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Abstract: Kidney exchange programs, which allow a potential living donor whose kidney is
incompatible with his or her intended recipient to donate a kidney to another patient in return
for a kidney that is compatible for their intended recipient, usually aims to maximize the number of
possible kidney exchanges or the total utility of the program. However, the fairness of these exchanges
is an issue that has often been ignored. In this paper, as a way to overcome the problems arising
in previous studies, we take fairness to be the degree to which individual patient-donor pairs feel
satisfied, rather than the extent to which the exchange increases social benefits. A kidney exchange has
to occur on the basis of the value of the kidneys themselves because the process is similar to bartering.
If the matched kidneys are not of the level expected by the patient-donor pairs involved, the match
may break and the kidney exchange transplantation may fail. This study attempts to classify possible
scenarios for such failures and incorporate these into a stochastic programming framework. We apply
a two-stage stochastic programming method using total utility in the first stage and the sum of the
penalties for failure in the second stage when an exceptional event occurs. Computational results
are provided to demonstrate the improvement of the proposed model compared to that of previous
deterministic models.

Keywords: kidney exchange program; unfairness indicator; exceptional event; two-stage stochastic
programming

1. Introduction

Kidney exchange programs (KEPs) offer a new opportunity for patients on a kidney
transplantation list to find suitable kidneys. Because everyone is born with two kidneys and can
survive with only one, kidney transplantations are possible. There is a higher chance of a match in
family members, so kidney transplantations often occur among family members. However, problems
arise when family members have kidneys that are incompatible with the patient. In this case, a kidney
exchange program is a possible solution. Kidney exchanges can occur when there are two incompatible
patient-donor pairs, but the donors are compatible with the patient in the other pairing. Kidney
exchanges were introduced in 1986 by Felix Rappaport [1] and first performed in South Korea in
1991 [2–4]. Many countries, including Switzerland [5], the UK [6], and the USA [7–9], have since
performed kidney exchange transplantations. We here remark that the Korea Centers for Disease
Control & Prevention (KCDC) has recently reviewed and discussed a plan for the development of an
integrated IT healthcare platform for the KEP, and hospitals can participate in the provision of the
essential information for their renal disease sufferers with their medical records to the platform. Thus,
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the KCDC believes that the nationwide KEP platform would possibly provide good matching plans to
maximize social utility.

Operations research (OR) technique has been applied extensively across healthcare issues [10],
and KEP is one of the important issues where OR technique has been used. KEP is typically modeled
as an integer linear programing network optimization problem. Depending on the nature of KEP,
a lot of deterministic models for the optimization of these programs have been designed. However,
considering that the risk of uncertainty in KEP has not been discussed much, it is still an ongoing
issue. The risk of uncertainty in KEP can lead to failure in matching, which means that a surgery
cannot be done. In this study, we use the Stochastic Programming (SP) [11,12] framework to consider
failure scenarios before matching takes place. In particular, a two-stage stochastic programming is a
promising method for this purpose, in that it incorporates the effect of data uncertainty in the second
stage. We list possible exceptional events and classify them as two types of failure scenarios, i.e., node
failure and arc failure. The former occurs within a single pair and the latter occurs between pairs. Node
failure can occur when the condition of the patient in one of the pairs seriously deteriorates. Arc failure
can occur when one of two pairs changes its mind, which means when a pair feels unsatisfied with its
matching. Because a kidney exchange is a form of bartering, the patient-donor pairs play the role of
customers. Depending on the nature of the barter, a single patient-donor pair may refuse to go through
with a particular transplantation. We consider the fairness issue at this point and define fairness in
different ways. We propose the notion of personal fairness, something which previous studies have not
considered much. Personal fairness is the extent to which individual patient-donor pairs feel satisfied
with the exchange. We propose a value indicator, unfairness, to represent the level of satisfaction.
We give the penalty value to two representative examples of node failure and arc failure to reflect their
effect in the second stage of the SP framework.

KEP is typically designed as follows. Figure 1 illustrates how incompatible patient-donor pairs
can be organized to allow successful surgery to take place by exchanging transplants. Figure 1a
illustrates the process by which two incompatible pairs exchange kidneys. If the donor of Pair 1 and
the patient of Pair 2 are compatible and the donor of Pair 2 and the patient of Pair 1 are compatible,
surgery can take place. Likewise, three incompatible patient-donor pairs can also be matched by
exchanging kidneys (Figure 1b).
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Figure 1. Illustration of (a) two-pair and (b) three-pair kidney exchanges.

The general KEP model can be expressed by directed graph (V, A) referred to as a KEP graph—with
set of vertices V and set of arcs A (Figure 2). Vertex i ∈ V represents an incompatible patient-donor pair
and arc (i, j) ∈ A represents compatibility between pairs (i, j). wij represents the weight of arc (i, j) ∈ A,
indicating the likelihood of surgical success. Figure 2a presents possible links as dotted lines, while
Figure 2b presents a constructed cycle with vertices {1, 2, 4} ⊂ V and arcs {(1, 2), (2, 4), (1, 4)} ⊂ A.
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The following are some of the studies that considered deterministic mathematical models.
Roth et al. [13] proposed both edge and cycle formulations for KEPs. Abraham et al. [14] proposed
a clearing algorithm that solves established models. Constantino et al. [15] suggested two compact
formulations, an edge-assignment (EA) formulation and an extended edge (EE) formulation.
Yuh et al. [16] applied the reformulation-linearization technique (RLT) to the EA and EE formulations
for deriving a tighter and more compact formulation. The models in these previous studies use
objective functions to increase the utility of the program as a whole. However, these models do not
reflect equity as experienced by the individuals involved, nor did they attempt to incorporate the risk
of failure.

Past research has identified several different perspectives on fairness in terms of KEPs.
For example, Bertsimas et al. [17] raised the issue of defining fairness in relation to kidney exchange
transplants. They suggested that the concept of fairness can vary depending on the focused target,
whether it be the individual or society as a whole. Indeed, most previous studies have defined fair
exchanges as being those that increase the overall social benefit by prioritizing difficult-to-match
pairs [18]. This method achieves high levels of social fairness but fails to reflect the characteristics of
bartering, in which individuals feel the exchange is fair when they are satisfied with it.

The risk of not considering personal fairness is that it can directly lead to the failure of surgery.
A single patient-donor pair may refuse to go through with a particular transplantation when they
feel unfair, even though the matched kidney is compatible, in order to wait for a better one. In fact,
many kidneys that are medically compatible with some of the patients on transplant waiting lists are
left unselected and unused [19,20]. Sabouri et al. [21] suggested screening strategies for identifying
patients who are ineligible for transplants. These studies imply that there are kidneys which are not
suitable for transplant. The attractiveness of the exchange depends on the condition and the value
of the kidney; based on these criteria, the patient-donor pair make a choice without considering the
medical situation. Therefore, by considering the satisfaction of the individuals involved, it is possible
to minimize the amount of unused kidneys and to reduce matching failure.

It is important to minimize matching failure in a KEP because a single failure can have a flow-on
affect that disrupts other possible transplants as well. Previous studies have focused on failure in the
context of the kidney exchange problem. For example, Zheng et al. [22] were the first to consider arc
failure, while Dickerson et al. [23] mathematically outlined the impact of failure on exchange cycles
and chains. Alvelos et al. [24] proposed a compact integer programming model considering failure
probabilities and they assumed that all arc and vertices have the same failure probabilities, while
our study specified and considered individual pair’s characteristics and the effect of failure with the
penalty value. Our work has uniqueness and advantage in its specified approach.
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There have been some studies applying a stochastic and heuristic approach. Awasthi et al. [25]
proposed online stochastic optimization with trajectory-based algorithms. Dubey et al. [26] utilized
ant-lion optimization algorithm as a meta-heuristic approach to solve KEP.

Stochastic programming which is mentioned earlier can be a key to the limitation of uncertainty
issues by utilizing different objective functions at each stage. A more robust model can be developed
through using an objective function that increases total utility in the first stage, and an objective
function that decreases the penalty for failure in the second stage. Because of the presence of the two
objective functions, we expect two measurable improvements in this model. One is robustness to
exceptional events, and the other is individual satisfaction while maintaining social utility.

In this paper, we propose a two-stage SP model that considers exceptional events that have not
been included in previous deterministic models. We develop this two-stage SP model based on the
compact EA model introduced by Constantino et al. [15]. We redefine fairness as personal fairness in
terms of an individual pair’s satisfaction and establish an indicator of unfairness. We classify failure
scenarios and incorporate them into the second stage to obtain a more robust model. Computational
results are provided to demonstrate the improvement of this model compared to the previous
deterministic model. The contributions of our study can be summarized as follows.

We propose a stage-based SP model that reflects exceptional events before matching takes place.
We consider failure scenarios in the second stage and classify failure scenarios as either arc failure or
node failure. Experimental results illustrate that this stochastic model is more robust to failure than
deterministic models when an exceptional situation occurs. This model thus proves that failure can
be taken into account before matching, and this technique can be extended in many ways by adding
failure scenarios.

We redefine and formalize fairness within a kidney exchange program as personal fairness, which
is a measure of how satisfied individual pairs feel during an exchange. This is a unique approach
compared to previous studies, which have defined fairness in terms of increasing social welfare.
As such, this study proposes a new model that considers the nature of bartering. We propose an
unfairness indicator and set a penalty function with this indicator as an input variable. The SP
model that considers personal fairness produces lower total unfairness levels than that of existing
deterministic models.

The rest of this paper is organized as follows. Section 2 briefly introduces an overview of stochastic
programming. Section 3 then summarizes the two-stage stochastic programming approach to KEPs,
illustrates how failure scenarios are classified and incorporated, and presents the stochastic formulation.
Following this, Section 4 presents computation results to assess the performance of our model. Finally,
we conclude the study in Section 5.

2. Stochastic Programming Overview

Stochastic programming is a framework used to model optimization problems that involve
uncertainty. Unlike deterministic optimization problems, which are formulated with known
parameters, stochastic programming incorporates unknown parameters. The general SP model can be
presented as

Maximize cTx + Eξ [Q(x, ξ)]

Subject to Ax = b,
x ≥ 0,

Q(x, ξ) = max
{

qTy
∣∣Wy = h− Tx, y ≥ 0

}
.

(1)

Model (1) consists of two sections: first-stage and second-stage decisions. Here, x is the first-stage
decision variable, and y is the second-stage variable. When the first-stage decision is made, after which
a random event occurs affecting the outcome of the first-stage decision, a recourse decision can then be
made in the second stage that compensates for any negative effects. qTy is the cost of recourse action
and is added up in the objective function. This second term in the objective function tries to repair the
decisions which is made before the consideration of a random event. Through this procedure, SP can
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incorporate the first-stage decision’s effect as well as the second-stage decision’s effect. SP has a set
of random data and random vector ξ is used to represent random events with a certain probability.
ξ is the vector formed by components qT , hT , and T, and Eξ denotes mathematical expectations with
respect to ξ.

Figure 3 illustrates how scenarios are generated. In two-stage stochastic programming, random
vector ξ can be represented with respect to scenario k ∈ K. Each scenario k has the probability of
occurrence pk, and the sum of pk with respect to k ∈ K is 1. The second decision variable yk appears
in the objective function, and qk, Tk, and hk, which are parameters for scenario k, appear in the
mathematical formulation.
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However, Q(x, ξ) in Model (1) can lead to a nonlinear model if Q(x, ξ) is continuous over ξ.
Therefore, the model should be discretized for ξ as follows.

Maximize cTx + ∑
k∈K

pkqT
k yk

Subjiect to Ax = b,
Tkx + Wyk = hk, ∀k ∈ K
x ≥ 0, yk ≥ 0, ∀k ∈ K

(2)

where k indicates the index of the scenarios, and pk, qk, and yk are the probability of scenario k,
the parameter vector related to scenario k, and the second stage variable of scenario k, respectively.
Model (2) is a compact formulation of a two-stage stochastic programming model. In this study,
the scenarios are possible cases of failure in kidney exchanges. At the first stage, we consider an
objective function that maximizes the sum of weights. At the second stage, we consider causes of
failure and set the probability of each scenario k. We establish penalty value qk with respect to yk to
incorporate the first stage’s objective function and the second stage’s failure scenarios. We derive a
two-stage stochastic programming model in Section 3 based on the well-known EA model by adding
failure scenario information; we also demonstrate how the scenarios are classified and generated.

3. Two-Stage Stochastic Programming for Kidney Exchange Programs

3.1. Scenario Generation

In this section, we explain how we generate and classify failure scenarios. The KEP graph consists
of two elements, nodes (vertices) and arcs (edges). Nodes represent an incompatible patient-donor pair
and arcs represent compatibility between two pairs. Failure may occur between two pairs and within
a pair. Therefore, failure scenarios for exceptional events are largely classified into two types of failure:
node failure and arc failure. Node failure occurs if there is a problem in the patient-donor relationship,
while arc failure occurs in the relationship between patient-donor pairs. Figure 4 illustrates the two
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types of failure. Node h failure means that there is a problem within patient-donor pair h, which means
that any compatible arcs related to node h become incompatible. Arc (i, j) failure means that there is a
problem between pairs i and j. Therefore, if arc (i, j) failure occurs, the compatibility between donor i
and patient j becomes incompatible.
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In this study, two representative examples of these failure types are presented: a change of mind
due to perceived unfairness for arc failure and the deterioration of a patient’s condition for node failure.
However, there are various other causes of failure that could also be considered, as shown in Figure 5.
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A scenario k is a holistic and conceptual factor for possible cases of failure. It can be generated
based on the classification that we propose and can be presented as below:

k ∈ K =
{

kij
arc, kij

node

}
(i,j)∈A

where kij
arc is a scenario of arc failure and kij

arc is a scenario of node failure on arc (i, j) ∈ A. For notational
simplicity, we simply denote karc and knode respectively in case that it is evident to understand the arc
(i, j) associated with a scenario. In a mathematical model, pk, qijk, and yijk are realized based on the
scenario k ∈ K, as mentioned in Section 2. The sum of the probabilities of these failures, that is ∑

k∈K
pk,

should be 1. qijk is a penalty value given to each node and arc depending on the scenario k. In this
study, qijknode

and qijkarc are proposed and calculated reflecting characteristics of their failure scenarios.
yijk is the second-stage decision variable depending on the scenario k.
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• Node failure

The deterioration of the health of the patient in a patient-donor pair is selected as a representative
example of node failure. If the health of the patient is so poor that it is dangerous to perform the
operation, the solution set may be broken. Other possible causes of node failure include the patient’s
death and financial problems. We introduce a penalty value based on the patient’s health condition.
This value is only affected by the health status of the patient in individual pair. The penalty value is
given as follows.

qijknode
: a penalty value of arc (i, j) depending on the health status of the patient in pair j regardless

of the health status of the donor in pair i in scenario knode for ∀(i, j) ∈ A.

• Arc failure

A change of mind due to perceived unfairness is selected as a representative example of arc failure.
If a pair feels that the exchange is unfair, they may change their mind and thus the solution set may be
broken. In this paper, we have assumed that all patients and donors have certain health conditions.
Therefore, based on the health status of the patient and donor, the level of compatibility was calculated.
Other possible causes of arc failure are shortages of operating rooms and a change of mind due to long
distance between two pairs. We introduce unfairness indicator uij for arc (i, j) ∈ A as follows:

uij =
dj

wij

where dj is the health status of the donor in pair j, wij is the level of compatibility between pairs, and
uij is the value calculating unfair feelings between the relationship of pair i and pair j. From pair j’s
perspective, it can be calculated by dividing the value that pair j receives into the value that pair j
gives. Note that the larger the value of dj and the smaller the value of wij, the greater the value of uij.
It is natural to feel an exchange is unfair if the value of donating a kidney is greater than the value
of receiving one. We introduce a penalty value based on this perceived unfairness. The following
definition and equation is used to determine the penalty value.

qijkarc
: a penalty value of arc (i, j) depending on the unfairness indicator uij in scenario karc for

∀(i, j) ∈ A.

qijkarc = 1− e
uij
c , ∀(i, j) ∈ A

We remark that these parameters, qijknode
and qijkarc , have negative values imposed to penalize

the effects of failure scenarios. When it comes to qijknode
, the worse the patient’s condition, the higher

the penalty. For qijkarc , as unfairness increases, the absolute value of this negative number increases
exponentially. This means that the effect of penalty increases when an individual pair j feels more
unfair. Note that uij is divided by the constant c to scale the penalty value in the range of −1 and 0.

3.2. Model

In this section, we present as a base model the reduced edge assignment (EA) formulation first
developed by Constantino et al. [15]. Our proposed stochastic programming model is then developed
by adding new decision variables to this base model. These decision variables are related to the
scenarios discussed earlier.

Let L be an upper bound on the possible number of cycles in graph G. The weight of edge wij
indicates the level of compatibility between the kidney from the donor in patient-donor pair i to
the patient in pair j for (i, j) ∈ A. Parameter c represents the maximum cycle length. The decision
variables in the EA formulation are defined as follows:

xij: 1 if the patient of pair j receives a kidney from the donor of pair i, and 0 otherwise,
zl

i : 1 if pair i is included in cycle l, and 0 otherwise.
With these decision variables, the reduced EA formulation can be presented as follows:
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Deterministic model (EA formulation):

Maximize

∑
(i,j)∈A

wijxij (3a)

Subject to

∑
j:(j,i)∈A

xji = ∑
j:(i,j)∈A

xij , ∀i ∈ V (3b)

∑
j:(i,j)∈A

xij ≤ 1, ∀i ∈ V (3c)

∑
i∈V

zl
i ≤ c, ∀l ∈ 1, . . . , L (3d)

∑
l∈1,...,L

zl
i = ∑

j:(j,i)∈A
xij, ∀i ∈ V (3e)

zl
i + xij ≤ 1 + zl

j, ∀(i, j) ∈ A, l ∈ 1, . . . , L (3f)

zl
i ≤ zl

l , ∀i ∈ V, l ∈ 1, . . . , L, i > l (3g)

zl
i = 0, ∀i ∈ V, l ∈ 1, . . . , L, i ≤ l (3h)

xij ∈ {0, 1}, ∀(i, j) ∈ A (3i)

zl
i ∈ {0, 1}, ∀i ∈ V, l ∈ 1, . . . , L. (3j)

The objective function (3a) indicates that the total weights of the arcs involved in a kidney
transplantation is maximized. This leads to a set of transplantations that maximizes the total
compatibility of the given patient-donor pool to be selected by definition of weight wij. Note that if
every wij is set to 1, the model then maximizes the number of transplantations in the pool. Constraint
(3b) states that the number of kidneys that the donor in pair i provides must be equal to the number of
kidneys that the patient in pair i receives. Constraint (3c) ensures that the maximum possible number
of kidneys that a donor can donate is 1. Constraint (3d) states that the length of a cycle in the pool
must be less than or equal to c. Constraint (3e) assigns a transplantation to a cycle. Constraint (3f)
states that, if the donor in pair i gives the patient in pair j a kidney and pair i is included in cycle l,
then pair j must also be included in cycle l. Constraints (3g) and (3h) are additional constraints that
eliminate duplicate solutions, as discussed in detail by Constantino et al. [15]. Constraints (3i) and (3j)
set the decision variables xij and zl

j as binary variables.
Based on the above formulation, we now develop a stochastic programming formulation for a

KEP to consider failure within the KEP graph. As defined in Section 3.1, for each scenario k ∈ K, we let
pk be the probability of the failure scenario occurrence, and qijk be the penalty value given to each node
and arc depending on the scenario k. We specify the additional decision variable yijk for the two-stage
stochastic programming model which is given as follows:

With the above decision variable, the two-stage stochastic programming model can be expressed as
yijk: 1 if the patient of pair j receives a kidney from the donor of pair i in scenario k, and

0 otherwise.
Maximize ∑

(i,j)∈A
wijxij + Ek∈K

(
Q
(

yijk, ξk

))
Subject to (3b)− (3j),

(4)

where Ek is the average Q
(

yijk, ξk

)
over scenarios k ∈ K, and Q

(
yijk, ξk

)
is the optimal value of the

following second-stage problem:
Maximize

∑
k∈K

∑
(i,j)∈A

pkqijkyijk (5a)
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Subject to
xij ≤ yijk, ∀(i, j) ∈ A, k ∈ K (5b)

yijk ∈ {0, 1}, ∀(i, j) ∈ A, k ∈ K (5c)

The objective function (5a) in the second-stage problem returns the total penalty for the possible
failure of a solution in scenario k. Constraint (5b) ensures that, in scenario k, the pairs which were
matched in the first stage are considered. The common constraint (5c) sets the decision variable yijk as
a binary variable.

We remark that we can easily derive the deterministic equivalent version of the two-stage
stochastic problem with discretized scenarios k ∈ {knode, karc} where the corresponding probabilities
are pk ∈

{
pknode

, pkarc

}
. (5a)–(5c) can be specified as below:

Maximize

∑
(i,j)∈A

pknode
qijknode

yijknode
+ ∑

(i,j)∈A
pkarc qijkarc yijkarc (5a’)

Subject to
xij ≤ yijknode

, ∀(i, j) ∈ Axij ≤ yijkarc , ∀(i, j) ∈ A (5b’)

yijknode
∈ {0, 1}, ∀(i, j) ∈ Ayijkarc ∈ {0, 1}, ∀(i, j) ∈ A (5c’)

Finally, our proposed model, referred as a stochastic model, can be simply formulated as follows:
Stochastic model:

Maximize ∑
(i,j)∈A

wijxij + ∑
k∈K

∑
(i,j)∈A

pkqijkyijk

Subject to (3b)− (3j)
(5b), (5c)

(6)

4. Computational Results

4.1. Experimental Design

In this section, we present the results of computational experiments on a KEP. The experiments
were performed using an Intel® Core™ i7-4650 CPU@1.70 GHz (Intel Corporation, Santa Clara,
CA, USA), and Gurobi 6.5.2 (Gurobi Optimization, Beaverton, OR, USA) as an IP optimization
solver. The experiments are designed to compare the proposed stochastic formulation to a previous
deterministic model (i.e., the EA formulation).

We randomly generate ten data sets, with each set consisting of 50 incompatible pairs. Each pair
has information about the blood type and the health status of the patient and donor. The ratio of each
blood type was set at 0.3, 0.3, 0.3, and 0.1 for A, B, O, and AB, respectively. These probabilities were
given based on the blood type distribution in South Korea [27]. In this paper, we have assumed that
all patients and donors have certain health conditions and that, based on the health status of patient
and donor, the level of compatibility was calculated. The health status of the patients and donors is
classified as 1, 2, 3, or 4 with a probability of 0.25, with the higher the number, the better the health
status. The level of compatibility is considered only when the ABO compatibility is satisfied, and is
used to represent the weight wij. This has similar meaning to the probability of success, therefore
this value is scaled in the range of [0, 1]. Table 1 shows the weight for two pairs (i, j) based on their
health status.

Before the experiment, we assume that the probability of failure due to a change of mind would
be greater than the probability of failure due to the condition deterioration and possible death of a
patient and set the following scenario probabilities: pkarc = 0.8 and pknode

= 0.2. We determined the
penalty function in Section 2. For qijk of node-failure scenario k, penalty values of 0, 0, −1, and −2 are
assigned to P-group 1, P-group 2, P-group 3, and P-group 4, respectively. For qijk of arc-failure scenario
k, constant c was set at 15 to scale the value.
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Table 1. The level of compatibility based on health status.

Patient j/Donor i D-Group 1 D-Group 2 D-Group 3 D-Group 4

P-group 1 0.30 0.40 0.50 0.70
P-group 2 0.40 0.60 0.70 0.80
P-group 3 0.50 0.70 0.85 0.90
P-group 4 0.70 0.80 0.90 1.00

We compare two mathematical models in the computer simulations—a deterministic model as a
benchmark vs. the proposed stochastic model. The aim is to determine whether the proposed model is
able to reduce unfairness and whether it is robust when an exceptional event occurs.

4.2. Experimental Results and Managerial Insights

The objective function in the benchmark deterministic mathematical model is the sum of the
weights, while the objective function in the stochastic mathematical model is the sum of the weights
and the penalty function. In this experiment, we first compared the two models in terms of the sum
of the weights and the sum of unfairness to determine whether the stochastic mathematical model
preserves total utility (i.e., the sum of the weights) while reducing unfairness, and Table 2 shows the
results. Secondly, we compared the two models in terms of robustness of solution when exceptional
event occurs, and Tables 3–6 show the results. Thirdly, we observed the distribution of unfairness
indicator and the effect of unfairness threshold.

Table 2. Comparison of the two models in terms of total weight and total unfairness.

Dataset
Sum of Weights Sum of Unfairness

Deterministic Stochastic W-GAP Deterministic Stochastic U-GAP

Dataset_1 37.6 36.3 3.5% 186.6 171.1 8.3%
Dataset_2 35.9 35.3 1.7% 180.4 170.8 5.3%
Dataset_3 35.9 32.9 8.4% 178.4 148.4 16.8%
Dataset_4 33.1 32.1 3.0% 163.5 148.4 9.2%
Dataset_5 27.7 26.5 4.3% 145.5 129.1 11.3%
Dataset_6 34.6 33.9 2.0% 173.0 159.5 7.8%
Dataset_7 32.2 31.4 2.5% 152.5 133.1 12.7%
Dataset_8 34.0 32.5 4.4% 174.9 143.7 17.8%
Dataset_9 34.5 32.4 6.1% 180.3 153.4 14.9%

Dataset_10 29.4 28.3 3.7% 135.2 123.4 8.7%
Average 33.5 32.2 4.0% 167.0 148.1 11.3%

Table 3. Comparison of the sum of weights when there is a deterioration in the patient’s health.

Dataset

Sum of Weights

Deterministic Model Stochastic Model

Before Failure After Failure W-GAP Before Failure After Failure W-GAP

Dataset_1 37.6 33 12.2% 36.3 36.3 0.0%
Dataset_2 35.9 31.6 12.0% 35.3 33.8 4.2%
Dataset_3 35.9 26.4 26.5% 32.9 32.9 0.0%
Dataset_4 33.1 23.6 28.7% 32.1 26.9 16.2%
Dataset_5 27.7 21.7 21.7% 26.5 21.9 17.4%
Dataset_6 34.6 30.4 12.1% 33.9 33.9 0.0%
Dataset_7 32.2 31.1 3.4% 31.4 31.4 0.0%
Dataset_8 34 25.8 24.1% 32.5 30.9 4.9%
Dataset_9 34.5 26.9 22.0% 32.4 32.4 0.0%

Dataset_10 29.4 26.1 11.2% 28.3 28.3 0.0%
Average 33.5 27.7 17.4% 32.2 30.9 4.0%
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Table 4. Comparison of the number of matched pairs when the patient’s health deteriorates.

Dataset
Total Number of Matched Pairs Broken Pairs

Before Failure After Failure Gap (Before-After)

Deterministic Stochastic Deterministic Stochastic Deterministic Stochastic

Dataset_1 48 46 42 46 6 0
Dataset_2 47 46 41 44 6 2
Dataset_3 50 45 37 45 13 0
Dataset_4 44 42 33 34 11 8
Dataset_5 36 34 28 28 8 6
Dataset_6 46 45 40 45 6 0
Dataset_7 45 44 43 44 2 0
Dataset_8 45 43 34 41 11 2
Dataset_9 49 45 37 45 12 0
Dataset_10 40 38 35 38 5 0

Average 45.0 42.8 37.0 41.0 8.0 1.8

Percentage of
matched pairs 1 90.0% 85.6% 74.0% 82.0% 16.0% 3.6%

1 Number of matched pairs divided by the total number of pairs when (node or arc) failures occurs.

Table 5. Comparison of the sum of the weights when a pair changes its mind.

Dataset
Total Number of Unmatched Pairs

Deterministic Model Stochastic Model

Before Failure After Failure W-GAP Before Failure After Failure W-GAP

Dataset_1 37.6 31.5 12.2% 36.3 36.3 0.0%
Dataset_2 35.9 30.1 12.0% 35.3 33.7 4.2%
Dataset_3 35.9 26.6 26.5% 32.9 30.7 6.7%
Dataset_4 33.1 21.4 28.7% 32.1 27.4 14.6%
Dataset_5 27.7 19.2 21.7% 26.5 24.1 9.1%
Dataset_6 34.6 23.2 30.4% 33.9 31.5 7.1%
Dataset_7 32.2 24.4 31.1% 31.4 29.2 7.0%
Dataset_8 34.0 18.0 25.8% 32.5 30.9 4.9%
Dataset_9 34.5 17.2 26.9% 32.4 30.0 7.4%

Dataset_10 29.4 25.0 26.1% 28.3 26.1 7.8%
Average 33.5 22.1 34.1% 32.2 30.0 6.7%

Table 6. Comparison of the number of unmatched pairs when a pair changes their mind.

Dataset
Total Number of Matched Pairs Broken Pairs

Before Failure After Failure Gap (Before-After)

Deterministic Stochastic Deterministic Stochastic Deterministic Stochastic

Dataset_1 48 46 42 46 6 0
Dataset_2 47 46 41 44 6 2
Dataset_3 50 45 37 45 13 0
Dataset_4 44 42 33 34 11 8
Dataset_5 36 34 28 28 8 6
Dataset_6 46 45 40 45 6 0
Dataset_7 45 44 43 44 2 0
Dataset_8 45 43 34 41 11 2
Dataset_9 49 45 37 45 12 0
Dataset_10 40 38 35 38 5 0

Average 45.0 42.8 37.0 41.0 8.0 1.8

Percentage of
matched pairs 90.0% 85.6% 74.0% 82.0% 16.0% 3.6%
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Table 2 presents the experimental results comparing total utility and total unfairness for the two
models. W-GAP is the gap in total utility between the deterministic and stochastic models. U-GAP is
the gap in total unfairness between the two models. The total utility of the proposed stochastic model
is 4% lower on average than that of the deterministic model. This is because the stochastic model takes
into account exceptional events and reflects the risk of uncertainty, thus there is a reduced number of
connected patient-donor pairs. However, this decrease is insignificant, so it can be said that total utility
has been preserved. The total unfairness of the stochastic model is 11.3% lower on average than that of
the deterministic model. This indicates that the penalty function is effective at reducing the sense of
unfairness in exchanges between patient-donor pairs. Kidney exchanges are sensitive to unfairness
because they are part of a barter exchange program between patient-donor pairs. This result can be
regarded as an effective improvement because it reduces the possibility of changes of mind by more
fairly applying the principles of barter exchange while preserving total utility.

The stochastic optimization model is a scenario-based mathematical model. Experiments are thus
conducted in which scenarios related to the patient’s death or the deterioration of the health of the
patient are considered. If a patient cannot undergo surgery because of worsening health or death,
the existing set of cycles is broken. If a cycle is broken, none of the operations involving the affected
patient-donor pairs can be performed. This reduces the sum of the weights and increases the number
of unconnected patient-donor pairs.

Table 3 presents the experimental results comparing the sum of the weights for the two
models assuming that the patient’s health has deteriorated in the worst-case pair (i.e., Group 1).
The deterministic model lost an average of 17.3% of its total utility (i.e., sum of the weights). However,
the stochastic model only lost an average of 4.2%. This indicates that, when node failure occurs,
the stochastic model minimizes the damage when compared to the deterministic model.

Table 4 displays the number of pairs that belong to the solution set obtained from the mathematical
model for 50 patient-donor pairs and the number of broken pairs before and after node failure. Before
failure, the deterministic model connects 2.2 more pairs (4.4%) on average than does the stochastic
model; however, after failure, the stochastic model connects an average of 4 more pairs (8%) than the
deterministic model. The broken pairs column represents the gap of broken pairs before and after node
failure for the two models. The stochastic models lose an average of 1.8 pairs (3.6%) after failure, while
the deterministic models lose an average of 8 pairs (16%). The results show that the stochastic model is
more robust in terms of preserving the solutions in the face of failure than the deterministic model.

Table 5 compares the sum of the weights for the two models for cases where there is a change
of mind due to perceived unfairness between pair (i, j) ∈ A whose uij is more than the threshold of
5.5. The deterministic model loses an average of 34.1% of its total utility, while the stochastic model
loses an average of 6.7%. This indicates that, when arc failure (e.g., a change of mind due to perceived
unfairness) occurs, the stochastic model is more robust to failure than the deterministic model.

Table 6 presents the number of connected pairs before and after arc failure. Similar to the case
of node failure, the stochastic model connects more pairs (8, representing 16% of the total number
of pairs) on average after arc failure than the deterministic model, even though it connects slightly
fewer before failure. The stochastic model loses an average of 2.8 pairs (5.6%) after failure, while the
deterministic model loses 12.6 pairs (25.2%). This indicates that the stochastic model preserves the
solutions better than the deterministic model after arc failure.

Figure 6 presents the distribution of an unfairness indicator. By the definition of uij in Section 3.1,
uij has a value in the range of 1 and 12 because wij has a value in the range of 0.3 and 1, and dj has
value in the range of 1 and 4. Figure 6a is the histogram of an unfairness indicator and Figure 6b is the
box plot of unfairness. These two graphs show that most of the unfairness indicator values are in the
range of 2 and 8. We conducted the next experiment based on this observation.
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We now discuss the effect of unfairness threshold on deterministic and stochastic models.
We assumed that a change of mind (arc failure) occurs if the unfairness indicator has a higher value
than the unfairness threshold. In the perspective of the entire model, the larger the value of the
unfairness threshold, the more lenient the model is (i.e., the lower it is, the stricter the model is).
We conducted the experiment showing the effect of the unfairness threshold on the deterministic
and stochastic model by changing the threshold value from 2 to 8. Figure 7a graph has an x-axis
of unfairness and a y-axis of percentage value, which is total utility when failure occurs divided by
original total utility. In stochastic model, when the threshold value is above 6, the percentage value is
1. This means that there are no two pairs having an unfairness indicator value higher than 6. On the
other hand, in deterministic model, when the threshold value is above 6, the percentage value is
near 0.88. This means that there are several pairs having an unfairness indicator value higher than
6. These results show that the performance of our proposed stochastic model is better in the sense
that it maintains pairs with appropriate values of the unfairness indicator. In both deterministic and
stochastic models, when the threshold value is under 5, the percentage value drops very fast, implying
that there are many pairs having an unfairness indicator value lower than 5. This observation can be
confirmed by Figure 6. Figure 7b has an x-axis of unfairness and a y-axis of the number of broken pairs
divided by the total number of matched pairs when failure occurs. Figure 7b shows the corresponding
results in Figure 7a. The stochastic model is more effective than the deterministic model in that it
selects and maintains pairs with an appropriate range of the unfairness indicator.Int. J. Environ. Res. Public Health 2018, 15, x 14 of 16 
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5. Conclusions

In this paper, stochastic programming is proposed as a method for incorporating uncertainty
into KEP models. Based on the compact EA formulation, we develop a two-stage SP model by
adding second-stage decision variables and parameters. In order to consider exceptional events in
the model, we classify specific failure scenarios based on two types of failure: node failure and arc
failure. The deterioration of the patient’s condition and a change of mind due to perceived unfairness
are chosen as representative examples of node and arc failure, respectively. While previous studies
have defined fairness as social fairness, we define it as personal fairness and consider how satisfied
individual pairs feel. An indicator of unfairness is introduced; as this number increases, the penalty
value imposed in the second stage increases. Computational simulations are run to compare an existing
deterministic model with our proposed stochastic model. From these, it is shown that the stochastic
model reduces overall perceived unfairness while maintaining total utility. We also demonstrate that,
when the two failure scenarios occur, the stochastic model is more robust in terms of preserving the
solutions. We believe that the proposed model could help to be utilized in the integrated KEP IT
healthcare platform in South Korea to obtain optimized fair KEP exchange plans.

In future research, the two-stage SP model proposed in this paper can be tested with other types
of failure, thus leading to a more robust model. Bertsimas et al. [28] suggested the widely used
Robust Optimization (RO) model, which made it possible to generate robust counterpart of Linear
Programming (LP) problems. Büsing et al. [29] also suggested robust counterpart of LP with uncertain
coefficient matrix. These two approaches provide insight for future work because SP and RO have
overlap in that they can be linearized. Robust models for KEPs have been presented in various
perspectives by Dickerson [30]. D’Andreagiovanni et al. [31] considered data uncertainty in topology
and applied RO. They applied RO to the Network Problem, in which our work belongs to. RO in KEP
or Network Problem would be the topic for the future work.

Because a KEP is related to surgery, which is associated with significant time and money costs,
robustness to failure is an important consideration. Our study only considers a static pool, but other
studies have analyzed pools that move dynamically over time [32,33]. Therefore, even more promising
results may be achieved if we incorporate patient-donor pairs that flow in time.

Author Contributions: Conceptualization, T.C. and S.H.S.; Methodology, H.L. and T.C.; Software, H.L. and S.C.;
Validation, H.L., S.C. and T.C.; Formal Analysis, H.L.; Investigation, H.L., S.C. and T.C.; Validation, H.L. and
S.H.S.; Writing-Original Draft Preparation, H.L. and S.C.; Writing-Review & Editing, T.C. and S.H.S.; Supervision,
T.C. and S.H.S.; Project Administration, T.C.; Funding Acquisition, T.C.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the
Korean government (Ministry of Science, ICT & Future Planning) (No. NRF-2015R1C1A1A02036682).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Rapaport, F.T. The case for a living emotionally related international kidney donor exchange registry.
Transplant. Proc. 1986, 18, 5–9. [PubMed]

2. Park, K.; Moon, J.I.; Kim, S.I.; Kim, Y.S. Exchange donor program in kidney transplantation. Transplantation
1999, 67, 336–338. [CrossRef] [PubMed]

3. Park, K.; Lee, J.H.; Huh, K.H.; Kim, S.I.; Kim, Y.S. Exchange living-donor kidney transplantation: Diminution
of donor organ shortage. Transplant. Proc. 2004, 36, 2949–2951. [CrossRef] [PubMed]

4. Huh, K.H.; Kim, M.S.; Ju, M.K.; Chang, H.K.; Ahn, H.J.; Lee, S.H.; Lee, J.H.; Kim, S.I.; Kim, Y.S.; Park, K.
Exchange living-donor kidney transplantation: Merits and limitations. Transplantation 2008, 86, 430–435.
[CrossRef] [PubMed]

5. Thiel, G.; Vogelbach, P.; Gürke, L.; Gasser, T.; Lehmann, K.; Voegele, T.; Kiss, A.; Kirste, G. Crossover renal
transplantation: Hurdles to be cleared! Transplant. Proc. 2001, 33, 811–816. [CrossRef]

6. Johnson, R.J.; Allen, J.E.; Fuggle, S.V.; Bradley, J.A.; Rudge, C. Early experience of paired living kidney
donation in the United Kingdom. Transplantation 2008, 86, 1672–1677. [CrossRef] [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/11649919
http://dx.doi.org/10.1097/00007890-199901270-00027
http://www.ncbi.nlm.nih.gov/pubmed/10075605
http://dx.doi.org/10.1016/j.transproceed.2004.12.013
http://www.ncbi.nlm.nih.gov/pubmed/15686667
http://dx.doi.org/10.1097/TP.0b013e3181804a34
http://www.ncbi.nlm.nih.gov/pubmed/18698247
http://dx.doi.org/10.1016/S0041-1345(00)02802-5
http://dx.doi.org/10.1097/TP.0b013e3181901a3d
http://www.ncbi.nlm.nih.gov/pubmed/19104403


Int. J. Environ. Res. Public Health 2018, 15, 1491 15 of 16

7. Ellison, M.D.; McBride, M.A.; Taranto, S.E.; Delmonico, F.L.; Kauffman, H.M. Living kidney donors in need
of kidney transplants: A report from the organ procurement and transplantation network. Transplantation
2002, 74, 1349–1351. [CrossRef] [PubMed]

8. Segev, D.L.; Gentry, S.E.; Warren, D.S.; Reeb, B.; Montgomery, R.A. Kidney paired donation and optimizing
the use of live donor organs. JAMA 2005, 293, 1883–1890. [CrossRef] [PubMed]

9. Saidman, S.L.; Roth, A.E.; Sönmez, T.; Ünver, M.U.; Delmonico, F.L. Increasing the opportunity of live kidney
donation by matching for two- and three-way exchanges. Transplantation 2006, 81, 773–782. [CrossRef]
[PubMed]

10. Rais, A.; Viana, A. Operations research in healthcare: A survey. Int. Trans. Oper. Res. 2010, 18, 1–31.
[CrossRef]

11. Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer: New York, NY, USA, 2011;
pp. 103–124.

12. Shapiro, A.; Dentcheva, D.; Ruszczynski, A. Lectures on Stochastic Programming; MPS-SIAM Series on
Optimization (Book 9); SIAM-Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2009.

13. Roth, A.E.; Sönmez, T.; Ünver, M. Efficient kidney exchange: Coincidence of wants in markets with
compatibility-based preferences. Am. Econ. Rev. 2007, 97, 828–851. [CrossRef] [PubMed]

14. Abraham, D.J.; Blum, A.; Sandholm, T. Clearing algorithms for barter exchange markets: Enabling
nationwide kidney exchanges. In Proceedings of the 8th ACM Conference on Electronic Commerce,
San Diego, CA, USA, 11–15 June 2007; pp. 295–304.

15. Constantino, M.; Klimentova, X.; Viana, A.; Rais, A. New insights on integer-programming models for the
kidney exchange problem. Eur. J. Oper. Res. 2013, 231, 57–68. [CrossRef]

16. Yuh, J.; Chung, S.; Cheong, T. Reformulation-Linearization Technique Approach for Kidney Exchange
Program IT Healthcare Platforms. Appl. Sci. 2017, 7, 847. [CrossRef]

17. Bertsimas, D.; Farias, V.F.; Trichakis, N. The price of fairness. Oper. Res. 2011, 59, 17–31. [CrossRef]
18. Bertsimas, D.; Farias, V.F.; Trichakis, N. Fairness, efficiency, and flexibility in organ allocation for kidney

transplantation. Oper. Res. 2013, 61, 73–87. [CrossRef]
19. Dickerson, J.P.; Procaccia, A.D.; Sandholm, T. Price of fairness in kidney exchange. In Proceedings of the

2014 International Conference on Autonomous Agents and Multi-Agent Systems, Pairs, France, 5–9 May
2014; pp. 1013–1020.

20. Su, X.; Zenios, S.A. Patient choice in kidney allocation: A sequential stochastic assignment model. Oper. Res.
2005, 53, 443–455. [CrossRef]

21. Sabouri, A.; Huh, W.T.; Shechter, S.M. Screening Strategies for Patients on the Kidney Transplant Waiting
List. Oper. Res. 2017, 65, 1131–1146. [CrossRef]

22. Zheng, Q.P.; Shen, S.; Shi, Y. Loss-constrained minimum cost flow under arc failure uncertainty with
applications in risk-aware kidney exchange. IIE Trans. 2015, 47, 961–977. [CrossRef]

23. Dickerson, J.P.; Procaccia, A.D.; Sandholm, T. Failure-aware kidney exchange. In Proceedings of the 4th
ACM Conference on Electronic Commerce, Philadelphia, PA, USA, 16–20 June 2013; pp. 323–340.

24. Alvelos, F.; Klimentova, X.; Rais, A.; Viana, A. A compact formulation for maximizing the expected number
of transplant in kidney exchange programs. J. Phys. Conf. Ser. 2015, 616, 012011. [CrossRef]

25. Awasthi, P.; Sandholm, T. Online Stochastic Optimization in the Large: Application to Kidney Exchange.
IJCAI 2009, 9, 405–411.

26. Dubey, H.M.; Pandit, M.; Panigrahi, B.K. Ant lion optimization for short-term wind integrated hydrothermal
power generation scheduling. Int. J. Electr. Power Energy Syst. 2016, 83, 158–174. [CrossRef]

27. Wikipedia. Blood Type Distribution by Country. Available online: https://en.wikipedia.org/wiki/Blood_
type_distribution_by_country (accessed on 22 June 2018).

28. Bertsimas, D.; Sim, M. The price of robustness. Oper. Res. 2004, 52, 35–53. [CrossRef]
29. Büsing, C.; D’Andreagiovanni, F. New results about multi-band uncertainty in robust optimization.

In Experimental Algorithms, Proceedings of the 11th International Symposium, SEA 2012, Bordeaux, France,
7–9 June 2012; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; pp. 63–74.

30. Dickerson, J.P. Robust dynamic optimization with application to kidney exchange. In Proceedings of the
2014 International Conference on Autonomous Agents and Multi-Agent Systems, Paris, France, 5–9 May
2014; pp. 1701–1702.

http://dx.doi.org/10.1097/00007890-200211150-00025
http://www.ncbi.nlm.nih.gov/pubmed/12451277
http://dx.doi.org/10.1001/jama.293.15.1883
http://www.ncbi.nlm.nih.gov/pubmed/15840863
http://dx.doi.org/10.1097/01.tp.0000195775.77081.25
http://www.ncbi.nlm.nih.gov/pubmed/16534482
http://dx.doi.org/10.1111/j.1475-3995.2010.00767.x
http://dx.doi.org/10.1257/aer.97.3.828
http://www.ncbi.nlm.nih.gov/pubmed/29135211
http://dx.doi.org/10.1016/j.ejor.2013.05.025
http://dx.doi.org/10.3390/app7080847
http://dx.doi.org/10.1287/opre.1100.0865
http://dx.doi.org/10.1287/opre.1120.1138
http://dx.doi.org/10.1287/opre.1040.0180
http://dx.doi.org/10.1287/opre.2017.1632
http://dx.doi.org/10.1080/0740817X.2014.991476
http://dx.doi.org/10.1088/1742-6596/616/1/012011
http://dx.doi.org/10.1016/j.ijepes.2016.03.057
https://en.wikipedia.org/wiki/Blood_type_distribution_by_country
https://en.wikipedia.org/wiki/Blood_type_distribution_by_country
http://dx.doi.org/10.1287/opre.1030.0065


Int. J. Environ. Res. Public Health 2018, 15, 1491 16 of 16

31. D’Andreagiovanni, F.; Nardin, A. Towards the fast and robust optimal design of wireless body area networks.
Appl. Soft Comput. 2015, 37, 971–982. [CrossRef]

32. Ünver, M.U. Dynamic kidney exchange. Rev. Econ. Stud. 2010, 77, 372–414. [CrossRef]
33. Ashlagi, I.; Jaillet, P.; Manshadi, V.H. Kidney Exchange in Dynamic Sparse Heterogenous Pools. 2013.

Available online: https://arxiv.org/abs/1301.3509 (accessed on 10 February 2018).

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2015.04.037
http://dx.doi.org/10.1111/j.1467-937X.2009.00575.x
https://arxiv.org/abs/1301.3509
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Stochastic Programming Overview 
	Two-Stage Stochastic Programming for Kidney Exchange Programs 
	Scenario Generation 
	Model 

	Computational Results 
	Experimental Design 
	Experimental Results and Managerial Insights 

	Conclusions 
	References

