
International Journal of

Environmental Research

and Public Health

Article

Parallel Processing Transport Model MT3DMS by
Using OpenMP

Linxian Huang 1,2,*, Lichun Wang 3 ID , Jingli Shao 4, Xingwei Liu 4 ID , Qichen Hao 5,*,
Liting Xing 1,2, Lizhi Zheng 3 and Yong Xiao 6 ID

1 School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China;
stu_xinglt@ujn.edu.cn

2 Engineering Technology Institute for Groundwater Numerical Simulation and Contamination Control,
Jinan 250022, China

3 Department of Geological Sciences, University of Texas, Austin, TX 78705, USA;
wanglichun@utexas.edu (L.W.); lizhizheng@utexas.edu (L.Z.)

4 School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083,
China; jshao@cugb.edu.cn (J.S.); liuxingwei0912@163.com (X.L.)

5 Institute of Hydrogeology and Environment Geology, CAGS, Shijiazhuang 050000, China
6 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031,

China; xiaoyong@cugb.edu.cn
* Correspondence: stu_huanglx@ujn.edu.cn (L.H.); haoqichen@mail.cgs.gov.cn or

haoqichen.cn@gmail.com (Q.H.); Tel.: +86-531-8276-9233 (L.H.); +86-311-6663-0593 (Q.H.)

Received: 29 April 2018; Accepted: 18 May 2018; Published: 24 May 2018
����������
�������

Abstract: Solute transport modeling resolves advection, dispersion, and chemical reactions in
groundwater systems with its accuracy depending on the resolution of domain at all scales, thus the
computational efficiency of a simulator becomes a bottleneck for the wide application of numerical
simulations. However, the traditional serial numerical simulators have reached their limits for
the prohibitive computational time and memory requirement in solving large-scale problems.
These limitations have greatly hindered the wide application of groundwater solute transport
modeling. Thus, the development of an efficient method for handling large-scale groundwater
solute transport simulation is urgently required. In this study, we developed and assessed a
parallelized MT3DMS (Modular Three-Dimensional Multispecies Transport Model) by using OpenMP
(Open specifications for Multi-Processing) to accelerate the solute transport simulation process.
The parallelization was achieved by adding OpenMP compile directives (i.e., defining various types
of parallel regions) into the most time-consuming packages, including the Advection package (ADV),
Dispersion package (DSP), and Generalized Conjugate Gradient Solver package (GCG). This allows
parallel processing on shared-memory multiprocessors, i.e., both the memory requirement and
computing efforts are automatically distributed among all processors. Moreover, we discussed
two different parallelization strategies for handling numerical models with either many layers or
few layers. The performance of parallelized MT3DMS was assessed by two benchmark numerical
models with different model domain sizes via a workstation with two quad-core processors. Results
showed that the running time of parallelized MT3DMS can be 4.15 times faster than that using
sequential MT3DMS. The effects of using different preconditioners (procedures that transform a given
problem into a form that is more suitable for numerical solving methods) in the GCG package were
additionally evaluated. The modified strategy for handling numerical models with few layers also
achieved satisfactory results with running time two times faster than that via sequential simulation.
Thus, the proposed parallelization allows high-resolution groundwater transport simulation with
higher efficiency for large-scale or multimillion-cell simulation problems.

Keywords: parallel computing; solute transport modeling; MT3DMS; OpenMP

Int. J. Environ. Res. Public Health 2018, 15, 1063; doi:10.3390/ijerph15061063 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0001-7587-8924
https://orcid.org/0000-0002-6667-3959
https://orcid.org/0000-0002-6414-8384
http://www.mdpi.com/1660-4601/15/6/1063?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph15061063
http://www.mdpi.com/journal/ijerph

Int. J. Environ. Res. Public Health 2018, 15, 1063 2 of 16

1. Introduction

Groundwater solute transport modeling is crucial to further our understanding of the transport
and fate of pollutants [1–5]. The multispecies transport model MT3DMS, which was originally
developed by Chunmiao Zheng of University of Alabama [6], has been the most popular applied
and succeeded in simulating groundwater systems over the past several decades [7–9]. Nowadays,
urgent requirements have been made on modeling groundwater with great refined spatial grids
and long temporal scales [10,11]. However, most modeling software is still based on the traditional
single-CPU (Central Processing Unit) groundwater simulator and has reached its limits for the
prohibitive computational time and memory requirement in handling large groundwater systems.
The limitations and challenges of using single-CPU models are particularly due to huge computational
ability requirement, large memory capacity requirement, and the restriction on the data channel
bandwidth [12,13]. These limitations have greatly hindered the wide application of groundwater solute
transport modeling. Therefore, the development of an efficient method for handling large-scale solute
transport simulation is urgently required [14]. The solutions to this problem can be roughly classified
into two kinds [15]: (1) designing and applying more effective computational technologies, such as
new solver (e.g., Algebraic Multigrid Method (AMG), ORTHOMIN, Biconjugate Gradient Stabilized
Method (BiCGSTAB), Generalized Minimal Residual Method (GMRES)) and new preconditioner
(procedures that transform a given problem into a form that is more suitable for numerical solving
methods, e.g., Block-Jacobi, Incomplete LU Factorization (ILU), Incomplete Cholesky Factorization
(IC), Domain Decomposition Method (DDM)), to solve the matrix equation resulting from the implicit
finite-difference method for MT3DMS; and (2) taking advantage of parallel computing technology.
Parallel computing solves large-scale or multimillion-cell simulation problems by allocating and
resolving tasks to available multiprocessors simultaneously [16]. Parallel computing has been proved
to be a more efficient approach that overcomes the limitations (i.e., constraints on problem size, CPU
time, and space resolution) of groundwater simulation [17–20].

Research on parallel computing for simulating flow process began in the early 1980s. Earlier
research mainly focused on petroleum engineering for handling large reservoir problems [13].
Since then, parallel computing technologies in groundwater simulation have developed dramatically.
A number of parallel computing techniques have been widely applied to the simulation of groundwater
flow and solute transport [15], multiphase flow modeling [2], model calibration [21], groundwater
optimization problems [10], uncertainty analysis [21], algorithm development [22], and geothermal
engineering [23,24]. Among these parallel computing techniques, MPI (Message-Passing Interface)
and OpenMP (Open specifications for Multi-Processing) are considered as the standard parallelization
paradigms and have been widely applied [25].

MPI is a message-passing library interface designed for distributed-memory architecture.
MPI addresses primarily the message-passing parallel programming problems, in which data is
moved from the physical address of one process to that of another process through cooperative
operations [26,27]. Many simulators are parallelized via MPI. For example, Zhang, Zhang, Wu and
Pruess [2] parallelized TOUGH2 by MPI to handle large-scale modeling of fluid flow in an unsaturated
zone at Yucca Mountain. Ashby and Falgout [22] developed a parallelized software of PARFLOW
through MPI; PARFLOW is suitable for large-scale problems regarding both saturated and variably
saturated flow. Lichtner, et al. [28] presented PFLOTRAN that is parallelized via MPI for modeling
multi-phase, multi-component subsurface flow and reactive transport. The above-mentioned parallel
software can run on massively parallel computers with hundreds or even thousands of cores. However,
parallel computing using MPI is far more complicated. MPI requires users to transform a serial code
into a domain decomposed one, where users are responsible to explicitly define how and when data
communicates between different processors [25,29,30]. Additionally, the platform setup of MPI is very
complicated and time-consuming [31].

In contrast, OpenMP is an application programming interface (API) that supports multi-platform
shared memory multiprocessing programming in C, C++, and Fortran [32]. OpenMP API defines a

Int. J. Environ. Res. Public Health 2018, 15, 1063 3 of 16

portable, scalable model with a simple and user-friendly interface for developing parallel applications
on a variety of platforms, such as desktops and supercomputers [33,34]. Many studies advanced
parallel computing through OpenMP. For example, Jin, et al. [35] presented a high-performance
hydrobiogeochemistry model HBGC123D (HydroBioGeoChemistry in one, two, and three dimensions)
by OpenMP. Dong and Li [15] developed the OpenMP-based PCG (Preconditioned Conjugate-gradient)
solver in MODFLOW (Modular Three-dimensional Finite-difference Ground-water Flow Model).
McLaughlin [36] implemented OpenMP in the reactive transport model RT3D (Multi-species Reactive
Transport Model). Abdelaziz and Le [37] developed a parallelized version of the MT3DMS, namely
code-MT3DMSP. The advantage of OpenMP is that it is easy to program and facilitate increment
parallelization [33]. Moreover, the platforms for OpenMP are fairly common and cheaply available on
the market (such as multicore personal desktop) [34]. This kind of parallel computer is readily available
due to the emerging trends of the multicore CPU that combines two or more independent cores into
a single package with a single integrated circuit [15]. Due to excellent scalability and convenience,
OpenMP has been considered as an ideal parallelization paradigm [38].

Abdelaziz and Le [37] have already developed a parallelized version of MT3DMS code-MT3DMSP,
but the simulation time was only reduced from 7.45 min to 3.5 min with a numerical test model that is
inefficient. Moreover, MT3DMSP would be less efficient when it refers to numerical models with few
layers since not all processors can be used simultaneously. Based on the above analysis, the objective
of this study is to parallelize MT3DMS using OpenMP to facilitate groundwater solute transport
modeling on shared memory multiprocessors with higher efficiency for numerical models regardless
of number of layers. To achieve this goal, first we analyzed the program structure of MT3DMS and
identified the code regions that are time consuming. Afterwards, two different parallelizing strategies
for handling numerical models with either many layers or few layers were proposed. Then, we
added OpenMP directives (defining various types of parallel regions) into these code regions to fully
parallelize MT3DMS. We improved the computational efficiency by balancing data communication
and load during parallel programming. Finally, the accuracy and efficiency of parallel MT3DMS were
demonstrated through two benchmarks for simulating transport problems.

2. Methodology

2.1. The Governing Equation and the Analysis of Time Consumption for MT3DMS

The governing equation of pollutant transport through a three-dimensional heterogeneous,
saturated aquifer is described by the advection-dispersion equation [6,39]:

∂

∂xi

(
θDij

∂Ck

∂xj

)
− ∂

∂xi

(
θviCk

)
+ qSCk

s + ∑ Rn =
∂(θCk)

∂t
(1)

where θ is porosity; Ck is the dissolved concentration of species k (ML−3); Di,j is hydrodynamic
dispersion coefficient tensor (L2T−1); vi is seepage velocity (LT−1), vi = qi/θ, qi is specific discharge or
Darcy flux, qs is volumetric flow rate per unit volume of aquifer representing fluid sources (positive) or
sinks (negative), T−1; Ck

S is concentration of source or sink flux for species k, ML−3; ∑Rn are chemical
reaction terms, ML−3T−1.

The left-hand side of Equation (1) can be expanded into two terms:

∂
(

θCk
)

∂t
= θ

∂Ck

∂t
+ Ck ∂θ

∂t
= θ

∂Ck

∂t
+ qs

′Ck (2)

where qs
′ = ∂θ

∂t is the rate of change in transient groundwater storage (T−1).

Int. J. Environ. Res. Public Health 2018, 15, 1063 4 of 16

We consider two basic types of chemical reactions that can be described by:

∑ Rn = −ρb
∂Ck

∂t
− λ1θCk − λ2ρbCk (3)

where ρb is bulk density of subsurface medium (ML−1); Ck is concentration of species k sorbed on
subsurface solids (MM−1); λ1 is the first-order reaction rate for dissolved phase (T−1); λ2 is the
first-order reaction rate for sorbed (solid) phase (T−1).

Substituting Equations (2) and (3) into Equation (1) and dropping the species index for simplicity
of presentation, this reduces Equation (1) with further rearrangements to:

θ
∂C
∂t

+ ρb
∂C
∂t

=
∂

∂xi

(
θDij

∂C
∂xj

)
− ∂

∂xi
(θviC)

+qSCS − q′SC− λ1θC− λ2ρbC

(4)

Equation (4) essentially complies with mass balance, i.e., the change in the mass storage (both
dissolved and sorbed phases) at any given time is equal to the difference in the mass inflow and
outflow due to dispersion, advection, sink/source, and chemical reactions. For details about deriving
Equation (4), readers may refer to the documentation of MT3DMS [6].

By analyzing the governing equation and the program structure of MT3DMS, we find that the
most time-consuming code regions are located at Advection package (ADV), Dispersion package
(DSP), and Generalized Conjugate Gradient Solver package (GCG). The ADV and DSP Packages solve
the concentration change due to advection and dispersion processes, respectively. For a MT3DMS
solver using the explicit scheme, both ADV and DSP are compiled to formulate the big coefficient
matrix. The GCG solves the matrix equation based on the implicit finite-difference approach via the
generalized conjugate gradients methods. Abdelaziz and Le [37] analyzed time consumption of each
procedure by running MT3DMS on the Intel® Advisor for a specific numerical model; their results
further support our argument that ADV, DSP, and GCG dominantly consumed most of running time
(Table 1). In this study, the parallelization of MT3DMS was carried out by adding OpenMP directives
into ADV, DSP and GCG packages. Using OpenMP directives, the parallelization can be applied
separately to individual subroutines without changing the rest of serial program structure.

Table 1. Time consumption for different packages of MT3DMS.

Package Fraction of Time Consumption

ADV 63%
DSP 20%
GCG 13%

Others 4%

2.2. Speedup of Parallelization

The performance of parallelized MT3DMS is assessed by the term ”speedup”, which is a standard
metric in parallel computing and is defined as the ratio of required time to get work done with only
one processor to the time with N processors [40]. For example, if T(N) (parallel MT3DMS) is the time
to complete a task on N processors and T(1) (serial MT3DMS) is the time to finish the task on a single
processor, then the speedup S(N) can be mathematically defined as:

S(N) =
T(1)
T(N)

(5)

Int. J. Environ. Res. Public Health 2018, 15, 1063 5 of 16

2.3. OpenMP Programming Paradigm

The OpenMP API uses the fork-join model that is executed in parallel (Figure 1) [32]. Multiple
threads of execution perform tasks that are either defined implicitly or explicitly by OpenMP directives.
At the beginning of program execution, only one thread is active. This thread executes sequentially
unless a parallel construct is found. Then this thread creates a team of threads (namely a fork) and
itself becomes the master thread. Within the parallel region, the master thread and derived threads
work together. Upon completion of the parallel region, these derived threads will quit or hang up,
and only the master thread continues, which is called a join. As OpenMP supports the incremental
parallelization, it has been widely adopted in scientific computing communities [38].

Int. J. Environ. Res. Public Health 2018, 15, x 5 of 15

a fork) and itself becomes the master thread. Within the parallel region, the master thread and derived
threads work together. Upon completion of the parallel region, these derived threads will quit or
hang up, and only the master thread continues, which is called a join. As OpenMP supports the
incremental parallelization, it has been widely adopted in scientific computing communities [38].

Master Thread

Parallel
Region

Nested
Parallel
Region

Figure 1. Fork-Join model in OpenMP.

2.4. Parallelization of MT3DMS Using OpenMP

2.4.1. Analysis of Parallelization

The advantage of OpenMP is that the parallelization can be done incrementally, that is, the
majority of serial code remains unchanged and the users only need to identify and parallelize the
most time-consuming parts of serial code, which are usually within loops [9]. This feature is critical
for parallelizing the ADV, DSP and GCG packages [10]. Profiling the execution of the sequential
ADV, DSP and GCG packages code shows that the block structures with a three-level nested DO-
Loop or single DO-Loop takes up most of execution time. The block structures are:

where the variables K, I, and J are the loop counter of each DO-Loop, the variables NLAY, NROW,
and NCOL are the total numbers of layer, row, and column in the model, respectively. NODES =
NLAY × NROW × NCOL. The parallelization of MT3DMS is achieved by simply adding OpenMP
compile detectives into these three-level nested DO-Loop and single DO-loop to significantly speed
up execution time and thus improves computational efficiency.

2.4.2. Data Sharing Attribute Clauses

Since OpenMP is a shared memory programming model, most variables are shared to all threads
by default [32]. However, private variables are sometimes necessary to avoid race conditions. A race
condition occurs if two or more threads access the same variable concurrently and at least one thread

DO K=1, NLAY

DO I=1, NROW

 DO J=1, NCOL

 Execution

 ENDDO

ENDDO

ENDDO

DO I=1, NODES

Execution

ENDDO

Figure 1. Fork-Join model in OpenMP.

2.4. Parallelization of MT3DMS Using OpenMP

2.4.1. Analysis of Parallelization

The advantage of OpenMP is that the parallelization can be done incrementally, that is, the
majority of serial code remains unchanged and the users only need to identify and parallelize the most
time-consuming parts of serial code, which are usually within loops [9]. This feature is critical for
parallelizing the ADV, DSP and GCG packages [10]. Profiling the execution of the sequential ADV,
DSP and GCG packages code shows that the block structures with a three-level nested DO-Loop or
single DO-Loop takes up most of execution time. The block structures are:

Int. J. Environ. Res. Public Health 2018, 15, x 5 of 15

a fork) and itself becomes the master thread. Within the parallel region, the master thread and derived
threads work together. Upon completion of the parallel region, these derived threads will quit or
hang up, and only the master thread continues, which is called a join. As OpenMP supports the
incremental parallelization, it has been widely adopted in scientific computing communities [38].

Master Thread

Parallel
Region

Nested
Parallel
Region

Figure 1. Fork-Join model in OpenMP.

2.4. Parallelization of MT3DMS Using OpenMP

2.4.1. Analysis of Parallelization

The advantage of OpenMP is that the parallelization can be done incrementally, that is, the
majority of serial code remains unchanged and the users only need to identify and parallelize the
most time-consuming parts of serial code, which are usually within loops [9]. This feature is critical
for parallelizing the ADV, DSP and GCG packages [10]. Profiling the execution of the sequential
ADV, DSP and GCG packages code shows that the block structures with a three-level nested DO-
Loop or single DO-Loop takes up most of execution time. The block structures are:

where the variables K, I, and J are the loop counter of each DO-Loop, the variables NLAY, NROW,
and NCOL are the total numbers of layer, row, and column in the model, respectively. NODES =
NLAY × NROW × NCOL. The parallelization of MT3DMS is achieved by simply adding OpenMP
compile detectives into these three-level nested DO-Loop and single DO-loop to significantly speed
up execution time and thus improves computational efficiency.

2.4.2. Data Sharing Attribute Clauses

Since OpenMP is a shared memory programming model, most variables are shared to all threads
by default [32]. However, private variables are sometimes necessary to avoid race conditions. A race
condition occurs if two or more threads access the same variable concurrently and at least one thread

DO K=1, NLAY

DO I=1, NROW

 DO J=1, NCOL

 Execution

 ENDDO

ENDDO

ENDDO

DO I=1, NODES

Execution

ENDDO

Int. J. Environ. Res. Public Health 2018, 15, x 5 of 15

a fork) and itself becomes the master thread. Within the parallel region, the master thread and derived
threads work together. Upon completion of the parallel region, these derived threads will quit or
hang up, and only the master thread continues, which is called a join. As OpenMP supports the
incremental parallelization, it has been widely adopted in scientific computing communities [38].

Master Thread

Parallel
Region

Nested
Parallel
Region

Figure 1. Fork-Join model in OpenMP.

2.4. Parallelization of MT3DMS Using OpenMP

2.4.1. Analysis of Parallelization

The advantage of OpenMP is that the parallelization can be done incrementally, that is, the
majority of serial code remains unchanged and the users only need to identify and parallelize the
most time-consuming parts of serial code, which are usually within loops [9]. This feature is critical
for parallelizing the ADV, DSP and GCG packages [10]. Profiling the execution of the sequential
ADV, DSP and GCG packages code shows that the block structures with a three-level nested DO-
Loop or single DO-Loop takes up most of execution time. The block structures are:

where the variables K, I, and J are the loop counter of each DO-Loop, the variables NLAY, NROW,
and NCOL are the total numbers of layer, row, and column in the model, respectively. NODES =
NLAY × NROW × NCOL. The parallelization of MT3DMS is achieved by simply adding OpenMP
compile detectives into these three-level nested DO-Loop and single DO-loop to significantly speed
up execution time and thus improves computational efficiency.

2.4.2. Data Sharing Attribute Clauses

Since OpenMP is a shared memory programming model, most variables are shared to all threads
by default [32]. However, private variables are sometimes necessary to avoid race conditions. A race
condition occurs if two or more threads access the same variable concurrently and at least one thread

DO K=1, NLAY

DO I=1, NROW

 DO J=1, NCOL

 Execution

 ENDDO

ENDDO

ENDDO

DO I=1, NODES

Execution

ENDDO

where the variables K, I, and J are the loop counter of each DO-Loop, the variables NLAY, NROW,
and NCOL are the total numbers of layer, row, and column in the model, respectively. NODES =
NLAY × NROW × NCOL. The parallelization of MT3DMS is achieved by simply adding OpenMP

Int. J. Environ. Res. Public Health 2018, 15, 1063 6 of 16

compile detectives into these three-level nested DO-Loop and single DO-loop to significantly speed up
execution time and thus improves computational efficiency.

2.4.2. Data Sharing Attribute Clauses

Since OpenMP is a shared memory programming model, most variables are shared to all threads
by default [32]. However, private variables are sometimes necessary to avoid race conditions. A race
condition occurs if two or more threads access the same variable concurrently and at least one thread
induces update [41]. Race condition would result in inaccurate simulation results. Therefore, when
parallelized MT3DMS using OpenMP, variables should be defined either shared (variables are shared
among all threads) or private (each thread has its own copy of variable).

• Shared clause

When parallelized MT3DMS using OpenMP, certain variables are shared and available to all
threads within the scope of a directive-pair. For example, in the above-mentioned three-level nested
DO-Loop, NLAY, NROW and NCOL are needed by all threads, therefore these variables can be defined
as follows:

!$OMP PARALLEL SHARED(NLAY, NROW, NCOL)

This means all threads have access to the same memory location for reading from/writing to the
shared variables. Consequently, declaring a shared variable saves computational memory.

• Private clause

In contrast to the shared variables, some variables should have different values in each thread.
This is feasible if every thread has its own copy of variable. The private clause can achieve this by
copying the variable that is temporarily existent to each thread. For example, in the above three-level
nested DO-Loop, loop counter I, J and K have different values in each thread, therefore these private
variables can be defined as follows:

!$OMP PARALLEL PRIVATE(I, J, K)

2.4.3. Reduction Clause

In MT3DMS, there is DO-Loop applied to compute the sum of variables, the block structure can
be simply represented as follow:

Int. J. Environ. Res. Public Health 2018, 15, x 6 of 15

induces update [41]. Race condition would result in inaccurate simulation results. Therefore, when
parallelized MT3DMS using OpenMP, variables should be defined either shared (variables are shared
among all threads) or private (each thread has its own copy of variable).

• Shared clause

When parallelized MT3DMS using OpenMP, certain variables are shared and available to all
threads within the scope of a directive-pair. For example, in the above-mentioned three-level nested
DO-Loop, NLAY, NROW and NCOL are needed by all threads, therefore these variables can be
defined as follows:

!$OMP PARALLEL SHARED(NLAY, NROW, NCOL)

This means all threads have access to the same memory location for reading from/writing to the
shared variables. Consequently, declaring a shared variable saves computational memory.

• Private clause

In contrast to the shared variables, some variables should have different values in each thread.
This is feasible if every thread has its own copy of variable. The private clause can achieve this by
copying the variable that is temporarily existent to each thread. For example, in the above three-level
nested DO-Loop, loop counter I, J and K have different values in each thread, therefore these private
variables can be defined as follows:

!$OMP PARALLEL PRIVATE(I, J, K)

2.4.3. Reduction Clause

In MT3DMS, there is DO-Loop applied to compute the sum of variables, the block structure can
be simply represented as follow:

Variable RESULT has a local copy in each thread and the local copies will be summarized

(reduced) into a global shared variable. By using the REDUCTION clause, it can help to avoid
unpredictable results (see the following block structure). The REDUCTION clause performs a
reduction operation on the variable RESULT [32]. At the beginning of reduction, a private copy for
RESULT is created and initialized for each thread. At the end of reduction, the local copies will be
summarized (reduced) into a global shared variable. Since only one thread at a time is allowed to
update RESULT for the shared variable, this ensures the final summation is correct without repeating
summing up RESULT.

2.4.4. Grain Size

!$OMP PARALLEL DO
!$OMP& PRIVATE(I, A)
!$OMP& SHARED(NODES)
DO I = 1, NODES

RESULT= RESULT + A(I)
ENDDO
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
!$OMP& PRIVATE(I)
!$OMP& SHARED(NODES)
!$OMP&REDUCTION(+:RESULT)
DO I = 1, NODES

RESULT= RESULT + A(I)
ENDDO
!$OMP END PARALLEL DO

Variable RESULT has a local copy in each thread and the local copies will be summarized (reduced)
into a global shared variable. By using the REDUCTION clause, it can help to avoid unpredictable
results (see the following block structure). The REDUCTION clause performs a reduction operation on
the variable RESULT [32]. At the beginning of reduction, a private copy for RESULT is created and
initialized for each thread. At the end of reduction, the local copies will be summarized (reduced) into
a global shared variable. Since only one thread at a time is allowed to update RESULT for the shared
variable, this ensures the final summation is correct without repeating summing up RESULT.

Int. J. Environ. Res. Public Health 2018, 15, 1063 7 of 16

Int. J. Environ. Res. Public Health 2018, 15, x 6 of 15

induces update [41]. Race condition would result in inaccurate simulation results. Therefore, when
parallelized MT3DMS using OpenMP, variables should be defined either shared (variables are shared
among all threads) or private (each thread has its own copy of variable).

• Shared clause

When parallelized MT3DMS using OpenMP, certain variables are shared and available to all
threads within the scope of a directive-pair. For example, in the above-mentioned three-level nested
DO-Loop, NLAY, NROW and NCOL are needed by all threads, therefore these variables can be
defined as follows:

!$OMP PARALLEL SHARED(NLAY, NROW, NCOL)

This means all threads have access to the same memory location for reading from/writing to the
shared variables. Consequently, declaring a shared variable saves computational memory.

• Private clause

In contrast to the shared variables, some variables should have different values in each thread.
This is feasible if every thread has its own copy of variable. The private clause can achieve this by
copying the variable that is temporarily existent to each thread. For example, in the above three-level
nested DO-Loop, loop counter I, J and K have different values in each thread, therefore these private
variables can be defined as follows:

!$OMP PARALLEL PRIVATE(I, J, K)

2.4.3. Reduction Clause

In MT3DMS, there is DO-Loop applied to compute the sum of variables, the block structure can
be simply represented as follow:

Variable RESULT has a local copy in each thread and the local copies will be summarized

(reduced) into a global shared variable. By using the REDUCTION clause, it can help to avoid
unpredictable results (see the following block structure). The REDUCTION clause performs a
reduction operation on the variable RESULT [32]. At the beginning of reduction, a private copy for
RESULT is created and initialized for each thread. At the end of reduction, the local copies will be
summarized (reduced) into a global shared variable. Since only one thread at a time is allowed to
update RESULT for the shared variable, this ensures the final summation is correct without repeating
summing up RESULT.

2.4.4. Grain Size

!$OMP PARALLEL DO
!$OMP& PRIVATE(I, A)
!$OMP& SHARED(NODES)
DO I = 1, NODES

RESULT= RESULT + A(I)
ENDDO
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
!$OMP& PRIVATE(I)
!$OMP& SHARED(NODES)
!$OMP&REDUCTION(+:RESULT)
DO I = 1, NODES

RESULT= RESULT + A(I)
ENDDO
!$OMP END PARALLEL DO

2.4.4. Grain Size

The efficiency of parallelized MT3DMS additionally depends on the grain size. In parallel
computing, grain size is a measure of the amount of work (i.e., computation) that is performed by a
given task [42]. A large grain size can reduce the amount of available parallelism. Moreover, a small
grain size cannot make full use of single processor. Therefore, the balance between grain size and
number of processors should be achieved to maximize the computational efficiency. Consequently,
there are only two concerned situations regarding the grain size and number of processors, which are
either (1) number of layers ≥number of processors or (2) number of layers < number of processors.
In this study, we considered these two different situations when we parallelized the three-level nested
DO-Loop that included grain size’s effect.

• Case 1: number of layers ≥ number of processors

Adding OpenMP compile directives to parallelize the three-level nested DO-Loop can speed up
computation on parallel computers. When the number of layers is larger or equal than that of processors
(for example, the number of layers and processors are 8 and 2, respectively), the parallelization should
be performed on the outer loop because the inner loops are automatically run in parallel if the outer
loop is in parallel. For example, if a three-dimension model has 8 layers and the number of thread of
multiprocessor computer is 8 as well, parallelizing the K loop should achieve a satisfactory performance
since all eight processors can be fully used simultaneously. In addition, the program only incurs the
fork/join overhead once. This is shown graphically in Figure 2.

Int. J. Environ. Res. Public Health 2018, 15, x 7 of 15

The efficiency of parallelized MT3DMS additionally depends on the grain size. In parallel
computing, grain size is a measure of the amount of work (i.e., computation) that is performed by a
given task [42]. A large grain size can reduce the amount of available parallelism. Moreover, a small
grain size cannot make full use of single processor. Therefore, the balance between grain size and
number of processors should be achieved to maximize the computational efficiency. Consequently,
there are only two concerned situations regarding the grain size and number of processors, which
are either (1) number of layers ≥number of processors or (2) number of layers < number of processors.
In this study, we considered these two different situations when we parallelized the three-level
nested DO-Loop that included grain size’s effect.

• Case 1: number of layers ≥ number of processors

Adding OpenMP compile directives to parallelize the three-level nested DO-Loop can speed up
computation on parallel computers. When the number of layers is larger or equal than that of
processors (for example, the number of layers and processors are 8 and 2, respectively), the
parallelization should be performed on the outer loop because the inner loops are automatically run
in parallel if the outer loop is in parallel. For example, if a three-dimension model has 8 layers and
the number of thread of multiprocessor computer is 8 as well, parallelizing the K loop should achieve
a satisfactory performance since all eight processors can be fully used simultaneously. In addition,
the program only incurs the fork/join overhead once. This is shown graphically in Figure 2.

Serial region
Thread 0

!$OMP DO

Thread 0 Thread 1 Thread 8
DO K=1，1
DO I=1, NROW
DO J=1, NCOL

DO K=2，2
DO I=1, NROW
DO J=1, NCOL

DO K=8，8
DO I=1, NROW
DO J=1, NCOL

E
x
e
c
u
t
i
o
n

Figure 2. The parallelization of the three-level nested DO-Loop in case of the number of layers >
number of processors.

• Case 2: number of layers < number of processors

On the contrast, when the model has little number of layers which is less than the number of
processors (for example, the number of layers is 2 while the number of processors is 8), the
computational performance will be inefficient if we parallelize the outer loop. Specifically, given a
two-dimensional model with a single layer but the number of thread of multiprocessor computer is

!$OMP PARALLEL DO

DO K=1, NLAY

DO I=1, NROW

 DO J=1, NCOL

 Execution

 ENDDO

ENDDO

ENDDO

!$OMP END PARALLEL DO

Int. J. Environ. Res. Public Health 2018, 15, 1063 8 of 16

Int. J. Environ. Res. Public Health 2018, 15, x 7 of 15

The efficiency of parallelized MT3DMS additionally depends on the grain size. In parallel
computing, grain size is a measure of the amount of work (i.e., computation) that is performed by a
given task [42]. A large grain size can reduce the amount of available parallelism. Moreover, a small
grain size cannot make full use of single processor. Therefore, the balance between grain size and
number of processors should be achieved to maximize the computational efficiency. Consequently,
there are only two concerned situations regarding the grain size and number of processors, which
are either (1) number of layers ≥number of processors or (2) number of layers < number of processors.
In this study, we considered these two different situations when we parallelized the three-level
nested DO-Loop that included grain size’s effect.

• Case 1: number of layers ≥ number of processors

Adding OpenMP compile directives to parallelize the three-level nested DO-Loop can speed up
computation on parallel computers. When the number of layers is larger or equal than that of
processors (for example, the number of layers and processors are 8 and 2, respectively), the
parallelization should be performed on the outer loop because the inner loops are automatically run
in parallel if the outer loop is in parallel. For example, if a three-dimension model has 8 layers and
the number of thread of multiprocessor computer is 8 as well, parallelizing the K loop should achieve
a satisfactory performance since all eight processors can be fully used simultaneously. In addition,
the program only incurs the fork/join overhead once. This is shown graphically in Figure 2.

Serial region
Thread 0

!$OMP DO

Thread 0 Thread 1 Thread 8
DO K=1，1
DO I=1, NROW
DO J=1, NCOL

DO K=2，2
DO I=1, NROW
DO J=1, NCOL

DO K=8，8
DO I=1, NROW
DO J=1, NCOL

E
x
e
c
u
t
i
o
n

Figure 2. The parallelization of the three-level nested DO-Loop in case of the number of layers >
number of processors.

• Case 2: number of layers < number of processors

On the contrast, when the model has little number of layers which is less than the number of
processors (for example, the number of layers is 2 while the number of processors is 8), the
computational performance will be inefficient if we parallelize the outer loop. Specifically, given a
two-dimensional model with a single layer but the number of thread of multiprocessor computer is

!$OMP PARALLEL DO

DO K=1, NLAY

DO I=1, NROW

 DO J=1, NCOL

 Execution

 ENDDO

ENDDO

ENDDO

!$OMP END PARALLEL DO

Figure 2. The parallelization of the three-level nested DO-Loop in case of the number of layers >
number of processors.

• Case 2: number of layers < number of processors

On the contrast, when the model has little number of layers which is less than the number
of processors (for example, the number of layers is 2 while the number of processors is 8),
the computational performance will be inefficient if we parallelize the outer loop. Specifically, given
a two-dimensional model with a single layer but the number of thread of multiprocessor computer
is 8; parallelizing the K loop will force the task being processed by only one thread and leave the other
seven processors unused; this results in inefficient computation. Note that in such a case, the number
of rows or columns maybe very large, so parallelizing I or J loop would be a better option (Figure 3).
By parallelizing I or J loop, the K loop will be performed in a serial mode using only one processor, but
the I or J loop will be processed in parallel with all eight processors.

Int. J. Environ. Res. Public Health 2018, 15, x 8 of 15

8; parallelizing the K loop will force the task being processed by only one thread and leave the other
seven processors unused; this results in inefficient computation. Note that in such a case, the number
of rows or columns maybe very large, so parallelizing I or J loop would be a better option (Figure 3).
By parallelizing I or J loop, the K loop will be performed in a serial mode using only one processor,
but the I or J loop will be processed in parallel with all eight processors.

Serial region

!$OMP DO

Thread 0 Thread 1 Thread 8
DO I=1, 50
DO J=1, NCOL

DO I=51, 100
DO J=1, NCOL

DO I=351,400
DO J=1, NCOL

E
x
e
c
u
t
i
o
n

Thread 0

Thread 0

DO K=1, 1

Figure 3. The parallelization of the three-level nested DO-Loop in the case of number of layers <
number of processors.

2.4.5. Other Issues Need Be Addressed for Parallelization

There are relevant issues when parallelizing the blocks with OpenMP.

• The time-stepping loops and iteration loops are not parallelizable because the results are
interconnected between two successive time steps and iterations.

• The code enclosed in a parallel region must be a structured block of code. That is, it is not allowed
to jump in or out of a given parallel region, for example, by using a GOTO command.

3. Performance Results

The performance and robustness of the parallelized version of MT3DMS was assessed by two
benchmark numerical models as discussed below. All tests were performed on a Windows
workstation equipped with two quad-core 2.4 GHz Intel Xeon-E5620 processors. The metric
”speedup” was used to measure the performance of parallel computing. The MT3DMS 5.3 serial
program was also run for the sake of comparison. All numerical codes were compiled by Intel® Visual
Fortran Composer XE 2013 on Windows 8.

3.1. Benchmark Test 1

DO K=1, NLAY

!$OMP PARALLEL DO

DO I=1, NROW

 DO J=1, NCOL

 Execution

 ENDDO

ENDDO

!$OMP END PARALLEL DO

ENDDO

Int. J. Environ. Res. Public Health 2018, 15, 1063 9 of 16

Int. J. Environ. Res. Public Health 2018, 15, x 8 of 15

8; parallelizing the K loop will force the task being processed by only one thread and leave the other
seven processors unused; this results in inefficient computation. Note that in such a case, the number
of rows or columns maybe very large, so parallelizing I or J loop would be a better option (Figure 3).
By parallelizing I or J loop, the K loop will be performed in a serial mode using only one processor,
but the I or J loop will be processed in parallel with all eight processors.

Serial region

!$OMP DO

Thread 0 Thread 1 Thread 8
DO I=1, 50
DO J=1, NCOL

DO I=51, 100
DO J=1, NCOL

DO I=351,400
DO J=1, NCOL

E
x
e
c
u
t
i
o
n

Thread 0

Thread 0

DO K=1, 1

Figure 3. The parallelization of the three-level nested DO-Loop in the case of number of layers <
number of processors.

2.4.5. Other Issues Need Be Addressed for Parallelization

There are relevant issues when parallelizing the blocks with OpenMP.

• The time-stepping loops and iteration loops are not parallelizable because the results are
interconnected between two successive time steps and iterations.

• The code enclosed in a parallel region must be a structured block of code. That is, it is not allowed
to jump in or out of a given parallel region, for example, by using a GOTO command.

3. Performance Results

The performance and robustness of the parallelized version of MT3DMS was assessed by two
benchmark numerical models as discussed below. All tests were performed on a Windows
workstation equipped with two quad-core 2.4 GHz Intel Xeon-E5620 processors. The metric
”speedup” was used to measure the performance of parallel computing. The MT3DMS 5.3 serial
program was also run for the sake of comparison. All numerical codes were compiled by Intel® Visual
Fortran Composer XE 2013 on Windows 8.

3.1. Benchmark Test 1

DO K=1, NLAY

!$OMP PARALLEL DO

DO I=1, NROW

 DO J=1, NCOL

 Execution

 ENDDO

ENDDO

!$OMP END PARALLEL DO

ENDDO

Figure 3. The parallelization of the three-level nested DO-Loop in the case of number of layers <
number of processors.

2.4.5. Other Issues Need Be Addressed for Parallelization

There are relevant issues when parallelizing the blocks with OpenMP.

• The time-stepping loops and iteration loops are not parallelizable because the results are
interconnected between two successive time steps and iterations.

• The code enclosed in a parallel region must be a structured block of code. That is, it is not allowed
to jump in or out of a given parallel region, for example, by using a GOTO command.

3. Performance Results

The performance and robustness of the parallelized version of MT3DMS was assessed by two
benchmark numerical models as discussed below. All tests were performed on a Windows workstation
equipped with two quad-core 2.4 GHz Intel Xeon-E5620 processors. The metric ”speedup” was used
to measure the performance of parallel computing. The MT3DMS 5.3 serial program was also run for
the sake of comparison. All numerical codes were compiled by Intel® Visual Fortran Composer XE
2013 on Windows 8.

3.1. Benchmark Test 1

A numerical model P07 consisting of 21 columns, 15 rows, and 8 layers was used to solve the
three-dimensional transport problem; this model was taken and modified from the manual document
of MT3DMS. More detailed information of this model can be found in the document of MT3DMS [6].
Eight processors were used to assess the performance of parallel computing.

3.1.1. Comparison between Parallel MT3DMS and Serial MT3DMS

These numerical models were simulated separately by the parallelized MT3DMS and serial
MT3DMS. The execution times and speedup of the parallelized MT3DMS with different number of
threads are shown in Figure 4. The parallelized MT3DMS can significantly shorten the execution time
and speed up the computation with the running time 4.15 times faster when using 8 processors than that
when using single processor. As expected, the speedup increased and the execution time declined with
increasing number of threads. However, we observed that the efficiency (=speedup/number of threads)
was declined when the thread number increased from 5 to 8 as shown in Figure 5. The reduction of
efficiency were mainly due to the system overhead of synchronization between threads, overload, data
race problems, creation threads, and hang up threads.

Int. J. Environ. Res. Public Health 2018, 15, 1063 10 of 16

Int. J. Environ. Res. Public Health 2018, 15, x 9 of 15

A numerical model P07 consisting of 21 columns, 15 rows, and 8 layers was used to solve the
three-dimensional transport problem; this model was taken and modified from the manual document
of MT3DMS. More detailed information of this model can be found in the document of MT3DMS [6].
Eight processors were used to assess the performance of parallel computing.

3.1.1. Comparison between Parallel MT3DMS and Serial MT3DMS

These numerical models were simulated separately by the parallelized MT3DMS and serial
MT3DMS. The execution times and speedup of the parallelized MT3DMS with different number of
threads are shown in Figure 4. The parallelized MT3DMS can significantly shorten the execution time
and speed up the computation with the running time 4.15 times faster when using 8 processors than
that when using single processor. As expected, the speedup increased and the execution time
declined with increasing number of threads. However, we observed that the efficiency
(=speedup/number of threads) was declined when the thread number increased from 5 to 8 as shown
in Figure 5. The reduction of efficiency were mainly due to the system overhead of synchronization
between threads, overload, data race problems, creation threads, and hang up threads.

Figure 4. The Speedup and execution time with different number of threads.

Figure 5. The efficiency with different number of threads.

0

50

100

150

200

250

300

350

400

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8

E
xe

cu
ti

on
 ti

m
e

(S
)

S
pe

ed
up

Threads

Speedup Exetution time

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

2 3 4 5 6 7 8

E
ff

ic
ie

nc
y

Threads

Figure 4. The Speedup and execution time with different number of threads.

Int. J. Environ. Res. Public Health 2018, 15, x 9 of 15

A numerical model P07 consisting of 21 columns, 15 rows, and 8 layers was used to solve the
three-dimensional transport problem; this model was taken and modified from the manual document
of MT3DMS. More detailed information of this model can be found in the document of MT3DMS [6].
Eight processors were used to assess the performance of parallel computing.

3.1.1. Comparison between Parallel MT3DMS and Serial MT3DMS

These numerical models were simulated separately by the parallelized MT3DMS and serial
MT3DMS. The execution times and speedup of the parallelized MT3DMS with different number of
threads are shown in Figure 4. The parallelized MT3DMS can significantly shorten the execution time
and speed up the computation with the running time 4.15 times faster when using 8 processors than
that when using single processor. As expected, the speedup increased and the execution time
declined with increasing number of threads. However, we observed that the efficiency
(=speedup/number of threads) was declined when the thread number increased from 5 to 8 as shown
in Figure 5. The reduction of efficiency were mainly due to the system overhead of synchronization
between threads, overload, data race problems, creation threads, and hang up threads.

Figure 4. The Speedup and execution time with different number of threads.

Figure 5. The efficiency with different number of threads.

0

50

100

150

200

250

300

350

400

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8

E
xe

cu
ti

on
 ti

m
e

(S
)

S
pe

ed
up

Threads

Speedup Exetution time

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

2 3 4 5 6 7 8

E
ff

ic
ie

nc
y

Threads

Figure 5. The efficiency with different number of threads.

3.1.2. Comparison between Three GCG Preconditioning Options

The Generalized Conjugate Gradient Solver package (GCG) has three preconditioning options,
Jacobi, Symmetric Successive Over Relaxation (SSOR), and the Modified Incomplete Cholesky (MIC)
for solving the matrix equation. All three preconditioning options have been parallelized using
OpenMP to some degree. The performance of parallel MT3DMS with these three preconditioning
options were furthered assessed as following.

The SSOR preconditioner and Jacobi preconditioner perform very well while the MIC
preconditioner performs poorly in terms of speeding up computation (Figure 6) and shortening
the running time (Figure 7). When the number of threads was 1, the execution time of the MIC
preconditioner was about 1000 s which was nearly 3 times longer than that of the SSOR and Jacobi
preconditioners. The main reason is that the MIC preconditioner usually takes more iterations to
converge than the Jacobi or SSOR and demands much more memory [6]. Both the SSOR and Jacobi

Int. J. Environ. Res. Public Health 2018, 15, 1063 11 of 16

preconditioners can significantly reduce the execution time with increasing number of threads, however
the SSOR preconditioner are faster than the Jacobi preconditioner when the number of threads >2
(Figure 7); the maximum speedup of the SSOR and Jacobi preconditioners are 4.15 times and 3.24 times,
respectively, when the number of threads was 8 (Figure 6). These results indicate that the parallelization
of the SSOR and Jacobi preconditioners can pronouncedly improve the computational efficiency. On the
contrary, the MIC preconditioner produces only a marginal difference in the execution time with
increasing threads, in which the maximum speedup was only 1.41; this suggests the parallelization of
MIC preconditioner is ineffective.

In short, both parallel SSOR and Jacobi preconditioners are effective for improving computational
efficiency; therefore, they are a good choice for simulating groundwater solute transport problems
with massive grids.

Int. J. Environ. Res. Public Health 2018, 15, x 10 of 15

3.1.2. Comparison between Three GCG Preconditioning Options

The Generalized Conjugate Gradient Solver package (GCG) has three preconditioning options,
Jacobi, Symmetric Successive Over Relaxation (SSOR), and the Modified Incomplete Cholesky (MIC)
for solving the matrix equation. All three preconditioning options have been parallelized using
OpenMP to some degree. The performance of parallel MT3DMS with these three preconditioning
options were furthered assessed as following.

The SSOR preconditioner and Jacobi preconditioner perform very well while the MIC
preconditioner performs poorly in terms of speeding up computation (Figure 6) and shortening the
running time (Figure 7). When the number of threads was 1, the execution time of the MIC
preconditioner was about 1000 s which was nearly 3 times longer than that of the SSOR and Jacobi
preconditioners. The main reason is that the MIC preconditioner usually takes more iterations to
converge than the Jacobi or SSOR and demands much more memory [6]. Both the SSOR and Jacobi
preconditioners can significantly reduce the execution time with increasing number of threads,
however the SSOR preconditioner are faster than the Jacobi preconditioner when the number of
threads >2 (Figure 7); the maximum speedup of the SSOR and Jacobi preconditioners are 4.15 times
and 3.24 times, respectively, when the number of threads was 8 (Figure 6). These results indicate that
the parallelization of the SSOR and Jacobi preconditioners can pronouncedly improve the
computational efficiency. On the contrary, the MIC preconditioner produces only a marginal
difference in the execution time with increasing threads, in which the maximum speedup was only
1.41; this suggests the parallelization of MIC preconditioner is ineffective.

In short, both parallel SSOR and Jacobi preconditioners are effective for improving
computational efficiency; therefore, they are a good choice for simulating groundwater solute
transport problems with massive grids.

Figure 6. The dependence of speedup on the number of threads for different preconditioning options.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9

S
pe

ed
up

Threads

Jacobi SSOR MIC

Figure 6. The dependence of speedup on the number of threads for different preconditioning options.
Int. J. Environ. Res. Public Health 2018, 15, x 11 of 15

Figure 7. Execution time vs. number of threads for different preconditioning options.

3.2. Benchmark Test 2

In order to evaluate the influence of grain size, an exploratory numerical model HSSTEST
consisting of 46 columns, 31 rows, and only 1 layer was taken and modified from the manual
document of MT3DMS [6]. Based on model HSSTEST, we further show the effects of different
strategies in parallelizing MT3DMS when number of layers is less than the number of processors.

3.2.1. Parallelizing the K Loop

We added OpenMP compile directives to parallelize the K loop (i.e., the layer loop) of the three-
level nested DO-Loop. The execution time and speedup were shown in Figure 8. Apparently, the
execution time and speedup only had a marginal difference with increasing thread numbers. This is
because the number of layers (=1) was far less than the number of processors, so only one processor
was performed during the entire simulation, which was remarkably inefficient since the other seven
processors were not used.

Figure 8. The Speedup and execution time with different number of threads when parallelizing the K loop.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8

E
xe

cu
ti

on
 ti

m
e

(s
)

Threads

Jacobi SSOR MIC

0

10

20

30

40

50

60

70

80

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

E
xe

cu
ti

on
 ti

m
e

(S
)

S
pe

ed
up

Threads

Speedup Execution time

Figure 7. Execution time vs. number of threads for different preconditioning options.

Int. J. Environ. Res. Public Health 2018, 15, 1063 12 of 16

3.2. Benchmark Test 2

In order to evaluate the influence of grain size, an exploratory numerical model HSSTEST
consisting of 46 columns, 31 rows, and only 1 layer was taken and modified from the manual document
of MT3DMS [6]. Based on model HSSTEST, we further show the effects of different strategies in
parallelizing MT3DMS when number of layers is less than the number of processors.

3.2.1. Parallelizing the K Loop

We added OpenMP compile directives to parallelize the K loop (i.e., the layer loop) of the
three-level nested DO-Loop. The execution time and speedup were shown in Figure 8. Apparently,
the execution time and speedup only had a marginal difference with increasing thread numbers. This is
because the number of layers (=1) was far less than the number of processors, so only one processor
was performed during the entire simulation, which was remarkably inefficient since the other seven
processors were not used.

Int. J. Environ. Res. Public Health 2018, 15, x 11 of 15

Figure 7. Execution time vs. number of threads for different preconditioning options.

3.2. Benchmark Test 2

In order to evaluate the influence of grain size, an exploratory numerical model HSSTEST
consisting of 46 columns, 31 rows, and only 1 layer was taken and modified from the manual
document of MT3DMS [6]. Based on model HSSTEST, we further show the effects of different
strategies in parallelizing MT3DMS when number of layers is less than the number of processors.

3.2.1. Parallelizing the K Loop

We added OpenMP compile directives to parallelize the K loop (i.e., the layer loop) of the three-
level nested DO-Loop. The execution time and speedup were shown in Figure 8. Apparently, the
execution time and speedup only had a marginal difference with increasing thread numbers. This is
because the number of layers (=1) was far less than the number of processors, so only one processor
was performed during the entire simulation, which was remarkably inefficient since the other seven
processors were not used.

Figure 8. The Speedup and execution time with different number of threads when parallelizing the K loop.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8

E
xe

cu
ti

on
 ti

m
e

(s
)

Threads

Jacobi SSOR MIC

0

10

20

30

40

50

60

70

80

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8
E

xe
cu

ti
on

 ti
m

e
(S

)

S
pe

ed
up

Threads

Speedup Execution time

Figure 8. The Speedup and execution time with different number of threads when parallelizing the
K loop.

3.2.2. Parallelizing the I Loop

We further modified the OpenMP compile directives to the I loop (i.e., the row loop) of the
three-level nested DO-Loop. As a result, the K loop will run in serial with only one single processor
and the I and J loop (i.e., the column loop) will run in parallel with all eight processors. The execution
time and speedup were shown in Figure 9. For example, the maximum speedup was about 2 when
the thread number was 8. Furthermore, the speedup increased with thread number. The results
indicated that more satisfactory performance can be achieved by parallelizing the I loop than that by
parallelizing the K loop. Note that in real-life cases for groundwater transport simulations, the number
of layers are usually very small while the number of rows or columns are usually very large. Therefore,
parallelizing the I loop unarguably outperforms that of parallelizing the K loop since all processors
can be fully used.

Int. J. Environ. Res. Public Health 2018, 15, 1063 13 of 16

Int. J. Environ. Res. Public Health 2018, 15, x 12 of 15

3.2.2. Parallelizing the I Loop

We further modified the OpenMP compile directives to the I loop (i.e., the row loop) of the three-
level nested DO-Loop. As a result, the K loop will run in serial with only one single processor and
the I and J loop (i.e., the column loop) will run in parallel with all eight processors. The execution
time and speedup were shown in Figure 9. For example, the maximum speedup was about 2 when
the thread number was 8. Furthermore, the speedup increased with thread number. The results
indicated that more satisfactory performance can be achieved by parallelizing the I loop than that by
parallelizing the K loop. Note that in real-life cases for groundwater transport simulations, the
number of layers are usually very small while the number of rows or columns are usually very large.
Therefore, parallelizing the I loop unarguably outperforms that of parallelizing the K loop since all
processors can be fully used.

Figure 9. The Speedup and execution time with different number of threads when parallelizing the I loop.

4. Conclusions

The traditional serial solute transport numerical simulators have challenges in solving large-
scale problems due to the huge computational ability requirement, large memory capacity
requirement, and the restriction on the data channel bandwidth. To address this challenge, a
parallelized version of MT3DMS is developed to speed up the groundwater solute transport
simulation with fine mesh discretization and long time periods by taking advantage of multi-core
shared memory computers. The parallelization of MT3DMS is accomplished by adding OpenMP
compile directives into three-level nested DO-Loop and a single DO-Loop of MT3DMS. The
performance of parallelized MT3DMS was assessed by two benchmark numerical models. The results
showed that the parallelized MT3DMS can effectively shorten the execution time and improved the
computational efficiency. In the first benchmark, the maximum speedup of 4.15 times could be
achieved for an 8-layer numerical model when thread number was 8; this demonstrates a significant
improvement for the parallelized MT3DMS. We additionally compared the three preconditioning
options of Generalized Conjugate Gradient Solver package. Results indicated both the Symmetric
Successive Over Relaxation and Jacobi preconditioners performed very well while the Modified
Incomplete Cholesky preconditioner performed poorly in terms of computational efficiency. In order
to handle the situation when the number of layers of numerical model is less than the number of
processors, we further modified the parallelization strategy by parallelizing the row loop instead of
the layer loop. The performance of this modification was assessed in the benchmark 2 for a one-layer
numerical model. In this case, we found that parallelizing the row loop is more efficient than
parallelizing the layer loop.

0

10

20

30

40

50

60

70

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

E
xe

cu
ti

on
 ti

m
e

(S
)

S
pe

ed
up

Threads

Speedup Execution time

Figure 9. The Speedup and execution time with different number of threads when parallelizing the
I loop.

4. Conclusions

The traditional serial solute transport numerical simulators have challenges in solving large-scale
problems due to the huge computational ability requirement, large memory capacity requirement,
and the restriction on the data channel bandwidth. To address this challenge, a parallelized version
of MT3DMS is developed to speed up the groundwater solute transport simulation with fine mesh
discretization and long time periods by taking advantage of multi-core shared memory computers.
The parallelization of MT3DMS is accomplished by adding OpenMP compile directives into three-level
nested DO-Loop and a single DO-Loop of MT3DMS. The performance of parallelized MT3DMS was
assessed by two benchmark numerical models. The results showed that the parallelized MT3DMS
can effectively shorten the execution time and improved the computational efficiency. In the first
benchmark, the maximum speedup of 4.15 times could be achieved for an 8-layer numerical model
when thread number was 8; this demonstrates a significant improvement for the parallelized MT3DMS.
We additionally compared the three preconditioning options of Generalized Conjugate Gradient Solver
package. Results indicated both the Symmetric Successive Over Relaxation and Jacobi preconditioners
performed very well while the Modified Incomplete Cholesky preconditioner performed poorly in
terms of computational efficiency. In order to handle the situation when the number of layers of
numerical model is less than the number of processors, we further modified the parallelization strategy
by parallelizing the row loop instead of the layer loop. The performance of this modification was
assessed in the benchmark 2 for a one-layer numerical model. In this case, we found that parallelizing
the row loop is more efficient than parallelizing the layer loop.

Overall, this study developed a novel parallelized version of MT3DMS to resolve problems of
massive groundwater solute transport simulation. This study is not the end of parallel computing;
however, our study serves as the first step that shows the advantage of parallelizing MT3DMS using
OpenMP. Further developments are also necessary to improve computational efficiency. Currently,
not all the packages have been parallelized and more packages will be parallelized in future. In order
to further improve the efficiency, the input and output formats of hydrogeologic data have to be in
parallel in future as well. Moreover, the current application of proposed parallelized MT3DMS is
restricted in a shared-memory architecture, so the hybrid OpenMP/MPI approach would be applied
to ensure it can run on either shared-memory architecture or on distributed-memory architecture to

Int. J. Environ. Res. Public Health 2018, 15, 1063 14 of 16

take advantage of more advanced parallel computers. More case studies are needed to additionally
demonstrate the applicability of the parallelized model.

Author Contributions: L.H., L.W., J.S. and Q.H. conceived and designed the research; L.H., L.X., X.L. performed
the programming works; L.H. and X.L. analyzed the data; and L.H. wrote the paper. All authors read and edited
the final manuscript.

Acknowledgments: This work was supported in part by the National Nature Science Foundation of China
(41772257), the Project of Shandong Province Higher Educational Science and Technology Program (J17KA191),
the Fundamental Research Funds for Central Public Research Institutes (YYWF201626), and the China Geological
Survey Project (DD20160238). The authors are grateful to the Institute of Hydrogeology and Environmental
Geology for their helpful support and providing data.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wu, Y.S.; Lu, G.; Zhang, K.; Bodvarsson, G.S. Modeling unsaturated flow and transport processes in fractured
tuffs of yucca mountain. Vadose Zone J. 2003, 3, 796–805. [CrossRef]

2. Zhang, K.; Zhang, K.; Wu, Y.S.; Pruess, K. User’s Guide for TOUGH2-MP—A Massively Parallel Version of the
TOUGH2 Code; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2008.

3. Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective
Transport; Academic Press: Cambridge, MA, USA, 2015.

4. Chau, K.; Jiang, Y. Three-dimensional pollutant transport model for the pearl river estuary. Water Res. 2002,
36, 2029–2039. [CrossRef]

5. Wang, W.-C.; Xu, D.-M.; Chau, K.-W.; Lei, G.-J. Assessment of river water quality based on theory of variable
fuzzy sets and fuzzy binary comparison method. Water Resour. Manag. 2014, 28, 4183–4200. [CrossRef]

6. Zheng, C.; Wang, P.P. MT3DMS: A modular three-dimensional multispecies transport model for simulation
of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation
and user’s guide. Am. J. Roentgenol. 1999, 169, 1196–1197.

7. Prommer, H.; Barry, D.A.; Zheng, C. MODFLOW/MT3DMS-based reactive multicomponent transport
modeling. Ground Water 2003, 41, 247–257. [CrossRef] [PubMed]

8. Hecht-Méndez, J.; Molina-Giraldo, N.; Blum, P.; Bayer, P. Evaluating MT3DMS for heat transport simulation
of closed geothermal systems. Groundwater 2010, 48, 741–756. [CrossRef] [PubMed]

9. Morway, E.D.; Niswonger, R.G.; Langevin, C.D.; Bailey, R.T.; Healy, R.W. Modeling variably saturated
subsurface solute transport with MODFLOW-UZF and MT3DMS. Ground Water 2013, 51, 237–251. [CrossRef]
[PubMed]

10. Rogers, L.L.; Dowla, F.U. Optimization of groundwater remediation using artificial neural networks with
parallel solute transport modeling. Water Resour. Res. 1994, 30, 457–481. [CrossRef]

11. Kourakos, G.; Harter, T. Parallel simulation of groundwater non-point source pollution using algebraic
multigrid preconditioners. Comput. Geosci. 2014, 18, 851–867. [CrossRef]

12. Zhang, K.; Wu, Y.S.; Bodvarsson, G.S. Parallel computing simulation of fluid flow in the unsaturated zone of
yucca mountain, nevada. J. Contam. Hydrol. 2003, 62–63, 381. [CrossRef]

13. Wu, Y.-S.; Zhang, K.; Ding, C.; Pruess, K.; Elmroth, E.; Bodvarsson, G. An efficient parallel-computing method
for modeling nonisothermal multiphase flow and multicomponent transport in porous and fractured media.
Adv. Water Resour. 2002, 25, 243–261. [CrossRef]

14. Fotovatikhah, F.; Herrera, M.; Shamshirband, S.; Chau, K.-W.; Faizollahzadeh Ardabili, S.; Piran, M.J. Survey
of computational intelligence as basis to big flood management: Challenges, research directions and future
work. Eng. Appl. Comput. Fluid Mech. 2018, 12, 411–437. [CrossRef]

15. Dong, Y.; Li, G. A parallel PCG solver for MODFLOW. Ground Water 2009, 47, 845–850. [CrossRef] [PubMed]
16. Quinn, M.J. Parallel Computing: Theory and Practice; McGraw-Hill: New York, NY, USA, 1994; Volume 2.
17. Eppstein, M.J.; Guarnaccia, J.F.; Dougherty, D.E. Parallel groundwater computations using PVM.

In Proceedings of the 9th International Conference on Computational Methods in Water Resources, Denver,
CO, USA, 1 June 1992; pp. 713–720.

18. Schumacher, J.; Hayley, K.; Boutin, L.C.; White, E. Ppapi: A program for groundwater modeling tasks in
distributed parallel computing environments. Groundwater 2018, 56, 248–250. [CrossRef] [PubMed]

http://dx.doi.org/10.2136/vzj2004.0796
http://dx.doi.org/10.1016/S0043-1354(01)00400-6
http://dx.doi.org/10.1007/s11269-014-0738-4
http://dx.doi.org/10.1111/j.1745-6584.2003.tb02588.x
http://www.ncbi.nlm.nih.gov/pubmed/12656291
http://dx.doi.org/10.1111/j.1745-6584.2010.00678.x
http://www.ncbi.nlm.nih.gov/pubmed/20132325
http://dx.doi.org/10.1111/j.1745-6584.2012.00971.x
http://www.ncbi.nlm.nih.gov/pubmed/22834908
http://dx.doi.org/10.1029/93WR01494
http://dx.doi.org/10.1007/s10596-014-9430-2
http://dx.doi.org/10.1016/S0169-7722(02)00159-6
http://dx.doi.org/10.1016/S0309-1708(02)00006-4
http://dx.doi.org/10.1080/19942060.2018.1448896
http://dx.doi.org/10.1111/j.1745-6584.2009.00598.x
http://www.ncbi.nlm.nih.gov/pubmed/19563427
http://dx.doi.org/10.1111/gwat.12623
http://www.ncbi.nlm.nih.gov/pubmed/29220552

Int. J. Environ. Res. Public Health 2018, 15, 1063 15 of 16

19. Fienen, M.N.; Hunt, R.J. High-throughput computing versus high-performance computing for groundwater
applications. Groundwater 2015, 53, 180–184. [CrossRef] [PubMed]

20. Elshall, A.S.; Tsai, F.T.-C. Constructive epistemic modeling of groundwater flow with geological structure
and boundary condition uncertainty under the bayesian paradigm. J. Hydrol. 2014, 517, 105–119. [CrossRef]

21. Elshall, A.S.; Pham, H.V.; Tsai, F.T.-C.; Yan, L.; Ye, M. Parallel inverse modeling and uncertainty quantification
for computationally demanding groundwater-flow models using covariance matrix adaptation. J. Hydrol.
Eng. 2014, 20, 04014087. [CrossRef]

22. Ashby, S.F.; Falgout, R.D. A parallel multigrid preconditioned conjugate gradient algorithm for groundwater
flow simulations. Nucl. Sci. Eng. 1996, 124, 145–159. [CrossRef]

23. Zhou, J.-Q.; Hu, S.-H.; Chen, Y.-F.; Wang, M.; Zhou, C.-B. The friction factor in the forchheimer equation for
rock fractures. Rock Mech. Rock Eng. 2016, 49, 3055–3068. [CrossRef]

24. Zhou, J.-Q.; Hu, S.-H.; Fang, S.; Chen, Y.-F.; Zhou, C.-B. Nonlinear flow behavior at low reynolds numbers
through rough-walled fractures subjected to normal compressive loading. Int. J. Rock Mech. Min. Sci. 2015,
80, 202–218. [CrossRef]

25. Rabenseifner, R.; Hager, G.; Jost, G. Hybrid MPI/openMP parallel programming on clusters of multi-core
SMP nodes. In Proceedings of the Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, Weimar, Germany, 18–20 February 2009; pp. 427–436.

26. Gropp, W.; Lusk, E.; Skjellum, A. Using MPI: Portable parallel programming with the message-passing
interface. Sci. Program. 2000, 5, 275–276.

27. Gropp, W.; Lusk, E.; Thakur, R. Using MPI-2: Advanced Features of the Message-Passing Interface; MIT Press:
Cambridge, MA, USA, 1999.

28. Lichtner, P.C.; Hammond, G.E.; Lu, C.; Karra, S.; Bisht, G.; Andre, B.; Mills, R.; Kumar, J. PFLOTRAN User
Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes;
Los Alamos National Lab. (LANL): Los Alamos, NM, USA; Sandia National Lab. (SNL-NM): Albuquerque,
NM, USA; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA; Oak Ridge National Lab. (ORNL):
Oak Ridge, TN, USA; OFM Research: Redmond, WA, USA, 2015.

29. Jost, G.; Jin, H.; Anmey, D.; Hatay, F.F. Comparing the openMP, MPI, and hybrid programming paradigm on
an SMP cluster. In Proceedings of the European Workshop on OpenMP and Applications, Aachen, Germany,
23–26 September 2003.

30. Cappello, F.; Etiemble, D. MPI versus MPI+openMP on the IBM SP for the NAS benchmarks. In Proceedings
of the 2000 ACM/IEEE Conference on Supercomputing, Dallas, TX, USA, 4–10 November 2000; p. 12.

31. Joshi, S.; Pathak, R.; Ahmed, S.; Choudhary, K.; Mishra, D. MPI and PVM based HPC setup for multi scale
modeling. In Proceedings of the IEEE International Advance Computing Conference (IACC’09), Patiala,
India, 6–7 March 2009.

32. Dagum, L.; Menon, R. OpenMP: An industry-standard API for shared-memory programming. IEEE Comput.
Sci. Eng. 1998, 5, 46–55. [CrossRef]

33. Chapman, B.; Jost, G.; Pas, R.V.D. Using OpenMP: Portable Shared Memory Parallel Programming; MIT Press:
Cambridge, MA, USA, 2008.

34. Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; Mcdonald, J.; Menon, R. Parallel Programming in OpenMP;
Morgan Kaufmann Publishers: Burlington, MA, USA, 2001.

35. Jin, P.G.; D’Azevedo, E.F.; Frenzel, H.; Mayes, M.; Yeh, G.T.; Jardine, P.M.; Salvage, K.M.; Hoffman, F.M.
HBGC123D: A high-performance computer model of coupled hydrogeological and biogeochemical processes.
Comput. Geosci. 2001, 27, 1231–1242.

36. McLaughlin, J.D. Parallel Processing of Reactive Transport Models Using openMP. Masters’ Thesis, Brigham
Young University, Provo, UT, USA, 2008.

37. Abdelaziz, R.; Le, H.H. MT3DMSP—A parallelized version of the MT3DMS code. J. Afr. Earth. Sci. 2014, 100,
1–6. [CrossRef]

38. Zhang, Y.; Hou, J.; Cao, Y.; Gu, J.; Huang, C. OpenMP parallelization of a gridded SWAT (SWATG).
Comput. Geosci. 2017, 109, 228–237. [CrossRef]

39. Bear, J. Dynamics of Fluids in Porous Media; Courier Corporation: North Chelmsford, MA, USA, 2013.
40. Eager, D.L.; Zahorjan, J.; Lazowska, E.D. Speedup versus efficiency in parallel systems. IEEE Trans. Comput.

1989, 38, 408–423. [CrossRef]

http://dx.doi.org/10.1111/gwat.12320
http://www.ncbi.nlm.nih.gov/pubmed/25644169
http://dx.doi.org/10.1016/j.jhydrol.2014.05.027
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001126
http://dx.doi.org/10.13182/NSE96-A24230
http://dx.doi.org/10.1007/s00603-016-0960-x
http://dx.doi.org/10.1016/j.ijrmms.2015.09.027
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1016/j.jafrearsci.2014.06.006
http://dx.doi.org/10.1016/j.cageo.2017.08.002
http://dx.doi.org/10.1109/12.21127

Int. J. Environ. Res. Public Health 2018, 15, 1063 16 of 16

41. Quinn, M.J. Parallel Programming; McGraw-Hill: New York, NY, USA, 2003.
42. Hwang, K. Advanced Computer Architecture: Parallelism, Scalability, Programmability, Fourteenth Reprint;

Tata McGraw-Hill Edition: Singapore, 2007; ISBN 0-07-053070-X-2007.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methodology
	The Governing Equation and the Analysis of Time Consumption for MT3DMS
	Speedup of Parallelization
	OpenMP Programming Paradigm
	Parallelization of MT3DMS Using OpenMP
	Analysis of Parallelization
	Data Sharing Attribute Clauses
	Reduction Clause
	Grain Size
	Other Issues Need Be Addressed for Parallelization

	Performance Results
	Benchmark Test 1
	Comparison between Parallel MT3DMS and Serial MT3DMS
	Comparison between Three GCG Preconditioning Options

	Benchmark Test 2
	Parallelizing the K Loop
	Parallelizing the I Loop

	Conclusions
	References

