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Abstract: Urban form is increasingly being identified as an important determinant of air pollution in
developed countries. However, the effect of urban form on air pollution in developing countries has
not been adequately addressed in the literature to date, which points to an evident omission in current
literature. In order to fill this gap, this study was designed to estimate the impacts of urban form on
air pollution for a panel made up of China’s five most rapidly developing megacities (Beijing, Tianjin,
Shanghai, Chongqing, and Guangzhou) using time series data from 2000 to 2012. Using the official
Air Pollution Index (API) data, this study developed three quantitative indicators: mean air pollution
index (MAPI), air pollution ratio (APR), and continuous air pollution ratio (CAPR), to evaluate air
pollution levels. Moreover, seven landscape metrics were calculated for the assessment of urban
form based on three aspects (urban size, urban shape irregularity, and urban fragmentation) using
remote sensing data. Panel data models were subsequently employed to quantify the links between
urban form and air pollution. The empirical results demonstrate that urban expansion surprisingly
helps to reduce air pollution. The substitution of clean energy for dirty energy that results from
urbanization in China offers a possible explanation for this finding. Furthermore, urban shape
irregularity positively correlated with the number of days with polluted air conditions, a result could
be explained in terms of the influence of urban geometry on traffic congestion in Chinese cities.
In addition, a negative association was identified between urban fragmentation and the number of
continuous days of air pollution, indicating that polycentric urban forms should be adopted in order
to shorten continuous pollution processes. If serious about achieving the meaningful alleviation
of air pollution, decision makers and urban planners should take urban form into account when
developing sustainable cities in developing countries like China.

Keywords: urban form; air pollution; landscape metrics; panel data analysis

1. Introduction

Human activity is the main driving factor intensifying a range of environmental issues [1].
The concentration of people and economic activities in emerging megacities has been accompanied
by a growing vehicle fleet [2], a development that has led to rapid increases in energy consumption,
exhaust emissions, and consequently air pollution, especially in developing countries [3]. There is no
doubt that ambient air pollution, which constitutes a pressing environmental concern, poses a range
of negative health implications at local, regional, and global scales [4], including higher instances of
cardiorespiratory diseases among urban dwellers [5]. These impacts incur real costs for individuals,
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medical systems, and economies [6]. Due to the inevitability and intractability of such effects, much
scholarly attention has been directed towards identifying the influencing factors behind air pollution.
The role played by the spatial configuration and urban form of cities in tackling environmental pressure
is increasingly being recognized by the academic community [7,8]. Specifically, this paper addressed
the extent to which spatial optimization and urban planning could either improve or worsen the urban
environment, by specifically investigating the impacts of urban form on air pollution, which is of great
significance for alleviating pollution and achieving sustainable development.

Many previous studies addressed the mechanisms by which urban form might influence air
pollution, both theoretically [7,9,10] and empirically [11–18]. From the theoretical perspective,
air pollution is believed to maintain a high correlation with energy consumption in terms of both
industrial processes and vehicles, as the combustion of fossil fuel is the primary source of many
important pollutants, such as sulfur dioxide (SO2) and carbon monoxide (CO) [7]. Whilst urban form
is less likely to affect the air pollution generated by industrial emission sources (which maintain
relatively stable locations), it does exert clear effects on the air pollution associated with automobiles,
by influencing urban traffic patterns and citizens’ travel behavior [9]. Generally speaking, compact
(that is mixed-use and high-density) urban form is negatively correlated with auto dependence
and positively correlated with the use of public transit and walking, and thus the mitigation of air
pollution [10]. The correlation between urban form and air pollution have been estimated empirically
using a variety of methodologies, particularly in relation to developed countries [11]. In general,
two kinds of measurements are commonly utilized to quantify air pollution: (i) the Air Quality Index
(AQI) and (ii) the concentration of certain pollutants, such as nitrogen dioxide (NO2), fine particulate
matter (PM2.5), and ozone (O3). McCarty and Kaza investigated the associations between several
urban landscape metrics and AQI in the U.S., associating sprawling and fragmentary urban spatial
structure with lower air quality [12]. Stone [13] estimated the association between urban form and O3

levels in 45 large U.S. metropolitan areas, finding that excessive O3 levels were more likely to occur in
decentralized metropolitan regions than in spatially compact metropolitan regions. Similar conclusions
were drawn by Schweitzer and Zhou in their study of neighborhood-level O3 concentrations in
80 U.S. metropolitan regions [14]. Focusing on the New York City (NYC) metropolitan region in
the U.S., Civerolo et al., modeled the potential effects of urban expansion on O3 concentrations,
concluding that extensive changes in urban land cover may result in higher O3 concentrations [15].
Mansfield et al., [16] and Hixson et al., [17] have both investigated the impacts of different development
scenarios on PM2.5 concentrations, coming to the same conclusion that compact development reduced
these concentrations, while sprawling development increased them. A study by Bechle et al., quantified
the effects of urban form on NO2 concentrations for 83 cities globally, finding a negative correlation
between urban contiguity and NO2 concentrations, and no statistically significant correlation between
urban compactness and NO2 concentrations [18]. In contrast, Borrego et al., concluded that compact
urban morphology with mixed land uses helped to lower NO2 concentrations [9].

In spite of abundant studies on the correlation between urban form and air pollution in developed
countries, a limited amount of literature has addressed this significant issue in the context of developing
countries, especially China. Due to unprecedented industrialization and urbanization in recent decades,
China has become the largest developing country in the world [19], an achievement that has been
accompanied by substantial environmental deterioration, especially air pollution [6]. Urban areas
constitute the major contributor to China’s economic growth, and consume more than half of the
country’s energy [20]. Chinese residents, particularly urban residents, are increasingly responding
to air pollution [21], making ambient air pollution one of the top environmental issues in China [22].
Improving air quality is now recognized as being critical to achieving long-term sustainability in China.
Therefore, the Chinese government needs not only to foster continued economic growth, but also to
curb air pollution [23]. Existing studies on air pollution in China have engaged in the identification of
air pollution sources [24], as well as the spatiotemporal variations of air pollution [25,26]. Moreover,
the factors influencing air pollution in China, including meteorological factors, socioeconomic factors,
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and policy factors, have been identified by a number of scholars. Meteorological factors, such as
atmospheric pressure [27], wind speed [28], temperature [29], relative humidity [30], and breeze
circulation [31], have all been identified as fundamental determinants of air pollution in China.
Aside from these meteorological factors, it is commonly known that air pollution is strongly influenced
by human activities, and socioeconomic factors have been proven to maintain a high correlation with
air pollution in China, a correlation that reflects the country’s recent economic prosperity. For example,
applying the Environmental Kuznets model, Poon et al. investigated the effects of a number of
economic indicators addressing energy, transport, and trade on China’s air pollution levels [32].
Kim et al. utilized city-level panel data and spatial econometric models to examine the socioeconomic
factors that influence air pollution in Chinese cities, including industrial structure, population density,
green spaces, and public transit [33]. Using spatial regression and geographical detector technique,
Zhou et al., estimated the impacts of socioeconomic factors on PM2.5 in China’s cities [34]. In addition,
it might also be noted that the connections between China’s air pollution and several other specific
factors have been investigated, such as winter heating [35], ship emissions [36], and Chinese Nian
culture [37]. Furthermore, scientists have also taken an interest in the effectiveness of a range of policies
implemented by the Chinese government in order to alleviate air pollution, such as vehicle emissions
standards [38], energy saving and emission reduction regulations [39], and a range of measures to
ensure haze-free skies during the 22nd Asia-Pacific Economic Cooperation (APEC) conference [40].
However, the impact of urban form on air pollution in China has not been adequately addressed in
studies to date, which is taken as an evident omission within the existing literature.

While the correlation between urban form and air pollution has been widely demonstrated in the
context of developed countries, there has been limited progress in bringing urban form into the sphere
of factors that are understood to influence air pollution in China or highlight the potential role that
urban planning and spatial optimization might play in controlling air pollution. Addressing this gap,
this case study of China’s five most rapidly developing megacities was designed in order to contribute
to scholarly understanding of the mechanisms by which urban form might affect air pollution in the
context of developing countries. Three indicators based on the Air Pollution Index (API) were first
developed in order to evaluate air pollution levels. These formed the dependent variables of the study.
Urban form was then quantified, which constituted the independent variables of the study, using a
range of landscape metrics and remote sensing data. After completing these calculations, panel data
models were implemented in order to estimate the degree of correlation between urban form and
air pollution. The findings obtained from this study provide important decision support for decision
makers and urban planners in controlling air pollution and building sustainable cities in China.

2. Study Area

Given the substantial relationship between air pollution and urban areas, this study selected
five representative megacities in China as the study area: Beijing, Tianjin, Shanghai, Chongqing,
and Guangzhou. As shown in Figure 1, these five megacities are situated in northern, eastern,
western, and southern China. Beijing, China’s capital, is the country’s national center of politics
and culture. Abutting Beijing and the Bohai Gulf, Tianjin is the largest coastal city in North China.
Shanghai, which is situated in the Yangtze River Delta, is the economic, financial, and innovation
center of China. As the only municipality in West China, Chongqing is the regional economic and
transportation center for the upper Yangtze River. Guangzhou, located in the Pearl River Delta, is the
provincial capital of Guangdong and the largest city in South China. An important reason for selecting
these five megacities is that they are not only the largest but also the most developed cities in the
country. Four of these cities are municipalities; the exception, Guangzhou, is the largest city in South
China. The rapid industrialization and urbanization of these five megacities has led to environmental
disruption, including air pollution, which poses a serious challenge for their sustainability. Far better
understanding of the correlation between urban form and air pollution is required if policy makers are
to be able to promote environment protection and air quality improvement.
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Figure 1. Locations of the five Chinese megacities in this study: Beijing and Tianjin in North China, 
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accompanying health effects [42]. Its statistical characteristics are described in Table 1. Daily API data 
for the five Chinese megacities studied, from 2000 to 2012, were derived from the data center of 
China’s Ministry of Environmental Protection (MEP) (http://datacenter.mep.gov.cn). 
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pollutants—namely, SO2, NO2, and suspended particulates (PM10), each of which are computed 
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and the corresponding pollutant identified as the “main pollutant” [43]. A method of linear 
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Figure 1. Locations of the five Chinese megacities in this study: Beijing and Tianjin in North China,
Shanghai in East China, Chongqing in West China, and Guangzhou in South China.

3. Data and Method

3.1. Air Pollution Measurement and Data Processing

The Air Pollution Index (API) is a model that is commonly used to gauge the level of ambient
air pollution. It takes the form of a non-dimensional number in a range of 0–500 [41] and offers a
more generalized and simple way for the public to understand the degree of air pollution and the
accompanying health effects [42]. Its statistical characteristics are described in Table 1. Daily API
data for the five Chinese megacities studied, from 2000 to 2012, were derived from the data center of
China’s Ministry of Environmental Protection (MEP) (http://datacenter.mep.gov.cn).

Table 1. Statistical characteristics of Air pollution index (API) in China.

API 1 Air Quality Class Air Quality Evaluation Health Effects

0–50 I Excellent Harmless
51–100 II Good Acceptable
101–200 III Mild pollution Unhealthy for sensitive population
201–300 IV Moderate pollution Unhealthy
301–500 V Severe pollution Very unhealthy

1 Air pollution index.

The API is an integrated measurement reflecting the levels of three fundamental atmospheric
pollutants—namely, SO2, NO2, and suspended particulates (PM10), each of which are computed
individually, with the highest API of the three air pollutants then being reported as the city’s
API, and the corresponding pollutant identified as the “main pollutant” [43]. A method of linear
interpolation was used to calculate API [44], specified as:

APIi =
(APIU − APIL)

(CU − CL)× (Ci − CL)
+ APIL, (1)

API = max(APIi), (2)

http://datacenter.mep.gov.cn
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where APIi is the index for pollutant i (SO2, NO2, and PM10). A daily index is calculated for each air
pollutant. Ci is the observed concentration of pollutant i. CU and CL are the upper and lower limits
of the interval (shown in Table 2), within which lies the Ci. APIU and APIL are the upper and lower
limits of the corresponding API interval. The API is defined as the maximum of APIi, and the pollutant
responsible for the highest index is the “main pollutant,” if the API is above 50.

Table 2. Intervals for pollutant concentrations and corresponding API.

Intervals for Pollutant Concentrations (mg/m3)
API Intervals

SO2
1 NO2

2 PM10
3

[0.000, 0.050] [0.000, 0.080] [0.000, 0.050] 0–50
(0.050, 0.150] (0.080, 0.120] (0.050, 0.150] 51–100
(0.150, 0.800] (0.120, 0.280] (0.150, 0.350] 101–200
(0.800, 1.600] (0.280, 0.565] (0.350, 0.420] 201–300
(1.600, 2.100] (0.565, 0.750] (0.420, 0.500] 301–400
(2.100, 2.620] (0.750, 0.940] (0.500, 0.600] 401–500

1 Sulfur dioxide; 2 Nitrogen dioxide; 3 Particulate matter with particle size less than 10 mu.

On the basis of the daily API data, three derived indexes were further developed in order to assess
annual air pollution levels in the five Chinese megacities: mean API (MAPI), air pollution ratio (APR),
and continuous air pollution ratio (CAPR).

MAPI is the average value of daily API and reflects the overall air pollution level for a whole year,
a measure which overlooks the daily differences in air pollution and is susceptible to extreme values.
According to Table 1, a day would be identified as “polluted” if it had an API that was greater than 100,
and further defined “continuous air pollution” as a process defined by three or more uninterrupted air
pollution days. As such, APR is measured by the proportion of the number of air pollution days in a
year and represents the actual air pollution days with detrimental health effects. It is believed that
continuous air pollution processes have greater adverse health effects than intermittent air pollution
processes when controlling for the number of air pollution days. Taking the persistence and dispersal
of air pollution into account, CAPR denotes the continuous air pollution process, which is measured
by the ratio of the total amount of air pollution days in a continuous air pollution process to the total
observed days in a year. The specified equations are as follows.

MAPI =
∑n

i=1 APIi

No
, (3)

APR =
Np

No
, (4)

CAPR =
Ncp

No
, (5)

where MAPI, APR, and CAPR denote API, air pollution ratio, and continuous air pollution ratio,
respectively. APIi indicates the air pollution index in ith day. No represents the total observed days
in a year. Np denotes the total amount of air pollution days. Ncp represents the total amount of air
pollution days in continuous air pollution process.

3.2. Remote Sensing Data and Landscape Metrics for Quantifying Urban Form

Using land-use data from Landsat Enhanced Thematic Mapper (ETM) and Landsat Thematic
Mapper (TM) scenes with a spatial resolution of 30 m × 30 m for four periods (2000, 2005,
2010, and 2012), which was developed by the Institute of Geographical Sciences and Natural
Resources Research (IGSNRR, http://www.igsnrr.ac.cn) at the Chinese Academy of Sciences (CAS),
urban built-up areas for each of the five megacities were extracted. Detailed extraction processes can

http://www.igsnrr.ac.cn
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be seen in relevant literatures [45,46]. Figure 2 presents the spatial patterns of urban growth in each of
the megacities from 2000 to 2012.

Landscape metrics characterize the spatial configuration of a landscape [47], and have proved
effective means for quantifying urban form [48,49]. Based on existing literature addressing urban
form [50–53], seven common landscape metrics were selected to measure urban form in this study:
total area (TA), perimeter-area fractal dimension (PAFRAC), area-weighted mean fractal dimension
index (AWMFDI), mean perimeter-area ratio (MPARA), patch density (PD), landscape division
index (DIVISION), and splitting index (SPLIT). These indicators represent three aspects of urban
form—namely, urban size, urban shape irregularity, and urban fragmentation. Total area (TA) is a
fundamental indicator for calculating a range of landscape metrics, and denotes the overall size of
an urban area. Urban shape irregularity, which is interpreted as the degree to which the geometry of
urban patches is considered to be “convoluted,” is represented by PAFRAC, AWMFDI, and MPARA.
In general, the higher the values of PAFRAC, AWMFDI, and MPARA, the more complex the shape
of the urban area. PD, DIVISION, and SPLIT assess the degree to which urban patches are scattered,
and the lower the values of these three landscape metrics, the more compact the urban form is. All the
landscape metrics applied in this research were calculated using the FRAGSTATAS 4.2 software,
and Table 3 sets out the specific mathematical equations and descriptions of them.
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Table 3. Description of landscape metrics used in the study.

Landscape Metric Equation

Total landscape area (TA) TA =
n
∑

j=1
aij(1/10000)

Perimeter-area fractal dimension (PAFRAC) PAFRAC =

2[
N ∑m

i=1 ∑n
j=1(ln pij · ln aij)

]
−
[(

∑m
i=1 ∑n

j=1 ln pij

)(
∑m

i=1 ∑n
j=1 ln aij

)]
(N ∑m

i=1 ∑n
j=1 ln pij

2)−(∑m
i=1 ∑n

j=1 ln pij)
2

Area-weighted mean fractal dimension index
(AWMFDI) AWMFDI = ∑m

i=1 ∑n
j=1

[(
2 ln(0.25pij)

ln(aij)

)(
aij
A

)]
Mean perimeter-area ratio (MPARA) MPARA =

∑m
i=1 ∑n

j=1(pij/aij)
mn

Patch density (PD) PD = N
A

Landscape division index (DIVISION) DIVISION = 1 − ∑m
i=1 ∑n

j=1

(
aij
A

)2

Splitting index (SPLIT) SPLIT = A2

∑m
i=1 ∑n

j=1 aij
2

aij = area of patch ij; N = total number of patches in the landscape; pij = perimeter of patch ij; A = total landscape area.

3.3. Panel Data Analysis

Generally, the formulas of panel data models can be categorized into three types: the fixed
coefficients and intercepts model, the constant coefficients and variable intercepts model, and the
variable coefficients and variable intercepts model [54]. The fixed coefficients and intercepts model
has constant slopes and intercepts, which can be expressed as Equation (6). As shown in Equation (7),
the constant coefficients and variable intercepts model has constant slopes and variable intercepts.
Equation (8) represents the variable coefficients and variable intercepts model, which has differential
slopes and intercepts that vary based on time and/or entity.

yit = α + βxit + εit, (6)

yit = αi + βxit + εit, (7)

yit = αi + βixit + εit, (8)

where i is the number of observations over time; t denotes the time; αi is the intercept for discerning
the fixed effects or random effects; and εit is the error term.

An F-test, based on two main hypotheses (H1 and H2), is usually used in selecting the specific
form of panel data model, which compares the residual sum of squares (RSS) of Equations (6)–(8).
Given the confidence level, if F2 is larger than the critical value, the hypothesis H2 is accepted and
Equation (6) is chosen; otherwise, the hypothesis H1 must be tested. If F1 is larger than the critical
value, the hypothesis H1 is then accepted, and Equation (7) is chosen; otherwise Equation (8) is chosen.

H1 : β1 = β2 = · · · = βN

F1 = (S2−S1)/[(N−1)k]
S1/(NT−N(k+1)) ∼ F[(N − 1)k], N(T − k − 1)

(9)

H2 : α1 = α2 = · · · = αN β1 = β2 = · · · = βN

F2 = (S3−S1)/[(N−1)(k+1)]
S1/(NT−N(k+1)) ∼ F[(N − 1)(K + 1), N(T − K − 1)]

(10)

where F1 is the statistic under the hypotheses of H1 in which intercepts and slopes are constant
over time; F2 is the statistic under the hypotheses of H1 in which intercepts are variable and slopes
are constant over time; S1, S2, and S3 are RSS for Equations (6)–(8), respectively; and N, T, and k
denote the number of observations over time, the number of years, and the number of independent
variables, respectively.

After determining the specific form of the panel data model, whether the fixed effects estimator
or the random effects estimator should be utilized needed to be decided. From a methodological
perspective, allowing for the insertion of dummy variables, the fixed effects estimator can estimate



Int. J. Environ. Res. Public Health 2018, 15, 1565 8 of 18

parameters for panel models which have different intercepts for different time series or sections.
The random effects estimator should be used if the intercept term in the fixed effects estimator contains
the average effects of time series random error term and cross-sectional random error term. Generally,
a Hausman test is employed to select the appropriate type of estimator [55].

4. Findings and Discussions

4.1. Evolution of Air Pollution, 2000–2012

Figure 3a shows that MAPI generally decreased between 2000 and 2012, implying that the overall
air quality of the five cities improved over this period. Tianjin evidences the most distinct reduction
in MAPI, which decreased from 110 in 2000 to 78 in 2012. From Figure 3b, a downward trend in the
APR values of the five cities was also found, which indicates a decrease in number of air pollution
days. It suggested that Guangzhou consistently had the lowest APR value and also went through the
most distinct decrease in APR—from 9% in 2000 to 1% in 2012. As indicated in Figure 3c, CAPR shows
a downward trend as well, indicating the alleviation of continuous air pollution processes. In 2000,
Tianjin maintained the highest CAPR value (at 34%), however, by the year 2012, Beijing had become
the city with the highest CAPR (at 11%). Moreover, Shanghai and Guangzhou are shown to have
experienced the most distinct decrease in CAPR and there were no continuous air pollution processes
in these two cites by the year 2012.
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4.2. Analysis of Changing Urban Form

As the most rapidly developing regions in China, the five megacities addressed in this study
attracted migrants from all over the country, aggregated economic activities, and thus experienced
significant increases in urban size. Figure 4 portrays changes in the urban areas of the five cities over
the study area, from which it can be concluded that the total urban area of each city grew rapidly
between 2000 and 2012. Beijing has consistently had the largest urban area and experienced an
increase of 393.74 km2 during the period studied, while the urban areas of Chongqing had always
been the smallest despite increasing by 404.78 km2. Tianjin experienced the greatest urban expansion
(609.99 km2), while Shanghai went through the least expansion (300.28 km2).Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  9 of 17 
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As indicated in Figure 5, the results from calculating urban shape irregularity and urban
fragmentation show significant differences between cities in terms of the magnitudes and variation
tendencies of the other six landscape metrics. In general, the values of PAFRAC, AWMFDI, and MPARA
increase as the shape of an urban built-up area becomes more convoluted, and the values of PD,
DIVISION, and SPLIT increase as the urban form becomes decentralized.
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4.3. Estimation Results of Panel Data Models

Before performing the panel data analysis, a multicollinearity test was conducted to see whether
multicollinearity, a situation in which explanatory variables are linearly correlated in a multiple
regression model, existed among the seven landscape metrics selected in this study. From the test
results set out in Table 4, it can be concluded that no serious multicollinearity existed among the seven
independent variables. Given this, parameter estimations of the panel data models could be conducted.

In order to better understand the associations between urban form and air pollution,
nine regression models were established (here referred to as Model 1 to Model 9). The dependent
variables in Model 1–3, Model 4–6, and Model 7–9, are MAPI, APR, and CAPR, respectively. Among the
nine models, Model 1, Model 4, and Model 7 first reviewed the regression results of TA. PAFRAC,
AWMFDI, and MPARA were then added in Model 2, Model 5 and Model 8, and PD, DIVISION,
and SPLIT were sequentially added in Model 3, Model 6 and Model 9. Based on the above procedure,
the robustness and the reliability of the estimation results could be tested by comparing the coefficients,
which indicated that the estimation results were robust and reliable.

F-tests were then performed to discern which specific regression form should be used for these
nine models. The results of the F-tests are presented in Table 5. For Model 1, given the significance level
of 5%, F2 is equal to 17.51, which is larger than F0.05(1,14), indicating that H2 was rejected. Moreover,
F1 is equal to 23.10, which is larger than F0.05(4,14) at the significance of 5% level; thus, H1 was rejected
too, indicating that Equation (8) is the suitable form of Model 1. Similar conclusions were also drawn
from the F-tests results for Model 2 to Model 9; thus, Equation (8) was also employed for the other
eight models.
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Table 4. Pearson’s correlation coefficients of the independent variables.

TA PAFRAC AWMFDI MPARA PD DIVISION SPLIT

TA 1 - - - - - -
PAFRAC −0.627 *** 1 - - - - -
AWMFDI 0.257 0.036 1 - - - -
MPARA 0.409 * −0.698 *** 0.249 1 - - -

PD −0.679 *** 0.737 *** −0.129 −0.223 1 - -
DIVISION −0.768 *** 0.434 * −0.332 −0.144 0.779 *** 1 -

SPLIT −0.498 ** 0.645 *** −0.163 −0.304 0.793 *** 0.782 *** 1

*** p < 0.01; ** p < 0.05; * p < 0.1.

Table 5. F-test results.

Hypothesis H2 Hypothesis H1

Model 1 F0.05(1,14) < 17.51 F0.05(4,14) < 23.10
Model 2 F0.05(4,11) < 10.17 F0.05(4,11) < 13.74
Model 3 F0.05(7,8) < 8.15 F0.05(4,8) < 7.34
Model 4 F0.05(1,14) < 6.26 F0.05(4,14) < 16.88
Model 5 F0.05(4,11) < 2.17 F0.05(4,11) < 6.83
Model 6 F0.05(7,8) < 7.23 F0.05(4,8) < 6.74
Model 7 F0.05(1,14) < 11.87 F0.05(4,14) < 16.84
Model 8 F0.05(4,11) < 3.69 F0.05(4,11) < 5.59
Model 9 F0.05(7,8) < 7.10 F0.05(4,8) < 5.25

After determining the specific regression forms of these nine panel data models utilizing F-tests,
Hausman tests—which focus on whether the generalized least squares (GLS) estimates and covariance
estimator of the common parameter are obviously different, and for which the null hypothesis was
that the random effects model is preferable [56]—were implemented to determine whether the fixed
effects estimator or the random effects estimator should be employed for the nine panel data models.
As shown in Table 6, the p values of the nine models were all less than the critical value at the 5% level
of significance, rejecting the null hypothesis, which meant that the fixed effects model, rather than the
random effects model, should be used.

Table 6. Hausman test results.

Chi-Sq Statistic p-Values Type of Regression Model

Model 1 6.95 0.0004 Fixed effects
Model 2 10.72 0.0015 Fixed effects
Model 3 13.14 0.0121 Fixed effects
Model 4 12.58 0.0007 Fixed effects
Model 5 15.63 0.0023 Fixed effects
Model 6 18.40 0.0103 Fixed effects
Model 7 8.82 0.0007 Fixed effects
Model 8 14.37 0.0002 Fixed effects
Model 9 17.23 0.0160 Fixed effects

Tables 7–9 exhibit the parameter estimation results of the MAPI model, APR model, and CAPR
model, respectively. Surprisingly, TA is found to be negatively correlated with MAPI, APR, and CAPR,
implying that urban expansion may alleviate air pollution to some extent. In the context of European
and American cities, previous studies have shown that vegetation [57,58] and water [59,60] deposit and
absorb air pollutants, especially particulate matter; it is for this reason that reductions of vegetation
and water caused by urban expansion decrease the deposition and absorption of air pollutants
and consequently aggregate air pollution. However, these studies were only undertaken from the
perspective of the absorption of air pollutants without taking the emissions of air pollutants into
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account, and it is on the basis of this omission that a possible explanation might be offered for why
urban expansion might improve air quality. It is commonly known that urban growth in Chinese
cities is accompanied with the identity conversion of rural residents to city dwellers, which leads to
significant lifestyle changes, including changes in household energy use. Specifically, city dwellers
mostly use clean energy such as liquefied petroleum gas, natural gas, and electricity, while the direct
combustion of firewood and coal makes up a considerable proportion of rural residents’ household
energy consumption, especially for winter heating. The rapid urbanization process in China results
in more urban population and less rural population [61]. The substitution of clean energy for dirty
energy resulting from urbanization in China can thus contribute significantly to improvements in
air quality. Furthermore, it suggested that PAFRAC, AWMFDI, and MPARA displayed positive
impacts in relation to APR, indicating that complex urban shape helps to increase the number of air
pollution days, which is accompanied by detrimental health effects. Exhaust emission from household
vehicle travel, which has a strong correlation with urban form [62], is a main source of air pollution in
many cities [63]. High urban shape irregularity may result in disorder and chaos in traffic, with the
subsequent traffic congestions being characterized by low vehicle speeds, long vehicle trips, and a large
volume of air pollutant emissions [4]. Due to the temporal characteristics of citizens’ travel behavior,
significant daily differences exist in the degrees of traffic congestion and consequently of air pollution.
As such, regular urban geometry is conducive to reducing APR, which takes the daily differences of
air pollution into account. In addition, PD, DIVISION, and SPLIT demonstrated significant negative
correlations with CAPR. In the context of European and American cities, numerous previous studies
have concluded that fragmented urban form can worsen the job-housing imbalance, which leads to a
more auto-dependent lifestyle characterized by higher single-occupant vehicles use and larger vehicle
kilometers of travel (VKT), and thus aggravates air pollution [64]. However, compact urban form was
found to be conductive to the persistence of air pollutants and thus led to continuous air pollution
processes in five Chinese cities, which results in a contrasting conclusion. This finding can be ascribed
to the effects of urban form on microclimate in cities, through qualities such as temperature and air
motion. Temperature is influenced by urban form mainly through the heat island effect, which can be
aggravated by continuous impervious surfaces in cities [65,66]. Hence, compact and continuous urban
form results in rising temperatures, which help to accumulate air pollutants. Stagnant atmospheric
conditions prevent the dispersal of air pollutants [4], as mass skyscrapers constitute obstacles to
air flow and reduce wind speed [67]. Moreover, it should also be noted that compact urban form
with high-density city centrality may increase exposure to air pollution by gathering population,
which consequently would result in severe adverse health effects.

Table 7. Estimation results for MAPI model.

Independent Variables MAPI Model

Model 1 Model 2 Model 3

ln TA −0.300 *** −0.285 *** −5.401 ***
(0.0717) (0.102) (14.71)

ln PAFRAC - −2.887 −233.0 *
- (1.675) (132.2)

ln AWMFDI - −1.771 −158.0
- (3.536) (148.5)

ln MPARA - −0.155 * −24.77 *
- (0.0747) (7.886)

ln PD - - 156.2 *
- - (62.16)
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Table 7. Cont.

Independent Variables MAPI Model

Model 1 Model 2 Model 3

ln DIVISION - - −78.20 *
- - (37.25)

ln SPLIT - - 0.669
- - (1.300)

R-squared 1 0.781 0.835 0.877

*** p < 0.01; ** p < 0.05; * p < 0.1; 1 Coefficient of determination.

Table 8. Estimation results for APR model.

Independent Variables APR Model

Model 4 Model 5 Model 6

ln TA −1.107 ** −1.181 ** −0.208 **
(0.443) (0.816) (0.152)

ln PAFRAC - 5.616 *** 2.898 ***
- (13.43) (1.125)

ln AWMFDI - 23.70 ** 1.348 ***
- (28.36) (3.066)

ln MPARA - 0.0431 ** 0.168 **
- (0.599) (0.0599)

ln PD - - −0.531
- - (0.653)

ln DIVISION - - −0.110 *
- - (0.375)

ln SPLIT - - −0.0252
- - (0.0148)

R-squared 1 0.802 0.841 0.864

*** p < 0.01; ** p < 0.05; * p < 0.1; 1 Coefficient of determination.

Table 9. Estimation results for CAPR model.

Independent Variables CAPR Model

Model 7 Model 8 Model 9

ln TA −1.743 *** −1.688 *** −0.242 ***
(0.506) (0.921) (0.140)

ln PAFRAC - −14.15 −0.570 *
- (15.17) (1.029)

ln AWMFDI - −0.411 −0.0958
- (32.02) (2.806)

ln MPARA - −0.821 −0.0192
- (0.677) (0.0548)

ln PD - - −2.733 ***
- - (0.598)

ln DIVISION - - −0.745 **
- - (0.343)

ln SPLIT - - −0.165 ***
- - (0.0136)

R-squared 1 0.796 0.827 0.861

*** p < 0.01; ** p < 0.05; * p < 0.1; 1 Coefficient of determination.



Int. J. Environ. Res. Public Health 2018, 15, 1565 14 of 18

Based on this study, it might prove fruitful to further explore how urban form affects air pollution
in Chinese cities, and some study prospects are proposed as follows. Firstly, relevant studies are
expected to be conducted at a smaller level, such as at the land parcel level. This research topic is likely
to be better addressed at a smaller level, as the effects of urban form on air pollution may vary across
land parcels. Secondly, more Chinese cities are expected to be incorporated, in order to examine the
diverse impacts of urban form on air pollution in cities with different characteristics. Last but not least,
sensitivity analysis is expected to be applied in relevant studies, particularly global sensitivity and
uncertainty analyses (GSUA) [68,69], a variance-based method for analyzing data and models given an
objective function [70]. GSUA can highlight the uncertainty-sensitivity-complexity of the model/data
as well as management implications of the model and/or results [71]. In addition, the interrelatedness
among selected variables can be assessed using maximum entropy networks (MENets) [72].

5. Conclusions

Air pollution has emerged as a prominent threat to global sustainability. Much scholarly attention
has been directed towards air pollution from a range of perspectives, and urban form is increasingly
being identified as a key determinant of air pollution in developed countries. However, a limited
number of studies addressed the impacts of urban form on air pollution in developing countries,
especially in China, the world’s largest developing country [73]. In order to fill this gap, this study
estimated the effects of urban form on air pollution, focusing on the five most rapidly-developing
megacities in China.

On the basis of API, three quantitative indicators (i.e., MAPI, APR, and CAPR) were developed to
evaluate different aspects of air pollution in five Chinese megacities. A range of landscape metrics,
which characterized three aspects of urban form (i.e., urban size, urban shape irregularity, and urban
fragmentation), were then calculated based on remote sensing data. Panel data modeling was
subsequently performed in order to estimate the associations between urban form and air pollution in
the five Chinese cities.

The results suggested that TA exerted negative impacts on MAPI, APR, and CAPR, indicating
that urban expansion helped to abate air pollution, a finding that is inconsistent with previous studies
addressing European and American cities. The substitution of clean energy for dirty energy that results
from urbanization in China provided a possible explanation for this finding. Moreover, PAFRAC,
AWMFDI, and MPARA were found to positively correlate with APR, which suggested that irregular
urban shape contributed to increasing the number of air pollution days. As APR is an indicator that
takes daily differences in air pollution into account and the traffic congestion arising from high urban
shape complexity has temporal characteristics as well, which leads to more air pollutants emissions,
the geometry of urban land was believed to affect the number of air pollution days by influencing
traffic configuration in Chinese cities. In addition, PD, DIVISION, and SPLIT were found to negatively
correlate with CAPR, a result that indicated that compact urban form could aggravate continuous air
pollution processes. This finding was attributed to the effects of compact urban form on microclimate
in Chinese cities, through the urban heat island effect and stagnant atmospheric conditions that prevent
the dispersal of air pollutants.

The findings obtained from this study hold a range of implications for policy making. Firstly,
the disordered urban sprawl should be controlled, and sustainable urban growth and moderate
urban sizes should be advocated alternatively. For example, transit-oriented development, which
encourages more biking, walking, and public transit use [74], can reduce auto-dependency and
consequent air pollution. Only in this way can the benefits of urban expansion be preserved while its
potential negative impacts are reduced. Moreover, the geometry of urban land should be optimized
to lower irregularity, as urban form with low shape irregularity not only reduces vehicle travel
demand, but also increases road density and street accessibility, both of which are associated with less
traffic congestion, more efficient transportation systems, and consequent reduction of mobile-source
emissions. Last but not the least, since the decentralization of urban functions and polycentric urban
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form are of great significance for facilitating the dispersal of air pollutants and terminating the
persistence of air pollution, “leapfrog” development strategy and decentralized spatial configurations
should be advocated to shape polycentric urban form rather than monocentric urban form, and to
conserve greenbelt.
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