during operations such as coal mining,
supporting, and transportation primarily at the coal face

S3 Electric The unsafe behavior occurs during the operation, maintenance,
and inspection of machinery and equipment

S4 Transportation The unsafe behavior occurs during the transportation of coal or
refuse at the main transportation roadway

S5 One ventilation and
three preventions

The unsafe behavior occurs during the ventilation, dust prevention,
fire prevention, and gas prevention

S6 Waterproof
The unsafe behavior occurs during operations such as water
inspection, water exploration, water discharge, water blocking,
and water interception
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Table 7. Cont.

Coding Specialty Explanation

S7 Blasting The unsafe behavior occurs during the blasting, including materials,
equipment, and operations

S8 Others In addition to the above seven types of unsafe behavior

2.4. Analysis and Visualization

The pan-scene data analysis focuses on the study of the rules of distribution for unsafe coal miner
behavior and the interaction between the dimensions to realize the explicitness of the interaction
relationship, which can not only deeply explore the miners’ unsafe behavior in the specific coal mine
enterprise but also lay a foundation for the discovery of the inherent nature of the unsafe behavior.

Before mining accident data, it is necessary to eliminate the heterogeneous nature of the data [46].
Cluster analysis is used to preliminarily explore the distribution of accidents and to prepare for
multi-dimensional correlation analysis. The use of multi-dimensional interaction analysis in different
clusters can deeply explore the interaction relationship between different dimensions, which is of great
significance for discovering the potential characteristics of unsafe behavior.

According to the eight dimensions of the unsafe coal miner behavior pan-scene data, theoretically,
any two or more dimensions can be analyzed. The interaction between different dimensions has
different practical significance, which can explore the deep rules of unsafe behavior and improve safety
management efficiency. Some representative dimensions for association analysis and the meaning of
safety management are shown in Table 8.

Table 8. An example of unsafe coal miner behavior pan-scene data association analysis.

Interaction Dimension Explanation Practical Significance

T↔ L Are there any regularities in the locations where
unsafe behavior occurs at different times?

Determine the time period when unsafe behavior
in different regions is likely to occur in different
locations, and then strengthen inspections.

BI↔ S Are there any regularities in the stages and
professions of different individuals’ unsafe behavior?

Identify which individuals in different stages are
prone to unsafe behavior, and then strengthen the
intervention at a certain stage.

BP↔ D Are there any differences in risk level between
different behavioral properties?

Identify the severity of different behavioral
properties and strengthen intervention and training
of such behaviors.

(BI, T, L) Temporal and spatial distribution of unsafe behavior
in different behavior individuals.

Identify when and where different individuals are
prone to unsafe behavior.

3. Materials and Methods

3.1. Data and Structure Conversion

The accident investigation reports were used for analysis. This paper selects 225 cases of gas
explosion accidents in China [47]. To ensure the accuracy of the data, this paper follows the principles
of accident completeness and case authoritativeness: The completeness refers to the complete content
of the accident investigation report and to facts that are expressed clearly to analyze the human factors
according to the report content. Furthermore, authoritativeness refers to the accident report that must
be issued by the state-accredited accident investigation or safety regulatory institutions.

Because the description of unsafe behavior in the original accident investigation report is in
unstructured text records, it must be adjusted to the coal mine unsafe behavioral pan-scene data
description model to achieve the structural conversion. Three coal mine gas explosion accidents were
selected as an example, and the results of the description and structural conversion processes are
shown in Table 9.
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Table 9. The process of gas explosion investigation report structure conversion.

Time Behavioral Trace Location Behavioral
Property Behavioral Individual Degree Behavioral Action Specialty

Quarter: fourth

Non-traced
unsafe behavior

Blind roadway Violation of action

Age: 37

Major-risk
Blasting without
examining gas
concentration

Blasting

Month: November Working age: 6 years
Day: 28

Function: grassroots
worker, gas inspector

Shift: ”three and
eight” working form,

morning shift

04 11 28 101 2 605 3 103 202 303 0801 2 101 7

Quarter: third

Non-traced
unsafe behavior

Tunneling working
site roadway

Violation of
operation

Age: 32

Major-risk Turning the local fan on
and off casually

Heading

Month: September Working age: 4 years
Day: 13

Function: grassroots
worker, mine ventilator

Shift: “four and six”
working form,
afternoon shift

03 09 13 202 2 101 2 102 201 303 0702 2 301 1

Quarter: first

Traced unsafe
behavior

District return airway Violation of
operation

Age: 41

Medium-risk
Live working/repairing

and maintaining
energized equipment

Electric

Month: February Working age: 14 years
Day: 14

Function: grassroots
worker, electrical

repairman

Shift: “three and
eight” working form,

maintenance shift

01 02 14 103 1 502 2 104 203 303 0903 3 102 3

At this point, the coal miners’ unsafe behavior pan-scene data (MUBD) based on the gas accident
investigation report was constructed to include a total of 871 data points as shown in Formula 1.
The pan-scene data can enable coal mining companies to record the unsafe behavior of workers more
accurately and provide a method for evaluating the record for unstructured or semi-structured data on
unsafe behavior and a way to analyze and visualize it.
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3.2. Clustering Method

Data mining is a fast and effective way to find unknown, implicit and potentially useful
information from large-scale data to guide decision making. It is necessary to select a suitable tool to
mine useful information and knowledge with strong application value from a large amount of unsafe
behavior data of miners. As an unsupervised learning method, clustering plays an important role
in the data natural grouping structure and has been widely used. In the efficiency of the algorithm
and clustering effect, the existing cluster methods have achieved excellent performance. The k-means
algorithm has been widely used for many years because of its high efficiency in data processing and
good clustering effect in numerical data. However, the k-means algorithm can only evaluate a data set
with continuous attributes, and the structured data presented here represent a discrete type dataset
that contains many classification attributes. Thus, the k-modes algorithm is selected, which realizes the
high-efficiency of the k-means algorithm while realizing the clustering of the discrete-type data [48].

In the k-modes algorithm, the difference factor is used to replace the distance in the k-means
algorithm, and the smaller the difference factor is, the closer the distance will be. The difference
factor between a sample and a cluster center is the number of different attributes: different values are
represented by 1, identical values are represented by 0, and finally, the sum of the different values
is calculated. The resulting value is the difference factor between a sample and the corresponding
cluster center.
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Given a data set Z, each data point is described by n classification variables, and the difference
factor between X and Y is calculated as follows:

d(X, Y) =
n

∑
i=1

δ(Xi, Yi) (2)

δ(Xi, Yi) =

{
0, Xi = Yi
1, Xi 6= Yi

(3)

where Xi and Yi are the values of attribute i in X and Y, respectively.
The k-modes process is as follows:

Step 1. Select k objects as the cluster center.
Step 2. Use Equation (1) to calculate the difference value of each sample and cluster center.
Step 3. Distribute the samples to the cluster with the lowest difference factor between the cluster

center and the cluster center. After all samples are divided, the cluster center is redetermined.
Step 4. Repeat steps 2 and 3 until the sum of the distance between each cluster sample and each

cluster center is no longer reduced and retain the final cluster results.

3.3. Association Rules Method

Association rules are the techniques applied to large-scale database mining. The core of the
association rules is to show the rules of association and the correlations between different items,
whicht is an implication of the form: A⇒B. A⇒B represents the association between A and B: A is the
left-hand side (LHS); B is the right-hand side (RHS). Support, confidence, and lift are three important
parameters in the association rules. I = {I1, I2, . . . , Im} is a set including m different items, and I is
the itemset.

Support is the probability that the elements included in the LHS and RHS are simultaneously
present, that is, the ratio of the number of occurrences of itemsets A and B in the database (A∩B) to the
total itemset, which can be expressed as:

support(A⇒ B) = count(A ∩ B)/count(I) (4)

The support reflects the strength of the association rules. The minimum support is the minimum
support threshold of the itemset, which is denoted SUPmin and represents the minimum importance
of the association rules.

Confidence is the probability that B is extrapolated by the association rule A⇒B under the
condition of containing A, which can be expressed as:

con f idence(A⇒ B) = support(A ∩ B)/support(A) (5)

The association rules with high support and confidence can more clearly illustrate the problem
in general. The minimum confidence is denoted CONFmin. When the association rule A⇒B satisfies
the support ≥SUPmin and the confidence ≥CONFmin, the A⇒B is called the strong association
rule. The purpose of association rule mining is to find strong association rules and provide decision
making assistance.

The lift reflects the size of the RHS influenced by the LHS. When the lift exceeds 1, it means that
the LHS has a great influence on the RHS, and this association rule has obvious practical significance;
in contrast, when the lift is less than 1, it means that the probability of RHS under the condition of
LHS influence is smaller than the prior probability, and this association rule has no meaning in reality.
Moreover, when the lift equals 1, it means that the leader and the successor are independent, and there
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is no relationship between them. The lift is the ratio of the confidence of A⇒B to the support of B,
which can be expressed as:

li f t(A⇒ B) = confidence(A⇒ B)/support(B) (6)

In this paper, we use the Apriori algorithm proposed by Agrawal to mine mining association
rules from the clustering data set for the unsafe behavior of miners [49].

4. Results and Analysis

4.1. Cluster Results

The primary problem of clustering analysis is determining the number of clusters formed by
clustering algorithms. In this paper, Akaike information criteria (AIC), Bayesian information criteria
(BIC) and consistent AIC (CAIC) are used to judge [28]. After trying to divide several models, the data
clustering number was determined to be 4. After determining the number of clusters, the k-modes
algorithm was used to classify the data sets using R software. Then, each of the separated clusters was
characterized. Brief descriptions of the clusters and their sizes are shown in Table 10.

Table 10. Description and size of clusters.

Clusters Description RHS Count

1 High-risk, traced unsafe behavior in the vicinity of a working face 385 44.20

2 Unsafe behavior related to safety inspection occurring in airway
and main haulage roadway 212 24.34

3 Unsafe behavior caused by low-age workers in various rooms 168 19.29

4 Unsafe behavior under medium-risk caused by violations of
commanding by managers 106 12.17

4.1.1. Cluster 1

Such unsafe behaviors are primarily in the tunneling working site and coal face, including 78%
of the high-risk behavior; additionally, approximately 53% are traced unsafe behaviors, and most of
the time is distributed in March, April, November, and December, and the operation class accounted
for 77%.

4.1.2. Cluster 2

Such unsafe behaviors in the airway and main haulage roadway account for 69%, and safety
inspection work accounts for 82%. Additionally, 66% of behaviors occur in November and December,
and most of the work types are gas inspectors and mine ventilators.

4.1.3. Cluster 3

Approximately 70% of these unsafe behaviors occurred in the skip loading pocket and underground
locomotive repair room, and they involved electric specialty unsafe behavior, accounting for 56%.
Additionally, the working age in 0–5 years accounted for 68%.

4.1.4. Cluster 4

Among these unsafe behaviors, managers and field commanders accounted for 71%, low-risk unsafe
behavior accounted for 60%, general-risk unsafe behavior accounted for 58%, and the distributions of
region and time were relatively wide.

The k-modes clustering method was used to analyze the unsafe behavior data of 871 miners.
After detailed analysis of all the classification results, it was found that the eight dimensions describing
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the unsafe behavior of miners could be effectively used as the main variables of the data gathering class,
and there was a significant correlation among the dimensions of the unsafe behavior of the miners.

4.2. Association Results

Selecting the data set of Cluster 1 for association analysis and taking the time and location
dimensional association analysis as an example, the statistics for the number of unsafe behaviors at
different locations in different months are shown in Figure 2. It is seen from the figure that the number
of unsafe behaviors in the tunneling working site and coal face was highest in November. Additionally,
the number of unsafe behaviors in the tunneling working site in March, April, and December was
significantly larger than the number that occurred in other locations. Moreover, for the room and
airway, the number of unsafe behaviors per month was relatively small compared to the other locations.
Therefore, when safety managers conduct behavior interventions, such as behavioral observations,
they can determine from this figure the intensity and proportion of the number of unsafe behaviors in
different locations at different times.Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  13 of 18 

 
Figure 2. Two-dimensional analysis of time and location using data from the gas explosion accident 
investigation report. 

IBM SPSS Modeler 18.0 software (International Business Machines Corporation, Armonk, NY, 
USA) was selected as an association rule mining tool. Through the Apriori algorithm, the unsafe 
action dimension is used as the LHS, and the other dimensions are the RHS. The most prevalent 
unsafe behaviors in different dimensions are explored. SUPmin and CONFmin were 8% and 20%, 
respectively, and this information was used to obtain effective strong association rules. The results 
are shown in Table 11. 

Table 11. Association rule mining results for the gas explosion accident investigation report. 

Rule LHS RHS Support/% Confidence/% Lift 
Rule1 November Turning the auxiliary ventilating fan on and off casually 9.76 23.92 1.87 
Rule2 Traced behavior Not evacuating in the case of reduced or stopped air 10.25 35.67 1.76 
Rule3 Coal face Not examining gas concentration in shift time 10.37 43.71 2.70 
Rule4 Gas inspector Blasting without examining gas concentration 11.32 52.34 2.15 
Rule5 Major-risk Blasting without examining gas concentration 11.76 26.86 1.89 
Rule6 Heading Unqualified hole-sealing 9.83 44.73 1.56 

Note: the name of equipment or installation contained in unsafe behavior is standard, for they were derived from 
the current Terms relating to coal mining (GB/T15663-2008), National Standard of the People’s Republic of China. 

Combining the meaning of the attributes in each dimension, the results of the association 
analysis of the data are analyzed. 

4.2.1. Rule 1 

This rule indicates that unsafe behavior occurring in November usually includes casually 
turning the auxiliary ventilating fan on and off. The confidence rate of this rule is 23.92%. According 
to this rule, the safety management efficiency can be improved 1.87-fold by behavioral intervention 
on workers who operate auxiliary ventilating fans casually. 
  

Figure 2. Two-dimensional analysis of time and location using data from the gas explosion accident
investigation report.

IBM SPSS Modeler 18.0 software (International Business Machines Corporation, Armonk, NY,
USA) was selected as an association rule mining tool. Through the Apriori algorithm, the unsafe
action dimension is used as the LHS, and the other dimensions are the RHS. The most prevalent unsafe
behaviors in different dimensions are explored. SUPmin and CONFmin were 8% and 20%, respectively,
and this information was used to obtain effective strong association rules. The results are shown in
Table 11.

Combining the meaning of the attributes in each dimension, the results of the association analysis
of the data are analyzed.
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Table 11. Association rule mining results for the gas explosion accident investigation report.

Rule LHS RHS Support/% Confidence/% Lift

Rule1 November Turning the auxiliary ventilating fan on and off casually 9.76 23.92 1.87
Rule2 Traced behavior Not evacuating in the case of reduced or stopped air 10.25 35.67 1.76
Rule3 Coal face Not examining gas concentration in shift time 10.37 43.71 2.70
Rule4 Gas inspector Blasting without examining gas concentration 11.32 52.34 2.15
Rule5 Major-risk Blasting without examining gas concentration 11.76 26.86 1.89
Rule6 Heading Unqualified hole-sealing 9.83 44.73 1.56

Note: the name of equipment or installation contained in unsafe behavior is standard, for they were derived from
the current Terms relating to coal mining (GB/T15663-2008), National Standard of the People’s Republic of China.

4.2.1. Rule 1

This rule indicates that unsafe behavior occurring in November usually includes casually turning
the auxiliary ventilating fan on and off. The confidence rate of this rule is 23.92%. According to
this rule, the safety management efficiency can be improved 1.87-fold by behavioral intervention on
workers who operate auxiliary ventilating fans casually.

4.2.2. Rule 2

This rule indicates that traced unsafe behavior of gas explosion accidents usually include not
evacuating in the case of reduced or stopped air. The confidence rate of this rule is 35.67%. According to
this rule, the efficiency of inspection of this unsafe behavior can be improved 1.76-fold.

4.2.3. Rule 3

This rule indicates that unsafe behavior at the coal face usually involves not examining the
gas concentration at shift time. The confidence rate of this rule is 43.71%. According to this rule,
the efficiency of controlling unsafe behavior can be improved 2.70-fold.

4.2.4. Rule 4

This rule indicates that the most vulnerable unsafe behavior of gas inspectors is blasting without
examining the gas concentration. The confidence rate of the rule is 52.34%. According to this rule,
the efficiency of targeted safety training for gas inspectors can be improved 2.15-fold.

4.2.5. Rule 5

This rule indicates that when there is a major risk of unsafe behavior, it usually involves blasting
without examining the gas concentration. The confidence rate of this rule is 26.86%. According to this
rule, the efficiency of controlling unsafe behavior that is of major-risk can be improved 1.89-fold.

4.2.6. Rule 6

This rule indicates that when unsafe behavior occurs during the heading process, it usually
involves unqualified hole-sealing. The confidence rate of this rule is 44.73%. According to this rule,
the efficiency of the behavior observation of the tunneling working site can be improved 1.56-fold.

5. Discussion

In this paper, the investigation reports of coal mine gas explosion accidents are taken as the
data source. Through the theoretical framework of unsafe behavior characteristic analysis based
on the pan-scene data, the eight dimensions of time, behavioral trace, location, behavioral property,
behavioral individual, degree, unsafe action and specialty are used to describe unsafe behavior, and the
data structure conversion is realized. Through cluster analysis and association analysis, the unsafe
behavior characteristics of coal miners are obtained and the guiding significance of the results for coal
mine safety management are analyzed. Coal mining remains a high-risk occupation [50], and coal
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mine safety data have complex, dynamic and heterogeneous, fuzzy and random characteristics [51].
Meanwhile, digital and intelligent mine construction propose new requirements for safety management
work. Based on this situation, the findings in this paper have significant implications for safety research.

The process of describing miner unsafe behavior and constructing structured pan-scene data are
conducive to promoting coal enterprises to collect unsafe behavior data and manage safety information
resources. In addition, this information can be used to explore the value of existing resources of
behavior-based safety.

The application of new technologies and the increased emphasis on safety by the government has
resulted in a decrease in the fatality rate of coal mines in China [52,53]. The construction of digital and
intelligent mines proposes new requirements for coal mine safety management. The intelligent safety
management must pay more attention to the application and mining of data resources. The massive
data sources of unsafe behavior contain a wealth of hidden knowledge of rules and laws. However,
due to the lack of extraction of coal mine unsafe behavior data, these knowledge treasures cannot be
used to guide safety management. However, the analysis and mining of data primarily focuses on the
construction of a data mining model and algorithm and the application of computer technology [54,55].
For the large safety production dataset, these methods are relatively weak, which restricts the extraction
of safety data and the improvement of safety management. In response to this type of problem,
the description of pan-scene data and the process of data structure conversion in the framework greatly
improve the processing capabilities for large datasets and is of great significance to the effective use of
information resources and the intelligent management of a coal mine.

For coal mine safety managers, the structured processing of behavior safety data eases the
burden on managers in terms of collating photos and records of unsafe behavior. In addition,
the statistical analysis and multi-dimensional association analysis results help safety managers to
clarify the characteristics and rules of unsafe behavior of workers, which improves the efficiency of
safety management and optimizes the allocation of management resources.

The occurrence of unsafe coal miner behavior has intrinsic complexity and is greatly affected
by the natural environment, coal mining technology, personality traits, and management level [22].
Using clustering analysis, the potential rules among the dimensions of unsafe miner behavior can be
preliminarily excavated, and the heterogeneity of much unsafe miner behavior data can be effectively
eliminated at the same time. It is of great significance to determine the potential features of unsafe
behaviors using association analysis to explore the relationship between the different dimensions
in a particular single cluster. The interaction between different dimensions has different meanings.
Safety managers can select the different dimensions according to their needs and judge whether there is
regularity between them through the interaction results to improve the efficiency of safety management
and stimulate the advancement of empirical safety management to intelligent safety management.

For the workers of coal mining enterprises, the visual presentation of the data analysis results
has improved their level of information cognition. The results of cluster analysis and association
analysis of eight dimensions are mostly displayed in visualization, which has characteristics that can
be summarized as visibility, interactivity, and multidimensionality. Based on the perspective of safety
cognition and the different individual attributes, the results will be provided to the workers to improve
their information absorption and analysis ability and their safety behavior selection ability.

6. Conclusions

The theoretical framework for analysis of unsafe behavior characteristics based on pan-scene data
in this study has very important application value. The requirement of the pan-scene data theory
to the accident data source can maximize the comprehensive description of human unsafe behavior
factors. The accuracy and completeness of unsafe behavior data are guaranteed. Thus, the unsafe
behavior information associated with the accident can be extracted more thoroughly. The data structure
conversion process can be used not only to follow-up analysis but also to improve the management
and storage of accident data in coal mining enterprises.
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Through cluster analysis and correlation analysis, the safety managers of coal mining enterprises
can directly understand the probability distribution of all kinds of accidents and the interrelations and
interaction rules between the various dimensions of the unsafe behavior of the workers. In practical
work, the analysis results of unsafe behavior characteristics can provide a scientific basis for the
rational allocation of safety management and accident prevention resources and the adjustment of
safety training programs in coal mining enterprises. These targeted guidance functions are conducive
to greatly improving the safety performance of coal mining enterprises.

Based on the study of unsafe behavior of miners [19,20], this paper realizes the structure
conversion of data based on the theory of pan-scene data [24–26] and introduces the framework
thought of data characteristic analysis into the field of coal mine [27,28]. A framework for analyzing
unsafe behavior characteristics of workers in coal mines is formed, and the feasibility and effectiveness
of the framework are verified by accident cases. In this paper, there is a solid theoretical foundation
and a sufficient empirical analysis, the description of data sources is more comprehensive, and the
design of structure conversion and characteristic analysis process are more suitable for coal mines.
A new method and thought for the data analysis of workers’ unsafe behavior is provided in coal mines.

This paper hopes to contribute to the characteristics analysis of unsafe behaviors of coal mining
enterprises by proposing a data processing and analysis method. However, there are limitations in
this study. The data sample selected in this paper is only the coal mine gas explosion accident from
2001 to 2016 in China. There are various types of coal mine accidents with different characteristics.
Therefore, the results of this study have certain limitations, which will become the focus of our
subsequent research.

Author Contributions: R.T. and Y.Z. conceived the key ideas and the paper structure; P.C. and C.Z. conducted
the data research; M.S. and S.X. discussed the results of data analysis; R.T. and P.C. wrote the paper; Y.Z. and M.S.
reviewed the process.

Funding: This study was funded by the National Natural Science Foundation of China (No. 51674268).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rachid, C.; Ion, V.; Irina, C.; Mohamed, B. Preserving and improving the safety and health at work: Case of
Hamma Bouziane cement plant (Algeria). Saf. Sci. 2015, 76, 145–150. [CrossRef]

2. Shahriar, K.; Bakhtavar, E. Geotechnical risks in underground coal mines. J. Appl. Sci. 2009, 9, 2137–2143.
3. Lenné, M.G.; Salmon, P.M.; Liu, C.C.; Trotter, M. A systems approach to accident causation in mining:

An application of the HFACS method. Accid. Anal. Prev. 2012, 48, 111–117. [CrossRef] [PubMed]
4. Zhang, Y.; Shao, W.; Zhang, M.; Li, H.; Yin, S.; Xu, Y. Analysis 320 coal mine accidents using

structural equation modeling with unsafe conditions of the rules and regulations as exogenous variables.
Accid. Anal. Prev. 2016, 92, 189–201. [CrossRef] [PubMed]

5. Lu, Y.; Li, X. A study on a new hazard detecting and controlling method: The case of coal mining companies
in China. Saf. Sci. 2011, 49, 279–285. [CrossRef]

6. Liu, Q.; Li, X.; Hassall, M. Evolutionary game analysis and stability control scenarios of coal mine safety
inspection system in China based on system dynamics. Saf. Sci. 2015, 80, 13–22. [CrossRef]

7. Mahdevari, S.; Shahriar, K.; Esfahanipour, A. Human health and safety risks management in underground
coal mines using fuzzy TOPSIS. Sci. Total Environ. 2014, 488–489, 85–99. [CrossRef] [PubMed]

8. Nie, B.; Huang, X.; Sun, X.; Li, A. Experimental study on physiological changes of people trapped in coal
mine accidents. Saf. Sci. 2016, 88, 33–43. [CrossRef]

9. Chu, C.; Muradian, N. Safety and environmental implications of coal mining. Int. J. Environ. Pollut. 2016, 59,
250–268. [CrossRef]

10. Sanmiquel, L.; Rossell, J.M.; Vintró, C. Study of Spanish mining accidents using data mining techniques.
Saf. Sci. 2015, 75, 49–55. [CrossRef]

http://dx.doi.org/10.1016/j.ssci.2015.01.014
http://dx.doi.org/10.1016/j.aap.2011.05.026
http://www.ncbi.nlm.nih.gov/pubmed/22664674
http://dx.doi.org/10.1016/j.aap.2016.02.021
http://www.ncbi.nlm.nih.gov/pubmed/27085591
http://dx.doi.org/10.1016/j.ssci.2010.09.001
http://dx.doi.org/10.1016/j.ssci.2015.07.005
http://dx.doi.org/10.1016/j.scitotenv.2014.04.076
http://www.ncbi.nlm.nih.gov/pubmed/24815558
http://dx.doi.org/10.1016/j.ssci.2016.04.020
http://dx.doi.org/10.1504/IJEP.2016.079899
http://dx.doi.org/10.1016/j.ssci.2015.01.016


Int. J. Environ. Res. Public Health 2018, 15, 1608 17 of 18

11. Liu, D.H.; Xiao, X.Z.; Li, H.Y.; Wang, W.G. Historical evolution and benefit–cost explanation of periodical
fluctuation in coal mine safety supervision: An evolutionary game analysis framework. Eur. J. Oper. Res.
2015, 243, 974–984. [CrossRef]

12. Willis, H.H. Guiding resource allocations based on terrorism risk. Risk Anal. 2007, 27, 597–606. [CrossRef]
[PubMed]

13. Xiao, X.Z.; Li, H.J. On the vertical and horizontal scheme for coal mine safety regulation: International
comparison and implication. Collect. Essays Financ. Econ. 2006, 4. [CrossRef]

14. Heinrich, H.W. Industrial Accident Prevention. A Scientific Approach. Ind. Labor Relat. Rev. 1931, 4, 609.
15. Willamson, A.; Feyer, A. Behavioural epidemiology as a tool for accident research. J. Occup. Accid. 1990, 12,

207–222. [CrossRef]
16. Christina, P. Safety risk assessment and management—The ESA approach. Reliab. Eng. Syst. Saf. 1995, 33,

303–309. [CrossRef]
17. Chen, H.; Qi, H.; Long, R.Y.; Zhang, M.L. Research on 10-year tendency of China coal mine accidents and the

characteristics of human factors. Saf. Sci. 2012, 50, 745–750. [CrossRef]
18. Chidambaram, P. Perspectives on human factors in a shifting operational environment. J. Loss Prev. Process Ind.

2016, 44, 112–118. [CrossRef]
19. Wang, L.; Cheng, Y.P.; Liu, H.Y. An analysis of fatal gas accidents in Chinese coal mines. Saf. Sci. 2014, 62,

107–113. [CrossRef]
20. Li, L.; Tian, S.C.; Deng, J.; Wang, L.; Li, T.J. Study on the coal miners’ unsafe behavior: Effective factors

analysis and control measures. J. Xi’an Univ. Sci. Technol. 2011, 31, 794–798. [CrossRef]
21. Choudhry, R.M.; Fang, D.P. Why operatives engage in unsafe work behavior: Investigating factors on

construction sites. Saf. Sci. 2008, 46, 566–584. [CrossRef]
22. Paul, P.S.; Maiti, J. The role of behavioral factors on safety management in underground mines. Saf. Sci. 2007,

45, 449–471. [CrossRef]
23. Cao, Q.G.; Li, K.; Liu, Y.J.; Sun, Q.H.; Zhang, J. Risk management and workers’ safety behavior control in

coal mine. Saf. Sci. 2012, 50, 909–913. [CrossRef]
24. Tong, R.P.; Chen, C.; Li, Y.Y.; Qi, P.; Huang, J. Research on multidimensional scene data model oriented to

behavioral safety and its application. China Saf. Sci. J. 2016, 26, 1. [CrossRef]
25. Tong, R.P.; Chen, C.; Liu, S.L.; Lu, H.; Ma, J.H. Research on theory and application of pan-scene data for

behavioral safety. China Saf. Sci. J. 2017, 27, 1. [CrossRef]
26. Guo, S.Y.; Luo, H.B.; Yong, L. A big data-based workers behavior observation in China metro construction.

Procedia Eng. 2015, 123, 190–197. [CrossRef]
27. Wang, J.; Fang, W. A structured method for the traffic dispatcher error behavior analysis in metro accident

investigation. Saf. Sci. 2014, 70, 339–347. [CrossRef]
28. Kumar, S.; Toshniwal, D. A data mining framework to analyze road accident data. J. Big Data 2015, 2, 26.

[CrossRef]
29. Hagge, M.; McGee, H.; Matthews, G.; Aberle, S. Behavior-Based Safety in a coal mine: The relationship

between observations, participation, and injuries over a 14-year period. J. Organ. Behav. Manag. 2016, 37,
107–118. [CrossRef]

30. Xu, S.; Ding, L. Simulation of the effects of different skill learning pathways in heterogeneous construction
crews. J. Ind. Manag. Optim. 2015, 11, 381–397. [CrossRef]

31. Choudhry, R.M.; Fang, D.; Mohamed, S. Developing a model of construction safety culture. J. Manag. Eng.
2007, 23, 207–212. [CrossRef]

32. Chen, S.S.; Xu, J.H.; Fan, Y. Evaluating the effect of coal mine safety supervision system policy in China’s
coal mining industry: A two-phase analysis. Resour. Policy 2015, 46, 12–21. [CrossRef]

33. Yang, W.W.; Fu, G.; Zhang, J.S.; Qing, S.; Shao, N.; Chang, Z.Q. Analysis and methods of the blasters’ unsafe
behavior taking gas explosion accident as an example. Procedia Eng. 2012, 45, 220–224. [CrossRef]

34. Winge, S.; Albrechtsen, E. Accident types and barrier failures in the construction industry. Saf. Sci. 2018, 105,
158–166. [CrossRef]

35. Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; Prentice Hall
PTR: Upper Saddle River, NJ, USA, 1994; Volume 134, pp. 343–344.

36. Hong, W.; Han, X.P.; Zhou, T.; Wang, B.H. Heavy-tailed statistics in short-message communication.
Chin. Phys. Lett. 2008, 26, 297–299. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2014.12.046
http://dx.doi.org/10.1111/j.1539-6924.2007.00909.x
http://www.ncbi.nlm.nih.gov/pubmed/17640210
http://dx.doi.org/10.13762/j.cnki.cjlc.2006.04.001
http://dx.doi.org/10.1016/0376-6349(90)90107-7
http://dx.doi.org/10.1016/0951-8320(95)00047-6
http://dx.doi.org/10.1016/j.ssci.2011.08.040
http://dx.doi.org/10.1016/j.jlp.2016.08.014
http://dx.doi.org/10.1016/j.ssci.2013.08.010
http://dx.doi.org/10.13800/j.cnki.xakjdxxb
http://dx.doi.org/10.1016/j.ssci.2007.06.027
http://dx.doi.org/10.1016/j.ssci.2006.07.006
http://dx.doi.org/10.1016/j.ssci.2011.08.005
http://dx.doi.org/10.16265/j.cnki.issn1003-3033.2016.11.001
http://dx.doi.org/10.16265/j.cnki.issn1003-3033.2017.02.001
http://dx.doi.org/10.1016/j.proeng.2015.10.077
http://dx.doi.org/10.1016/j.ssci.2014.07.014
http://dx.doi.org/10.1186/s40537-015-0035-y
http://dx.doi.org/10.1080/01608061.2016.1236058
http://dx.doi.org/10.3934/jimo.2015.11.381
http://dx.doi.org/10.1061/(ASCE)0742-597X(2007)23:4(207)
http://dx.doi.org/10.1016/j.resourpol.2015.07.004
http://dx.doi.org/10.1016/j.proeng.2012.08.147
http://dx.doi.org/10.1016/j.ssci.2018.02.006
http://dx.doi.org/10.1088/0256-307X/26/2/028902


Int. J. Environ. Res. Public Health 2018, 15, 1608 18 of 18

37. Papadopoulos, G.; Georgiadou, P.; Papazoglou, C.; Michaliou, K. Occupational and public health and safety
in a changing work environment: An integrated approach for risk assessment and prevention. Saf. Sci. 2010,
48, 943–949. [CrossRef]

38. Cui, L.; Fan, D.; Fu, G.; Zhu, J.H.C. An integrative model of organizational safety behavior. J. Saf. Res. 2013,
45, 37–46. [CrossRef] [PubMed]

39. Cao, J.L.; Fu, G. Classified study on unsafe acts in coal and gas outburst accidents. Saf. Coal Mines 2016, 47,
240–246. [CrossRef]

40. Hofmann, D.A.; Stetzer, A. A cross-level investigation of factors influencing unsafe behaviors and accidents.
Pers. Psychol. 1996, 49, 307–339. [CrossRef]

41. Verschuur, W.L.G.; Hurts, K. Modeling safe and unsafe driving behavior. Accid. Anal. Prev. 2008, 40, 644–656.
[CrossRef] [PubMed]

42. Siu, O.; Philips, D.R.; Leung, T. Age differences in safety attitudes and safety performance in Hong Kong
construction workers. J. Saf. Res. 2003, 34, 199–205. [CrossRef]

43. Fang, D.P.; Jiang, Z.M.; Zhang, M.Z.; Wang, H. An experimental method to study the effect of fatigue on
construction workers’ safety performance. Saf. Sci. 2015, 73, 80–91. [CrossRef]

44. Marhavilas, P.K.; Koulouriotis, D.; Gemeni, V. Risk analysis and assessment methodologies in the work sites:
On a review, classification and comparative study of the scientific literature of the period 2000–2009. J. Loss
Prev. Process Ind. 2011, 24, 477–523. [CrossRef]

45. Kunar, B.M.; Bhattacherjee, A.; Chau, N. Relationships of job hazards, lack of knowledge, alcohol use,
health status and risk taking behavior to work injury of coal miners: A case-control study in India.
J. Occup. Health 2008, 50, 236–244. [CrossRef] [PubMed]

46. Savolainen, P.T.; Mannering, F.L.; Lord, D.; Quddus, M.A. The statistical analysis of highway crash-injury
severities: A review and assessment of methodological alternatives. Accid. Anal. Prev. 2011, 43, 1666–1676.
[CrossRef] [PubMed]

47. Yin, W.T. Study on Unsafe Act of Coal Mine Gas Explosion Accidents in China. Doctoral Dissertation,
China University of Mining and Technology, Beijing, China, 2014.

48. Huang, Z.X. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values.
Data Min. Knowl. Discov. 1998, 2, 283–304. [CrossRef]

49. Srikant, R.; Agrawal, R. Mining sequential patterns: Generalizations and performance improvements.
In Advances in Database Technology—EDBT’96. Proceedings of the 5th International Conference on Extending
Database Technology, Avignon, France, 25–29 March 1996; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–17.
[CrossRef]

50. Paul, P.S. Predictors of work injury in underground mines-an application of a logistic regression model. Int. J.
Min. Sci. Technol. 2009, 19, 282–289. [CrossRef]

51. Lu, G.; Sun, Y.B.; Hai, J.; Han, K.Q. Resolution to DM technology for coal mine safety data. In Proceedings of
the 2009 International Conference on Information Management, Innovation Management and Industrial
Engineering, Xi’an, China, 26–27 December 2009; Volume 1, pp. 30–33. [CrossRef]

52. Feng, Q.; Chen, H. The safety-level gap between China and the US in view of the interaction between coal
production and safety management. Saf. Sci. 2013, 54, 80–86. [CrossRef]

53. Nie, B.S.; Zhao, P.F.; Guo, J.H.; Niu, P.P.; Wang, G. Fuzzy comprehensive evaluation of coal mine safety
investment structure based on the M(1,2,3) model. Energy Procedia 2012, 16, 592–597. [CrossRef]

54. Hirji, K.K. Exploring data mining implementation. Commun. ACM 2001, 44, 87–93. [CrossRef]
55. Shahbaz, M.; Srinivas, M.; Harding, J.A.; Turner, M. Product design and manufacturing process improvement

using association rules. Proc. Inst. Mech. Eng. B-J. Eng. Manuf. 2006, 220, 243–254. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ssci.2009.11.002
http://dx.doi.org/10.1016/j.jsr.2013.01.001
http://www.ncbi.nlm.nih.gov/pubmed/23708474
http://dx.doi.org/10.13347/j.cnki.mkaq.2016.09.067
http://dx.doi.org/10.1111/j.1744-6570.1996.tb01802.x
http://dx.doi.org/10.1016/j.aap.2007.09.001
http://www.ncbi.nlm.nih.gov/pubmed/18329417
http://dx.doi.org/10.1016/S0022-4375(02)00072-5
http://dx.doi.org/10.1016/j.ssci.2014.11.019
http://dx.doi.org/10.1016/j.jlp.2011.03.004
http://dx.doi.org/10.1539/joh.L7054
http://www.ncbi.nlm.nih.gov/pubmed/18431033
http://dx.doi.org/10.1016/j.aap.2011.03.025
http://www.ncbi.nlm.nih.gov/pubmed/21658493
http://dx.doi.org/10.1023/A:1009769707641
http://dx.doi.org/10.1007/BFb0014140
http://dx.doi.org/10.1016/S1674-5264(09)60053-3
http://dx.doi.org/10.1109/ICIII.2009.14
http://dx.doi.org/10.1016/j.ssci.2012.12.001
http://dx.doi.org/10.1016/j.egypro.2012.01.095
http://dx.doi.org/10.1145/379300.379323
http://dx.doi.org/10.1243/095440506X78183
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theoretical Framework 
	Pan-Scene Data Source 
	Realistic Scene 
	Abstract Scene 

	Description Model 
	Structure Conversion 
	Time (T) 
	Behavioral Trace (BT) 
	Location (L) 
	Behavioral Property (BP) 
	Behavioral Individual (BI) 
	Degree (D) 
	Unsafe action (UA) 
	Specialty (S) 

	Analysis and Visualization 

	Materials and Methods 
	Data and Structure Conversion 
	Clustering Method 
	Association Rules Method 

	Results and Analysis 
	Cluster Results 
	Cluster 1 
	Cluster 2 
	Cluster 3 
	Cluster 4 

	Association Results 
	Rule 1 
	Rule 2 
	Rule 3 
	Rule 4 
	Rule 5 
	Rule 6 


	Discussion 
	Conclusions 
	References

