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Abstract: This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF)
method to estimate ground PM2.5 concentrations. Covariates are derived from remotely sensed
data including aerosol optical depth, normal differential vegetation index, surface temperature,
air pressure, relative humidity, height of planetary boundary layer and digital elevation model.
In addition, cultural variables such as factory densities and road densities are also used in the model.
With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR)
models at different time scales, using data for the period between December 2015 and November
2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals
and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard
errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model
explained 70% of the variability in PM2.5 concentrations, 16.7% more than the non-spatial OLS model.
With the ESFR models, we performed detail analyses on the spatial and temporal distributions of
PM2.5 concentrations in the study area. The model predictions are lower than ground observations
but match the general trend. The experiment shows that ESFR provides a promising approach to
PM2.5 analysis and prediction.

Keywords: fine particulate matter (PM2.5); spatial effect; eigenvector spatial filtering method;
regression model

1. Introduction

PM2.5, particles with an aerodynamic diameter of 2.5 µm or less, are harmful to both the natural
environment and human health. These small particles are responsible for such environmental issues as
corrosion, soiling, damage to vegetation and especially, reduced visibility [1,2], as they are major air
pollutants that cause haze [3,4]. Due to their small size, PM2.5 particles can penetrate deep into the
lungs through breathing and seep into the blood system along with toxic substances on their surfaces,
posing severe health risks to the human body. Exposure to PM2.5 for only a few days can bring about
adverse health effects [5–8].

As the number of smog days surged in major cities across China in recent years, the Chinese
government has become increasingly concerned about PM2.5 pollution and has added more ground
stations to monitor this contaminant, from 496 stations in 2012 to 1436 in 2016. This is a substantial
improvement but they are still far from enough. Ground monitoring stations remain sparse and
distributed unevenly, making it difficult to perform detailed analyses on the spatial and temporal
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variation of PM2.5 concentrations in large areas [9]. To overcome the problem of data availability,
remote sensing imagery with high spatial resolution is widely utilized in PM2.5 research.

Wang and Christopher compared Aerosol Optical Depth (AOD) data acquired by the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor on the Terra and Aqua satellites with ground
PM2.5 concentrations and found a good linear relationship between them [10]. Afterwards, other
quantitative studies provided further evidence that AOD is correlated with PM2.5 concentration and
linear regression models based on the PM2.5-AOD relationship were developed [11–14]. New AOD
datasets with higher spatial resolution provide a better way for getting high-resolution data for
measuring PM2.5 concentrations, which has led to the identification of more contributing covariates.
For example, researchers found that surface temperature and pressure have an impact on particle
generation and movement; therefore, they can influence PM2.5 concentrations [13,15–17]. NDVI,
an indicator of vegetation coverage, is another influential factor as plants have the ability to absorb
pollutants through their leaf surfaces and hence purify the air [18]. Planetary boundary layer height
and relative humidity can influence the relationship between AOD and PM2.5 [19–21]. Besides, terrain
and location of pollution sources such as roads and factories also influence PM2.5 distributions [22].
These covariates can all be applied to PM2.5 estimation models.

Multiple Linear Regression models are commonly applied to estimating PM2.5 concentrations
because of their ease of use and strong applicability [23,24]. Generalized Linear Models and Generalized
Additive Models have also been applied to the study of PM2.5 [25,26]. However, these models have the
same shortcoming as they neglect spatial autocorrelation which exists in most geospatial processes and
affects the performances of conventional regression models. Failure to take spatial effects into account
would result in estimation bias and increase model uncertainty [17,27]. In addition, the relationships
between PM2.5 concentration and its influencing factors are spatially heterogeneous, with the strength
and nature of relationships varies with space [11]. Researchers have attempted to use Geographically
Weighted Regression (GWR) to address this issue of spatial heterogeneity in PM2.5 modeling [20,28–31].

GWR is different from the global models in that it produces regression coefficients varying over a
geographic landscape. The locational weighted approach fits the data well and sheds new light on
the understanding of PM2.5, as GWR models can reveal where the strong and weak relationships lie.
Land Use Regression (LUR) is another common modeling approach in PM2.5 estimation. It attempts to
incorporate spatial effects by bringing geographical features such as land use, traffic and population
into the model [32–35]. It does not however take spatial autocorrelation into account. Thus capturing
spatial autocorrelation offers another venue for improvement.

Eigenvector spatial filtering (ESF) is proposed to account for spatial effects. It selects a subset
of eigenvectors of a spatially weight matrix and adds them to the original regression model as new
independent variables. The linear combination of these eigenvectors filters the spatial autocorrelation
out of the observations, thus enabling model processes to proceed as if the observations were
independent [36,37]. In this paper, we report an Eigenvector Spatial Filtering Regression (ESFR)
model for estimating PM2.5 concentrations. Independent variables include Aerosol Optical Depth
(AOD), Surface Temperature (ST), Relative Humidity (RH), Pressure (PS), Planetary Boundary Layer
Height (PBLH), Normalized Difference Vegetation Index (NDVI), Digital Elevation Model (DEM),
densities of roads (RoadDen) and densities of factories (FactDen), because these covariates are found to
be closely associated with PM2.5 [22,38,39]. Except for the densities of roads and factories, data are
all derived from satellite observations, which overcomes the geographic limitations and achieves a
greater regional coverage [11]. Model results will be compared with those from Global Multiple Linear
Regression (GMLR) models; model predictions will be mapped and analyzed to reveal the spatial and
temporal characteristics of ground PM2.5 concentrations in China’s Yangtze River Delta Region.
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2. Materials and Methods

2.1. Study Areas

The Yangtze River Delta (YRD) Region, composed of three provinces, Jiangsu, Anhui, and
Zhejiang, as well as the Shanghai municipality, is used as a case study (Figure 1). The YRD region is
located on China’s eastern coast, lying between around longitudes 115◦ and 123◦ E, and latitudes 27◦

and 35◦ N. This region has a land area of over 350,000 square kilometers and a population of around
220 million. It is China’s largest economic center. However, the rapid development was accompanied
by environmental deterioration, particularly in air quality. In 2016, the annual PM2.5 concentration in
this area was 47.4% greater than the national limit (35 µg/m3).
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2.2. Ground PM2.5 Concentrations

The Qingyue Data Center (https://data.epmap.org/air/nations) provides air pollutants data
collected from the China Environmental Monitoring Center (CEMC). Data are derived from ground
monitoring sites, which include hourly and daily average mass concentrations of PM2.5 and other
air pollutants. PM2.5 concentrations are measured by the tapered element oscillating microbalance
(TEOM) method with an accuracy of ±0.5 µg/m3 for the daily average. PM2.5 measurements from
1 December 2015 to 30 November 2016 over the YRD Region (including 233 stations in total) were
collected from this data center. Invalid data records, for example those with null or negative values,
were removed from the dataset.

2.3. Remotely Sensed Data

MODIS provides daily 3 km resolution ambient AOD products, which will be used to generate
PM2.5 raster grids. The MOD04_3k_v6 dataset was downloaded from the NASA website (https:

https://data.epmap.org/air/nations
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//search.earthdata.nasa.gov) and we extracted the Dark Target algorithm retrieved AOD in the
study area. AOD data points with quality flag 0 were removed. The NDVI data were also MODIS
products (MOD13A3) with a spatial resolution of 1 km. Satellite meteorological data were derived
from the Goddard Earth Observing System Data Assimilation System (https://gmao.gsfc.nasa.gov/
products/), which include Surface Temperature (ST), Relative Humidity (RH), Pressure (PS), and
Planetary Boundary Layer Height (PBLH). Their spatial resolutions were 0.25◦ latitude × 0.3125◦

longitude. The Shuttle Radar Topography Mission (SRTM) DEM product was downloaded from the
http://srtm.csi.cgiar.org website and its spatial resolution was 90 m.

2.4. Pollution Source Data

We extracted the roads networks from OpenStreetMap and obtained the factory locations from
BaiduMap. They were used in the PM2.5 model specification as well as analysis of PM2.5 pollution
causes. As PM2.5 pollution mainly comes from industrial emissions and motor vehicle exhaust [40,41],
we simplified the roads networks by keeping only the types of roads used for motor vehicles, such as
primary roads, secondary roads, trunks, raceways, motorways and railways. Duplicate factory points
were removed, resulting in a total of 23,299 factory points in the study area.

2.5. Data Preprocessing

Several steps were followed to prepare the data for regression modeling. The first step is rescaling
all data sets to the same spatial resolution of 3 kilometers, consistent with the AOD data. Because
the meteorological data (ST, PS, RH and PBLH) have a coarser spatial resolution than the AOD,
we interpolated them to 3 km using Ordinary Kriging with the spherical model. NDVI and DEM
have a finer resolution than the AOD and they were therefore resampled into the 3 km grid using
bilinear-interpolation. In the second step, we created the density grids for factories and roads at 3 km
resolution as potential covariates. The point or line density in a grid cell is calculated as the number
of points or the total length of lines falling in the buffer of 24 kilometers. To accommodate temporal
analysis, annual, seasonal and monthly averages of each variable were calculated. In the final step,
data values of the candidate independent variables, which are extracted from the raster grids, were
assigned to the corresponding stations. Stations with null value were removed. In the end, we have
3301 records at annual, seasonal and monthly time scales in total, each record with a PM2.5 value
and a vector of the covariates including AOD, ST, PS, PBLH, RH, NDVI, DEM, densities of factories
and roads.

2.6. Spatial Regression with Eigenvector Spatial Filtering

Geographic variables often exhibit spatial autocorrelation, which affects the accuracy and
uncertainty of the parameter estimates in regression models. Recent advances in spatial statistics
provide several approaches to remedy the problem by including spatial autocorrelation in the classic
statistical models [42,43]. Spatial autoregressive models, signified by the spatial lag and spatial
error models in spatial econometrics, are now commonly used [44–46]. Meanwhile, Eigenvector
Spatial Filtering Regression (ESFR), which represents spatial autocorrelation as a synthetic variable
derived from a linear combination of selected eigenvectors of the spatial weights matrix, is gaining
recognitions [47,48]. Equation (1) is the general form of the ESFR model [49]:

Y = Xβ + Eα + ε (1)

where Y is an n × 1 vector of dependent variable, X is an n × p matrix containing independent
variables, E is an n × k matrix containing k selected eigenvectors, α and β are the corresponding vectors
of regression coefficients, and ε is a vector of i.i.d random errors.

The linear combination of the selected eigenvectors Eα filters the spatial autocorrelation out
of the regression residuals. Because the eigenvectors are orthogonal and uncorrelated with each

https://search.earthdata.nasa.gov
https://search.earthdata.nasa.gov
https://gmao.gsfc.nasa.gov/products/
https://gmao.gsfc.nasa.gov/products/
http://srtm.csi.cgiar.org
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other, we are able to use them as synthetic variables in the regression model and estimate the
parameters using conventional methods such as OLS, constructing models with improved accuracy
and reduced uncertainty [37,50]. Researchers have begun to use ESF to model PM2.5 [51] where the
independent variables are observations of other air pollutants at the same monitoring stations as PM2.5.
The application of the model is limited as the number of monitoring stations is insufficient to cover a
large area. In this paper, we use remotely sensed data with high resolution to build the ESFR model,
making it more practical for PM2.5 analysis and prediction.

2.7. Model Specification, Assessment and Comparison

Estimating the ESFR model for PM2.5 concentration includes five steps: (1) construction of the
spatial weights matrix for the study area; (2) calculation of the eigenvectors from the centered spatial
weights matrix; (3) selections of eigenvectors using step-wise regression with all the covariates; (4) OLS
estimation of the regression coefficients; (5) removal of the insignificant covariates in the obtained
model and repeating steps (3) and (4) to construct the final ESFR model.

The spatial weights matrix C0 for the stations can be topology-based as well as
distance-based [47,52]. In this paper, C0 is a distance-based matrix whose (i, j)-th element equals
exp(–di,j/r), where di,j is the Euclidean distance between stations i and j, and r is the longest distance in
the minimum spanning tree covering stations. Subsequently, the spatial weights matrix C0 is centered
as follows:

C1 =
(

I − 11T/n
)

C0

(
I − 11T/n

)
(2)

where 1 is an n × 1 vector of ones, which means 11T is an n × n matrix whose elements all equal
one, and T denotes the matrix transpose operator, n is the number of monitoring stations and I is an
n-dimension identity matrix. To proceed with the ESFR, eigenvectors are calculated for the centered
matrix C1, followed by a selection process which often involves such variable selection methods as
step-wise regression as well as the Least Absolute Shrinkage and Selection Operator (LASSO) [53–55].
Candidate eigenvectors were first calculated from the distance-based weights matrix for the study area
(Figure 1). Since all of the variables have positive spatial autocorrelation, the subset of eigenvectors
was initially formed through the criteria (λi/λ1) ≥ 0.10 [48] which then was further selected along
with the covariates through step-wise regression. The combination of eigenvector resulting in the
highest R-squared is remained. The initial model is specified in the following form:

PM2.5 = β0 + β1 AOD + β2ST + β3RH + β4PBLH + β5PS + β6NDVI + β7DEM
+β8FactDen + β9RoadDen + Ekβk + ε

(3)

where β0 is the intercept, βi (i = 1, . . . , 9) are regression coefficients. Ek is an n × k matrix of selected
eigenvectors, βk is a k × 1 vector of coefficients for the eigenvectors, ε is an n × 1 error vector. The term
Ekβk is the spatial filter, accounting for the spatial effects in PM2.5 distribution. After the eigenvectors
are selected, OLS is used for estimating the model as specified in Equation (3).

Model performance will be assessed through the common metrics for OLS models, including
Adjusted R2, Residual Standard Errors (RSE), Mean Absolute Percentage Error (MAPE) and Corrected
Akaike Information Criterion (AICc). Residuals’ global Moran’s I was computed to validate if the
spatial autocorrelation was filtered out of the residuals and the residuals were spatially random.
To assess model fitting and prediction accuracy, leave-one-out cross validation (LOOCV) was
conducted. We selects one station for validation and the remaining stations are used as the training
data. This is repeated until every station is used as the validation data once. Then we calculate the
Mean Squared Error (MSE) of the validation dataset to assess model estimation accuracy. For LOOCV
of ESFR model, the R package “spmoran” provides functions for ESF-based spatial interpolation
based on a minimization of expected error, which can be used to calculate the eigenvector for the
stations to be predicted. The ESFR model is compared with the conventional non-spatial OLS model
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(denoted as Global Multiple Linear Regression, or GMLR), using the above performance metrics
and cross-validations.

2.8. PM2.5 Distribution Mapping and Cause Analysis

The annual and seasonal ESFR models will be applied to generate the ground PM2.5 maps. As the
covariates were all 3 km raster layers, we interpolated the selected eigenvectors into the 3 km grids
and applied the ESFR model to producing PM2.5 maps. In this way, PM2.5 concentrations on the grid
cells with no monitoring stations were computed and we obtained continuous annual and seasonal
PM2.5 distribution maps in the YRD region. We can evaluate the air quality status as well as analyzing
spatiotemporal characteristics of PM2.5 concentrations in the YRD region from a finer scale using
these maps.

To explore the causes of the PM2.5 distribution, we introduced a measurement of pollution sources
density, defined as the average of normalized point density of factory POIs and the line density of
roads, as is shown in Equation (4):

Pollution Sources Density =
1
2
(RoadDen_Norm + FactDen_Norm) (4)

RoadDen_Norm is the normalized RoadDen, FactDen_Norm is the normalized FactDen. The normalization
method for RoadDen and FactDen is shown in Equation (5):

XNorm = (X − Min)/(Max − Min) (5)

Max and Min denote the maximum and minimum values of X. The pollution sources density map was
compared to the PM2.5 maps for visual exploration of the relationship between them.

3. Results

3.1. Data Review and Pre-Analysis

3.1.1. Dataset Summary

Table 1 is an overview of the original dataset. The average PM2.5 concentration in the YRD
region is 51.6 µg/m3. The average AOD is 0.54. The average ST, PS, RH, PBLH and NDVI are
292.0 K, 1001.3 hpa, 69.7%, 389.7 m and 62.0%, respectively. The average elevation is 138.3 m. PM2.5

concentration in the study area is high on the whole according to the Chinese national standards
(GB 3095—2012), with an annual average 47.4% greater than the national limit (35 µg/m3).

Table 1. Summary of dataset.

Items PM2.5
(µg/m3)

AOD
(10−3)

ST
(K)

PS
(hPa)

RH
(%)

PBLH
(m)

NDVI
(%)

Elevation
(m)

Min 23.2 −5.0 270.2 912.9 45.8 132.2 −19.6 −92
Max 67.9 4952.0 327.8 1029.6 93.4 1013.5 99.9 1922

Mean 51.3 540.8 292.0 1001.3 69.7 389.7 62.0 138.3
Std.dev 7.9 278.3 13.5 22.1 0.8 140.6 1.9 232.0

AOD: Aerosol Optical Depth; ST: Surface Temperature; PS: Pressure; RH: Relative Humidity;
PBLH: Planetary Boundary Layer Height; NDVI: Normalized Difference Vegetation Index; Std.dev
denotes Standard Deviation.

Figure 2 shows the distribution characteristics of annual PM2.5 observations, which ranges
from 23.2 to 67.9 µg/m3. The histogram (Figure 2a) indicates that the annual PM2.5 distribution is
approximately normal. The PM2.5 observation map shows the spatial difference (Figure 2b): the high
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concentration clusters in Hefei and Bengbu of Anhui Province, while the low concentration is located
in Huangshan and Zhoushan of Zhejiang Province.

Figure 3 depicts the monthly and seasonal mean PM2.5 concentrations calculated from ground
observations. PM2.5 pollution is most serious in winter (77.9 µg/m3) followed by spring (54.9 µg/m3)
and autumn (42.0 µg/m3). The summer average (30.5 µg/m3) is the lowest. The monthly averages
from April to October are below the annual average while the other months are above the mean. It can
be seen that the monthly average line is U-shaped and the bottom is reached in August, which denotes
the best air quality in the year.Int. J. Environ. Res. Public Health 2018, 15, x 7 of 24 
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3.1.2. Correlation Analysis

Table 2 shows the Pearson Correlation Coefficients (PCC) between the annual and seasonal PM2.5

concentration averages and the covariates. It can be seen from the annual measurements that PM2.5

concentration is moderately and positively correlated with AOD and PS while negatively correlated
with PBLH, RH, DEM and ST. NDVI is weakly and negatively correlated with PM2.5. FactDen and
RoadDen are weakly and positively correlated with PM2.5. There are variations in seasonal correlation
results. Generally, AOD, PS, FactDen and RoadDen are positively correlated with PM2.5 while PBLH,



Int. J. Environ. Res. Public Health 2018, 15, 1228 8 of 24

RH, NDVI and DEM are negatively correlated with PM2.5. There are exceptions: some variables don’t
have significant correlations with PM2.5 in certain period such as AOD in autumn, RH in summer,
and RoadDen in autumn. The relationship between ST and PM2.5 is not stationary through time. They
are positively correlated with PM2.5 in spring, negatively correlated in autumn and winter, and not
correlated in summer.

Table 3 shows the monthly results are consistent with those of annual and seasonal analyses on
the whole. However, opposite results appear in several months. For example, PBLH is not correlated
with PM2.5 in May and June. NDVI does not have significant correlation with monthly PM2.5 values
except in December, February, July and November. The relationship between ST and PM2.5 is even
more complex, with the PCC varying from −0.591 to 0.235. PCC of RH varies from −0.550 to 0.228.
Results show that the correlations between PM2.5 and covariates change with time, motivating us to
construct PM2.5 models at multi time scales to avoid temporal effects. However, the PCC is limited
in correlation analysis between PM2.5 and a certain variable because it can be influenced by other
influential factors. Correlation analysis based on regression models can be more accurate.

Table 2. Annual and Seasonal Pearson Correlation Coefficients between PM2.5 and other covariates.

Time AOD PBLH PS RH ST NDVI DEM FactDen RoadDen

Annual 0.303 ** −0.395 ** 0.560 ** −0.407 ** −0.452 ** −0.155 * −0.320 ** 0.257 ** 0.138 *
Winter 0.139 * −0.373 ** 0.620 ** −0.383 ** −0.487 ** −0.079 −0.385 ** 0.272 ** 0.185 **
Spring 0.403 ** −0.187 ** 0.496 ** −0.318 ** 0.163 * −0.132 −0.369 ** 0.326 ** 0.201 **

Summer 0.248 ** −0.103 0.366 ** 0.007 0.088 −0.137 * −0.216 ** 0.384 ** 0.289 **
Autumn −0.103 −0.559 ** 0.300 ** −0.378 ** −0.569 ** −0.130 −0.049 0.001 −0.151 *

* Significant at α = 0.05 (Two-tailed); ** Significant at α = 0.01(Two-tailed).

Table 3. Monthly Pearson Correlation Coefficients between PM2.5 and other covariates.

Time AOD PBLH PS RH ST NDVI DEM FactDen RoadDen

15 Dec 0.099 −0.248 ** 0.614 ** −0.038 −0.322 ** −0.148 * −0.415 ** 0.340 ** 0.303 **
16 Jan 0.100 −0.058 0.662 ** −0.550 ** −0.364 ** 0.164 −0.517 ** 0.275 ** 0.212 *
16 Feb 0.312 ** −0.472 ** 0.437 ** −0.190 ** −0.509 ** −0.155 * −0.207 ** 0.267 ** 0.076
16 Mar 0.321 ** −0.511 ** 0.227 ** −0.230 ** −0.234 ** −0.117 −0.085 0.179 ** 0.049
16 Apr 0.428 ** −0.265 ** 0.542 ** −0.497 ** 0.198 ** 0.065 −0.398 ** 0.320 ** 0.246 **
16 May 0.230 ** 0.095 0.461 ** −0.079 0.146 * −0.061 −0.398 ** 0.234 ** 0.243 **
16 Jun 0.117 0.037 0.389 ** 0.006 −0.044 −0.109 −0.313 ** 0.390 ** 0.316 **
16 Jul 0.330 ** −0.217 ** 0.421 ** 0.212 ** 0.235 ** −0.231 ** −0.329 ** 0.417 ** 0.374 **

16 Aug 0.224 ** −0.509 ** 0.070 0.228 ** −0.395 ** −0.094 0.150 * 0.116 −0.053
16 Sep 0.264 ** −0.466 ** 0.333 ** −0.544 ** 0.070 −0.113 −0.059 0.222 ** 0.034
16 Oct −0.244 ** −0.549 ** 0.230 * −0.026 −0.498 ** −0.095 −0.111 0.039 −0.113
16 Nov −0.074 −0.457 ** 0.405 ** −0.267 ** −0.591 ** −0.200 ** −0.180 * −0.023 −0.182 *

* Significant at α = 0.05 (Two-tailed); ** Significant at α = 0.01 (Two-tailed).

3.1.3. Spatial Autocorrelation Analysis

Since spatial effects have an impact on model accuracy and uncertainty, it is important to
examine the nature and magnitude of spatial autocorrelation in the data. Table 4 shows the Moran’s I
values of PM2.5 concentrations at different time scales, which are all positive, ranging from 0.296 to
0.610 and statistically significant, indicating the geographic distribution of PM2.5 is highly clustered.
The magnitudes of spatial autocorrelation change at different time scales.

The Moran’s I of annual mean PM2.5 is 0.563. As for the seasonal time scale, the spatial
autocorrelation of PM2.5 is strongest in autumn, followed by winter and spring, and becomes weakest
in summer. At the monthly scale, spatial autocorrelation is strongest in March and November but
weakest in May and June. Nevertheless, the prevailing presence of spatial autocorrelation across
time scales suggests that model performances would be improved greatly if spatial information is
incorporated in model specifications.
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Table 4. Annual, Seasonal and monthly mean PM2.5 Moran’s I.

Time Moran’s I p-Value Time Moran’s I p-Value

Annual 0.563 <0.001 16 Apr 0.526 <0.001
Winter 0.549 <0.001 16 May 0.296 <0.001
Spring 0.494 <0.001 16 Jun 0.361 <0.001

Summer 0.416 <0.001 16 Jul 0.399 <0.001
Autumn 0.610 <0.001 16 Aug 0.539 <0.001
15 Dec 0.547 <0.001 16 Sep 0.526 <0.001
16 Jan 0.524 <0.001 16 Oct 0.564 <0.001
16 Feb 0.495 <0.001 16 Nov 0.571 <0.001
16 Mar 0.598 <0.001

3.2. ESFR Model

ESFR models at annual, seasonal and monthly levels were estimated. Tables 5 and 6 report the
modeling results, including the coefficient estimates and the p-values of the ESFR models. For ease
of comparison, the variables are standardized and standardized coefficients are given instead of the
original coefficients. For insignificant variables removed in the initial modeling step, their coefficients
and p-value are marked with ‘/’. The p-values indicate the significance of variables in PM2.5 modeling
changes with time. In the annual ESFR model, the selected variables including AOD, ST, PS, RH, PBLH,
NDVI, DEM and FactDen are all significant at α = 0.1 level. For the seasonal and monthly models,
these variables have significance test results different from the annual model. AOD is not significant
in Winter, Spring, Summer and some months such as December, January. RH is not significant in the
Spring and January models. PBLH is not significant in May and November. FactDen is not significant
in the December model. Although RoadDen is not selected in the annual model, it is significant in
January and September.

Among the statistically significant variables, it can be seen from the standardized coefficients
(denoted as Beta) that they have different effects on PM2.5 concentration. In the annual model, PM2.5

concentration is positively correlated with AOD, PS, RH and FactDen while negatively correlated with
ST, PBLH, NDVI and DEM. For the seasonal and monthly models, the effects of PS, DEM, NDVI
and FactDen on PM2.5 are consistent with the annual model. However, some variables present results
opposite to the annual model. For example, the coefficient of AOD in October is −0.12, indicating a
negative effect on PM2.5. The coefficients of RH in Summer, April, May and July indicate a negative
effect on PM2.5. Besides, RoadDen has positive effect on PM2.5 according to the monthly models.

Table 5. Standardized coefficients and p-values of annual and seasonal PM2.5 ESFR Model.

Variables
Annual Winter Spring Summer Autumn

Beta p Beta p Beta p Beta p Beta p

AOD 0.17 0.01 0.06 0.24 / / / / 0.08 0.10
ST −0.46 0.00 −0.23 0.02 0.18 0.00 / / / /
PS 0.68 0.00 0.56 0.00 / / 0.40 0.00 0.43 0.00
RH 0.31 0.00 0.32 0.00 / / −0.53 0.00 0.16 0.10

PBLH −0.66 0.00 −0.32 0.00 −0.32 0.00 −0.59 0.00 −0.94 0.00
NDVI −0.10 0.01 / / / / −0.14 0.01 / /
DEM −0.24 0.00 −0.16 0.05 −0.38 0.00 / / −0.30 0.00

FactDen 0.31 0.00 0.20 0.00 0.43 0.00 0.41 0.00 / /
RoadDen / / / / / / / / / /

R2
adj 0.70 0.64 0.49 0.51 0.65

AICc 1255.8 1503.4 1357.0 1260.5 1314.5
MSE 19.2 66.4 43.9 18.9 27.4

AICc denotes Corrected Akaike Information Criterion; MSE denotes the Mean Square Error of leave-one-out cross
validation (LOOCV).
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ESFR models have different performance in different periods. The annual ESFR model has the
best fit with an adjusted R2 of 0.70, an LOOCV MSE of 19.2 and an AICc of 1255.8. ESFR model
performs best in autumn (R2

adj= 0.64) and worst in spring (R2
adj = 0.49). Among monthly models,

ESFR model in November has the best performance (R2
adj = 0.73) and worst in June (R2

adj = 0.36).
In December and January when PM2.5 pollution is often serious, the models also perform well.

Though all nine of the covariates are reported to be significant influential factors in previous
PM2.5 studies, some of them are not significant in our case study. In most of the models, AOD, NDVI
and RoadDen are not useful independent variables for PM2.5 estimation while PBLH and FactDen

remained significant in most models. Because the relationships between these independent variables
and PM2.5 change with space and time, our wide span of study area and time period may weaken their
relationship and lead to insignificant coefficients.

Table 6. Standardized coefficients and p-values of monthly PM2.5 ESFR Model.

Variables
15 Dec 16 Jan 16 Feb 16 Mar 16 Apr 16 May

Beta p Beta p Beta p Beta p Beta p Beta p

AOD / / / / / / / / / / / /
ST −0.72 0.00 / / 0.15 0.33 0.34 0.00 / / 0.13 0.10
PS 0.59 0.00 0.63 0.00 0.32 0.00 / / / / 0.22 0.08
RH 0.31 0.00 / / 0.80 0.00 0.17 0.09 −0.36 0.01 −0.21 0.09

PBLH 0.36 0.00 −0.39 0.00 −0.97 0.00 −0.66 0.00 −0.10 0.57 / /
NDVI −0.07 0.20 / / / / / / −0.09 0.08 / /
DEM −0.19 0.06 −0.28 0.00 −0.30 0.00 −0.26 0.01

FactDen 0.26 0.00 0.14 0.02 0.34 0.00 0.39 0.00 0.32 0.00
RoadDen / / 0.24 0.01 / / / / / / / /

R2
adj 0.60 0.63 0.57 0.55 0.54 0.37

AICc 1367.1 791.3 1477.0 1534.6 1485.1 1456.6
MSE 124.0 124.5 77.4 79.4 64.8 60.9

Variables
16 Jun 16 Jul 16 Aug 16 Sep 16 Oct 16 Nov

Beta p Beta p Beta p Beta p Beta p Beta p

AOD −0.11 0.10 0.12 0.07 / / 0.16 0.00 −0.12 0.10
ST / / / / / / / / / / −0.84 0.00
PS 0.50 0.00 0.24 0.00 0.25 0.02 / / / / 0.50 0.00
RH / / −0.52 0.00 / / / / / // 0.30 0.00

PBLH 0.35 0.00 −0.24 0.01 −0.58 0.00 −0.53 0.00 −0.40 0.00 / /
NDVI −0.10 0.10 −0.14 0.01 / / −0.12 0.01 / / / /
DEM / / / / / / / / −0.41 0.00 −0.28 0.00

FactDen 0.41 0.00 0.37 0.00 0.14 0.01 0.18 0.00 0.13 0.06 0.16 0.00
RoadDen / / / / / / 0.12 0.10 / / / /

R2
adj 0.36 0.49 0.55 0.61 0.51 0.73

AICc 1218.3 1391.5 1170.8 1238.4 767.0 1264.5
MSE 38.2 36.8 17.5 21.5 37.9 51.3

3.3. Model Assessment and Comparison

3.3.1. Model Fit

Table 7 shows the performance metrics of the annual and seasonal PM2.5 ESFR models.
Performance indicators for the annual GMLR models are also given for comparison. The adjusted
R2 of annual ESFR model reaches 0.70, 16.7% higher than the GMLR model. The RSE is 4.24 µg/m3

and the MAPE is 6.66%, which decreases by 12.7% and 13.5%, respectively, compared with the annual
GMLR model. The AICc of ESFR model is lower than the GLMR model, which means there is less
information loss in the ESFR model.

For the seasonal models, the autumn ESFR model has the best performance with an adjusted R2

0.65, which increases by 34.1% over the GMLR model. Its RSE decreases 17.3%. Though the spring
ESFR model is the worst among the four seasons, it increased 25.4% in adjusted R2 compared to the
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GMLR model. Its RSE decreases 8.5%. Considering that serious air pollution events often occur in
winter and autumn, the ESFR model is of great significance for practical application.

Table 7. Annual and seasonal ESFR model evaluation indicators.

Time
Adj. R2 RSE MAPE AICc

GMLR ESFR GMLR ESFR GMLR ESFR GMLR ESFR

Annual 0.60 0.70 4.85 4.24 7.70 6.66 1307.1 1255.8
Winter 0.57 0.64 8.58 7.86 8.84 7.85 1530.6 1503.4
Spring 0.39 0.49 7.06 6.46 9.91 8.94 1384.0 1357.0

Summer 0.31 0.51 5.10 4.27 13.61 10.64 1331.3 1260.5
Autumn 0.48 0.65 6.12 5.06 11.77 9.19 1384.8 1314.5

The monthly results are shown in Figure 4. For the GMLR models, their adjusted R2 ranged from
0.23 to 0.50, with a mean value of 0.39. The RSE ranged from 4.97 to 12.32 µg/m3, with a mean value of
8.41 µg/m3. The MAPE ranged from 11.73% to 17.01%, with a mean value of 13.62%. The ESFR models
have higher adjusted R2, lower RSE and MAPE than the GMLR models. The adjusted R2 ranged from
0.36 to 0.73, with a mean value of 0.54. The RSE ranged from 4.03 µg/m3 to 10.51 µg/m3, with a mean
value of 7.26 µg/m3. The MAPE ranged from 9.34% to 14.10%, with a mean value of 11.33%. The AICc
values of ESFR models are obviously lower than those of GMLR models. In conclusion, ESFR model
has significant improvements on model fitting precision compared with GMLR model.
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3.3.2. Model Residuals Moran’s I

Table 8 shows the Moran’s I of model residuals. All GMLR residuals have significant spatial
autocorrelation with clustered residuals. On the contrary, all ESFR models are able to filter out spatial
autocorrelation in the residuals, rendering insignificant Moran’s I. As we can see from the performance
metrics, filtering spatial autocorrelation from the residuals substantially improves model fit and
reduces model errors.

Table 8. Residual Moran’s I of annual, seasonal and monthly models.

Time
GMLR ESFR

Moran’s I p-Value Moran’s I p-Value

Annual 0.101 <0.001 −0.057 0.970
Winter 0.097 <0.001 −0.060 0.976
Spring 0.111 <0.001 −0.021 0.709

Summer 0.278 <0.001 −0.004 0.494
Autumn 0.224 <0.001 −0.022 0.730
15 Dec 0.165 <0.001 −0.036 0.841
16 Jan 0.116 0.001 −0.038 0.769
16 Feb 0.077 0.002 −0.061 0.976
16 Mar 0.104 <0.001 −0.037 0.877
16 Apr 0.206 <0.001 −0.008 0.544
16 May 0.162 <0.001 0.011 0.282
16 Jun 0.144 <0.001 −0.020 0.693
16 Jul 0.254 <0.001 0.006 0.340

16 Aug 0.312 <0.001 −0.060 0.974
16 Sep 0.314 <0.001 −0.034 0.848
16 Oct 0.095 0.002 −0.053 0.887
16 Nov 0.376 <0.001 −0.067 0.980

3.3.3. Model Cross Validation

Cross validations were conducted to assess model overfitting and prediction accuracy. Table 9
shows that the MSE of the annual ESFR model is 19.2, 22.8% lower than that from GMLR (MSE = 24.9).
For the seasonal models, the MSE of winter ESFR model is 12.5% lower than that of GMLR model.
The MSE of the spring ESFR model is 14.0% lower than the GMLR model. The MSE of the summer
ESFR model is 28.9% lower than the GMLR model. The MSE of the autumn ESFR model is 29.9% lower
than the GMLR model.

Table 9. Annual and seasonal model cross validation results.

Time GMLR ESFR

Annual 24.9 19.2
Winter 75.8 66.4
Spring 51.0 43.9

Summer 26.6 18.9
Autumn 39.1 27.4

For the monthly models (Figure 5), the MSE values of the GMLR models range from 25.2 to 157.0
and the mean is 78.5. The MSE values of the ESFR models range from 17.5 to 124.5 and the mean is
61.2. In all the monthly models, ESFR models have substantially lower cross validation errors than
GMLR. It can be concluded that overall ESFR performs the best in the estimation of PM2.5 with the set
of predictors where no monitoring stations exist.
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3.4. Analysis of PM2.5 Concentrations Based on ESFR model

3.4.1. PM2.5 Distribution Maps

Figure 6a,c,e,g,i depict the annual and seasonal PM2.5 spatial distributions. They were derived
from the ESFR models. Figure 6b,d,f,h,j were Kriging interpolations of observed PM2.5 at ground
stations. It is obvious that PM2.5 spatial distributions based on ESFR models contain more details than
the direct interpolations. For example, the junction of Lu’an and Anqing is an area with low PM2.5

concentration. However it is not reflected in the interpolation maps (Figure 6b,d,f,h,j).
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Root Mean Square Error (RMSE) between model predictions and observations were calculated to
evaluate the model accuracy. RMSE of the annual ESFR model is 4.1 µg/m3, 14.0% lower than
the GMLR model (4.8 µg/m3). For the seasonal ESFR models, Summer model has the lowest
RMSE (4.2 µg/m3), followed by autumn (RMSE = 4.9 µg/m3) and spring (RMSE = 6.3 µg/m3).
The winter model has the highest RMSE (7.6 µg/m3). This error is acceptable for practical applications.
All seasonal GMLR models have higher RMSE than the ESFR models. In ascending order, they can be
sorted as summer (RMSE = 5.0 µg/m3), autumn (RMSE = 6.0 µg/m3), spring (RMSE = 7.0 µg/m3) and
winter (RMSE = 8.4 µg/m3).

Figure 6a provides an overview of PM2.5 pollution status in the YRD region. The annual mean of
the estimated PM2.5 concentration is 40.0 µg/m3, lower than the observed mean value (51.3 µg/m3).
We classified the PM2.5 concentrations into four levels: below the national standard (≤35 µg/ m3),
1.0–1.5 times of the standard (35–52.5 µg/m3), 1.5–2 times of the standard (52.5–70 µg/m3) and over
twice of the standard (>70 µg/m3). We calculated the area percentages of each level and depicted
them in Figure 7. For the whole year, 30.4% of the area has qualified air (level 1). In 43.7% of the area,
the PM2.5 is at level 2. 25.8% of the area has level 3 PM2.5 pollution. Clearly, PM2.5 pollution in the
YRD region is rather serious.

To demonstrate further the spatial effects on PM2.5 distribution, we calculated the linear
combination of the eigenvectors, Ekβk, for both the annual and seasonal models and visualized
them in Figure 8b,d,f,h,j. The spatial patterns between each pair are strikingly similar because these
eigenvector maps contain local spatial information of PM2.5 distribution. In Figure 8a, there is an
obvious high-high cluster of PM2.5 concentration: Xuzhou-Suqian and it exactly corresponds to a
highlighted area in the eigenvector map in Figure 8b. Besides, there is a low-low cluster region:
Lishui-Taizhou in Zhejiang and it also corresponds to a highlighted area. For the seasonal maps,
the situations are almost identical to these two cluster regions but there are differences. For example,
in winter (Figure 8c), another high-high cluster appears in Hefei-Chuzhou and correspondingly in
Figure 8d the Ekβk is high in this area. In spring (Figure 8e), Changzhou-Nantong is high in PM2.5

concentration and it also has a relatively high value in Figure 8f. In autumn (Figure 8i), the high-high
cluster expands from Xuzhou-Suqian to Xuzhou-Bengbu-Huaibei, and the highlighted area changes
too (Figure 8j). The existence of high-high and low-low clusters of PM2.5 concentration shows that
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3.4.2. PM2.5 Spatial-temporal Analysis in YRD region

The PM2.5 distribution maps show apparent spatial heterogeneity. The north of the YRD region
has higher PM2.5 concentration than the south. Jiangsu Province has the highest annual mean
PM2.5 concentration (50.3 µg/m3), followed by Shanghai (46.1 µg/m3), Anhui (42.6 µg/m3) and
Zhejiang (23.7 µg/m3) in turn. Among all the prefecture-level cities, the top three with the highest
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PM2.5 concentration are Suqian (54.2 µg/m3), Huaibei (54.0 µg/m3) and Ma’an Shan (53.8 µg/m3).
The bottom three are Lishui (10.0 µg/m3), Wenzhou (13.5 µg/m3) and Huangshan (18.5 µg/m3).

For different time scales, there exists similar spatial patterns of PM2.5 concentrations. Table 10
shows the top three cities with the best or the worst air quality in four seasons. The high concentration
value always appears in the vicinity of Taizhou in Jiangsu, the junction area of Suqian and Huai’an,
Hefei and Ma’anshan. The low concentration always clusters in the junction area of Lu’an and Anqing,
Xuancheng, Hangzhou and several cities in southern Zhejiang province such as Lishui and Taizhou.

Table 10. The top three cities with the best or the worst air quality.

Season
Worst Best

1st 2nd 3rd 1st 2nd 3rd

Winter Suqian
(90.8)

Huai’an
(88.5)

Lianyungang
(86.6)

Lishui
(11.2)

Wenzhou
(23.3)

Huangshan
(35.0)

Spring Huainan
(59.2)

Bengbu
(59.1)

Huaibei
(61.4)

Lishui
(9.3)

Wenzhou
(14.8)

Huangshan
(15.9)

Summer Wuxi
(32.4)

Huainan
(31.6)

Bengbu
(30.9)

Lishui
(11.1)

Huangshan
(14.1)

Wenzhou
(17.4)

Autumn Huaibei
(55.6)

Bozhou
(55.3)

Bengbu
(54.6)

Lishui
(7.5)

Wenzhou
(8.2)

Huangshan
(11.0)

Note: The number in brackets is the mean PM2.5 concentration (units: µg/m3).

In the perspective of changes over time, PM2.5 average concentrations in the four seasons can
be sorted in descending order as winter (65.2 µg/m3), spring (42.0 µg/m3), autumn (33.6 µg/m3)
and summer (24.7 µg/m3). This tendency is consistent with the station monitoring data but the
concentrations are undervalued for all the seasons. Besides, according to Figure 7, PM2.5 pollution is
the severest in winter with 60.0% of the area having a level-4 PM2.5 pollution, which can be detrimental
to human health. In spring, the percentage of area with unqualified PM2.5 concentration reaches up to
71.4% but the pollution levels are not as high as winter. The air is the best in summer, with 98.3% of
the area above the national limit. The remaining 1.7% is at level 2 and has minor health consequence.
Then in autumn the percentage of area with qualified PM2.5 concentration decreases to 40.9%.

3.4.3. Pollution Sources Analysis

Figure 9 shows the density of likely pollution sources in the YRD region. The density value
presents local causes for PM2.5 pollution to some degree. Shanghai, Changzhou, central Hefei, Jiaxing
and the east of Hangzhou are regions with concentrated pollution sources, which can explain the
relatively high PM2.5 concentrations in these areas. However, there are high PM2.5 concentration
areas, such as Chuzhou and Anqing, with low pollution sources density. There are also low PM2.5

concentration areas with high pollution sources density, such as Taizhou in Zhejiang. These may be the
results of particle dispersion influenced by temperature, pressure and so on. Overall, this is a simple
quantitative way to find the main pollutant sources in a region, which will be helpful for air pollution
treatment. More accurate predictions require modeling atmospheric transmissions, which is beyond
the scope of this project.
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4. Discussion

4.1. Spatial-Temporal Analysis of PM2.5 Concentrations Based on ESFR Models

In modeling ground PM2.5 concentrations, spatial autocorrelation is a main factor that limits the
performances of conventional OLS models. In this paper, we developed eigenvector spatial filtering
regression models, filtering spatial information from the regression residuals and representing it as a
linear combination of selective eigenvectors of the spatial weights matrix in the model. In this way,
residuals spatial autocorrelation is substantially reduced and model precision improved, enabling us
to perform more accurate and reliable analyses and predictions.

The resulting models shed new lights on the relationships between PM2.5 and the atmospheric
conditions, terrain, ground vegetation, and cultural features. By comparisons of models from different
periods, we revealed the influences of the independent variables on PM2.5 and the variations of
individual impacts over time, most of which are consistent with existing research findings. PBLH is
negatively correlated with PM2.5 because Planetary Boundary Layer (PBL) can weaken the exchange
between earth surface and free troposphere. The lower the PBLH is, the more particles are restricted
near ground [56]. ST and RH pose different influence on PM2.5 in different periods as Tables 5 and 6
show. As for ST, high temperature contributes to photochemical activity to produce more fine particles;
however, it can also promote the convection of air and decrease PM2.5 concentrations. The relationship
between RH and PM2.5 is also complex. When RH is low, PM2.5 concentration increases because of
hygroscopic growth [57]. However, when RH is high enough, fine particles cluster together and fall to
the ground, causing a decrease of PM2.5 concentrations in the air [16]. DEM is negatively correlated
with PM2.5 because higher altitudes have good PM2.5 dispersion conditions [22]. PS has a positive
correlation with PM2.5 concentration because high pressure can cause downdrafts and an accumulation
of particles near the ground [58]. NDVI is not as important as reported in the literature, according
to our study (Tables 5 and 6). The PCCs in Tables 2 and 3 also indicate a weak correlation between
NDVI and PM2.5. In several models, NDVI shows a negative effect because vegetation can absorb
PM2.5 emissions. In contrast, FactDen and RoadDen are positively correlated with PM2.5 concentrations,
because they relate to the emission of pollutants. RoadDen is also removed from most of the models as
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transported emissions tend to move up to the boundary layer, hence are likely irrelevant to ground
PM2.5 concentrations in our study area [25].

AOD is an important variable for modeling PM2.5 concentrations. On the whole as the annual
model results in Table 5 show, AOD is positively correlated with PM2.5 concentration, because AOD
tells how much sunlight is absorbed or scattered by aerosol particles. However, as we can see in most
of the models, AOD has been removed for being not significant in the first stepwise procedure. We
speculate a number of possible causes for this inconsistency. First, most studies on the relationship
between AOD and PM2.5 are based on daily aggregates of stations located close to each other as a
means to alleviate the missing data issue. As a result, AOD and PM2.5 may have significant relations
on a daily time scale. This approach however may not work well for a longer duration because there
are more chances of missing data due to atmospheric conditions. Second, the amount of missing
data differs between stations, so the resulting means are biased. The relationship between PM2.5 and
AOD weakened after calculating annual, seasonal and monthly PM2.5 averages [59]. If rudimentary
interpolation and imputation are to be performed to estimate the missing data, excessive amount
of errors will likely to be introduced. Besides, the large span of study area can also weaken their
relationship due to the spatial heterogeneity. A previous study showed that there was a linear
PM2.5-AOD relationship at one site in Italy but the results were different at other sites in Los Angeles
and Beijing [60]. Applying more advanced methods of imputation to generate a more reliable AOD
aggregates will lead to substantial improvement with the models.

Both in-sample fit and cross-validation show that ESFR model performs better than GMLR. Thus
the ESFR model combined with remotely sensed data can be an effective way of estimating PM2.5

concentrations. PM2.5 distribution maps show that the northern YRD region has a higher concentration
than the south. Jiangsu Province is the most seriously polluted among the four administrative regions,
while Zhejiang is the cleanest. PM2.5 concentrations are the highest in winter and the lowest in summer.
These spatial and temporal analyses can be verified by current researches and the station observations,
indicating our ESFR model is a good approximation of PM2.5 processes in the region [38,61].

According to the ESF theory [47], spatial influence on PM2.5 distribution can be visualized by the
linear combination Ekβk. In our case study of the YRD region, although we had different eigenvectors
for the annual and seasonal models and linear combination of eigenvectors also varied with time, there
are similar spatial patterns revealed by the eigenvector maps. By comparing with the PM2.5 distribution
maps, we found a corresponding relationship between high values of Ekβk and the clusters of PM2.5

concentrations. This geographic pattern prevails in the YRD region. In addition, high-high or low-low
PM2.5 clusters such as Xuzhou-Suqian and Lishui-Wenzhou were found. This is another supporting
evidence that ESFR model can effectively uncover spatial structures using eigenvector maps, which is
a unique advantage of the ESF approach.

4.2. Real-Time Monitoring of Ground PM2.5 Concentrations

In addition to long term PM2.5 analysis as shown in the annual, seasonal and monthly modeling
of the YRD region, the ESFR model provides a way of real-time monitoring of ground PM2.5

concentrations. In the previous ESFR PM2.5 models [51], the independent variables are observations
of other air pollutants, including PM10, SO2, NO2, CO and O3, which are collected from the same
monitoring stations as PM2.5. They have the same resolutions as PM2.5 and are of limited relevance in
the estimation of PM2.5 on a finer spatial or temporal scale. Besides, current methods of obtaining PM2.5

concentration data are through ground measurements at fixed stations or portable PM2.5 detectors,
which can be time consuming and costly, particularly if greater spatial and temporal resolutions are
required. In our ESFR model, most of the covariates are remotely sensed data with increasing spatial
and temporal resolutions, such as AOD, ST, PS, PBLH and so on. Considering that ESFR model has a
good prediction ability, we can construct ESFR models based on real time remotely sensed data and
provide short-term or near real-time estimations of PM2.5 concentrations for a given region, enabling
more effective air quality management and more timely environmental guidance for daily activities.
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4.3. Limitations and Future Enhancements

Missing observations remain a major problem with AOD, which may well be a reason for the
weak association with PM2.5 in the model. In addition to cloud cover, the dark target algorithm has
trouble in retrieving AOD in some urban areas. The daily and monthly models are affected the most
due to a low AOD coverage. Our future work is to combine AOD products from various sources into a
database with large spatial coverage [28] and high precision so that it can be widely used in this field.
In addition, we will further improve the model precision experimenting with different specifications
of spatial weights matrix and by exploring additional covariates. As the distribution of PM2.5 is
influenced not only by spatial autocorrelation but also time effects, an integrated spatio-temporal
regression model should be the ultimate approach to modeling air pollution [62], where the eigenvector
spatial filter is a promising direction [50,63]. Lastly, atmospheric transmission and dynamics have yet
to be incorporated in the current modeling process, which is clearly a limitation, though such effects
were alleviated to some extent because the study area is large and the temporal span is year long hence
the variables can be seen as stable and representative in the study area.

5. Conclusions

As PM2.5 pollution becomes increasingly severe, it is necessary to develop accurate and reliable
models for studying the spatial and temporal characteristics of ground PM2.5. The contribution of
this paper is two-fold. On the one hand, we develop an ESFR model for ground PM2.5 concentrations
estimation. Spatial influence is incorporated to classic OLS models and performances are substantially
improved. Spatial characteristics of PM2.5 concentrations are effectively shown in the model
specification. On the other hand, models with improved accuracies combined with remotely sensed
data offer an effective means to estimate PM2.5 concentrations over time and space. High resolution
and real-time PM2.5 distribution maps can be generated and provide detailed analysis results for
chronic and epidemiological studies. However, some of the covariates used in our model are not
significant as reported by previous studies. Data with higher quality will be explored and applied
in our next study to further analyze spatial-temporal characteristics of ground PM2.5 concentrations.
The spatial differences in the relationships between influential factors and PM2.5 are not shown in the
model. As the next step, we will conduct GWR and extract location varied coefficients from ESF so as
to analyze the coefficients’ spatial variations.
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