
International  Journal  of

Environmental Research

and Public Health

Article

Parallel Processing Transport Model MT3DMS by
Using OpenMP

Linxian Huang 1,2,*, Lichun Wang 3 ID , Jingli Shao 4, Xingwei Liu 4 ID , Qichen Hao 5,*,
Liting Xing 1,2, Lizhi Zheng 3 and Yong Xiao 6 ID

1 School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China;
stu_xinglt@ujn.edu.cn

2 Engineering Technology Institute for Groundwater Numerical Simulation and Contamination Control,
Jinan 250022, China

3 Department of Geological Sciences, University of Texas, Austin, TX 78705, USA;
wanglichun@utexas.edu (L.W.); lizhizheng@utexas.edu (L.Z.)

4 School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083,
China; jshao@cugb.edu.cn (J.S.); liuxingwei0912@163.com (X.L.)

5 Institute of Hydrogeology and Environment Geology, CAGS, Shijiazhuang 050000, China
6 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031,

China; xiaoyong@cugb.edu.cn
* Correspondence: stu_huanglx@ujn.edu.cn (L.H.); haoqichen@mail.cgs.gov.cn or

haoqichen.cn@gmail.com (Q.H.); Tel.: +86-531-8276-9233 (L.H.); +86-311-6663-0593 (Q.H.)

Received: 29 April 2018; Accepted: 18 May 2018; Published: 24 May 2018
����������
�������

Abstract: Solute transport modeling resolves advection, dispersion, and chemical reactions in
groundwater systems with its accuracy depending on the resolution of domain at all scales, thus the
computational efficiency of a simulator becomes a bottleneck for the wide application of numerical
simulations. However, the traditional serial numerical simulators have reached their limits for
the prohibitive computational time and memory requirement in solving large-scale problems.
These limitations have greatly hindered the wide application of groundwater solute transport
modeling. Thus, the development of an efficient method for handling large-scale groundwater
solute transport simulation is urgently required. In this study, we developed and assessed a
parallelized MT3DMS (Modular Three-Dimensional Multispecies Transport Model) by using OpenMP
(Open specifications for Multi-Processing) to accelerate the solute transport simulation process.
The parallelization was achieved by adding OpenMP compile directives (i.e., defining various types
of parallel regions) into the most time-consuming packages, including the Advection package (ADV),
Dispersion package (DSP), and Generalized Conjugate Gradient Solver package (GCG). This allows
parallel processing on shared-memory multiprocessors, i.e., both the memory requirement and
computing efforts are automatically distributed among all processors. Moreover, we discussed
two different parallelization strategies for handling numerical models with either many layers or
few layers. The performance of parallelized MT3DMS was assessed by two benchmark numerical
models with different model domain sizes via a workstation with two quad-core processors. Results
showed that the running time of parallelized MT3DMS can be 4.15 times faster than that using
sequential MT3DMS. The effects of using different preconditioners (procedures that transform a given
problem into a form that is more suitable for numerical solving methods) in the GCG package were
additionally evaluated. The modified strategy for handling numerical models with few layers also
achieved satisfactory results with running time two times faster than that via sequential simulation.
Thus, the proposed parallelization allows high-resolution groundwater transport simulation with
higher efficiency for large-scale or multimillion-cell simulation problems.
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1. Introduction

Groundwater solute transport modeling is crucial to further our understanding of the transport
and fate of pollutants [1–5]. The multispecies transport model MT3DMS, which was originally
developed by Chunmiao Zheng of University of Alabama [6], has been the most popular applied
and succeeded in simulating groundwater systems over the past several decades [7–9]. Nowadays,
urgent requirements have been made on modeling groundwater with great refined spatial grids
and long temporal scales [10,11]. However, most modeling software is still based on the traditional
single-CPU (Central Processing Unit) groundwater simulator and has reached its limits for the
prohibitive computational time and memory requirement in handling large groundwater systems.
The limitations and challenges of using single-CPU models are particularly due to huge computational
ability requirement, large memory capacity requirement, and the restriction on the data channel
bandwidth [12,13]. These limitations have greatly hindered the wide application of groundwater solute
transport modeling. Therefore, the development of an efficient method for handling large-scale solute
transport simulation is urgently required [14]. The solutions to this problem can be roughly classified
into two kinds [15]: (1) designing and applying more effective computational technologies, such as
new solver (e.g., Algebraic Multigrid Method (AMG), ORTHOMIN, Biconjugate Gradient Stabilized
Method (BiCGSTAB), Generalized Minimal Residual Method (GMRES)) and new preconditioner
(procedures that transform a given problem into a form that is more suitable for numerical solving
methods, e.g., Block-Jacobi, Incomplete LU Factorization (ILU), Incomplete Cholesky Factorization
(IC), Domain Decomposition Method (DDM)), to solve the matrix equation resulting from the implicit
finite-difference method for MT3DMS; and (2) taking advantage of parallel computing technology.
Parallel computing solves large-scale or multimillion-cell simulation problems by allocating and
resolving tasks to available multiprocessors simultaneously [16]. Parallel computing has been proved
to be a more efficient approach that overcomes the limitations (i.e., constraints on problem size, CPU
time, and space resolution) of groundwater simulation [17–20].

Research on parallel computing for simulating flow process began in the early 1980s. Earlier
research mainly focused on petroleum engineering for handling large reservoir problems [13].
Since then, parallel computing technologies in groundwater simulation have developed dramatically.
A number of parallel computing techniques have been widely applied to the simulation of groundwater
flow and solute transport [15], multiphase flow modeling [2], model calibration [21], groundwater
optimization problems [10], uncertainty analysis [21], algorithm development [22], and geothermal
engineering [23,24]. Among these parallel computing techniques, MPI (Message-Passing Interface)
and OpenMP (Open specifications for Multi-Processing) are considered as the standard parallelization
paradigms and have been widely applied [25].

MPI is a message-passing library interface designed for distributed-memory architecture.
MPI addresses primarily the message-passing parallel programming problems, in which data is
moved from the physical address of one process to that of another process through cooperative
operations [26,27]. Many simulators are parallelized via MPI. For example, Zhang, Zhang, Wu and
Pruess [2] parallelized TOUGH2 by MPI to handle large-scale modeling of fluid flow in an unsaturated
zone at Yucca Mountain. Ashby and Falgout [22] developed a parallelized software of PARFLOW
through MPI; PARFLOW is suitable for large-scale problems regarding both saturated and variably
saturated flow. Lichtner, et al. [28] presented PFLOTRAN that is parallelized via MPI for modeling
multi-phase, multi-component subsurface flow and reactive transport. The above-mentioned parallel
software can run on massively parallel computers with hundreds or even thousands of cores. However,
parallel computing using MPI is far more complicated. MPI requires users to transform a serial code
into a domain decomposed one, where users are responsible to explicitly define how and when data
communicates between different processors [25,29,30]. Additionally, the platform setup of MPI is very
complicated and time-consuming [31].

In contrast, OpenMP is an application programming interface (API) that supports multi-platform
shared memory multiprocessing programming in C, C++, and Fortran [32]. OpenMP API defines a
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portable, scalable model with a simple and user-friendly interface for developing parallel applications
on a variety of platforms, such as desktops and supercomputers [33,34]. Many studies advanced
parallel computing through OpenMP. For example, Jin, et al. [35] presented a high-performance
hydrobiogeochemistry model HBGC123D (HydroBioGeoChemistry in one, two, and three dimensions)
by OpenMP. Dong and Li [15] developed the OpenMP-based PCG (Preconditioned Conjugate-gradient)
solver in MODFLOW (Modular Three-dimensional Finite-difference Ground-water Flow Model).
McLaughlin [36] implemented OpenMP in the reactive transport model RT3D (Multi-species Reactive
Transport Model). Abdelaziz and Le [37] developed a parallelized version of the MT3DMS, namely
code-MT3DMSP. The advantage of OpenMP is that it is easy to program and facilitate increment
parallelization [33]. Moreover, the platforms for OpenMP are fairly common and cheaply available on
the market (such as multicore personal desktop) [34]. This kind of parallel computer is readily available
due to the emerging trends of the multicore CPU that combines two or more independent cores into
a single package with a single integrated circuit [15]. Due to excellent scalability and convenience,
OpenMP has been considered as an ideal parallelization paradigm [38].

Abdelaziz and Le [37] have already developed a parallelized version of MT3DMS code-MT3DMSP,
but the simulation time was only reduced from 7.45 min to 3.5 min with a numerical test model that is
inefficient. Moreover, MT3DMSP would be less efficient when it refers to numerical models with few
layers since not all processors can be used simultaneously. Based on the above analysis, the objective
of this study is to parallelize MT3DMS using OpenMP to facilitate groundwater solute transport
modeling on shared memory multiprocessors with higher efficiency for numerical models regardless
of number of layers. To achieve this goal, first we analyzed the program structure of MT3DMS and
identified the code regions that are time consuming. Afterwards, two different parallelizing strategies
for handling numerical models with either many layers or few layers were proposed. Then, we
added OpenMP directives (defining various types of parallel regions) into these code regions to fully
parallelize MT3DMS. We improved the computational efficiency by balancing data communication
and load during parallel programming. Finally, the accuracy and efficiency of parallel MT3DMS were
demonstrated through two benchmarks for simulating transport problems.

2. Methodology

2.1. The Governing Equation and the Analysis of Time Consumption for MT3DMS

The governing equation of pollutant transport through a three-dimensional heterogeneous,
saturated aquifer is described by the advection-dispersion equation [6,39]:

∂

∂xi

(
θDij

∂Ck

∂xj

)
− ∂

∂xi

(
θviCk

)
+ qSCk

s + ∑ Rn =
∂(θCk)

∂t
(1)

where θ is porosity; Ck is the dissolved concentration of species k (ML−3); Di,j is hydrodynamic
dispersion coefficient tensor (L2T−1); vi is seepage velocity (LT−1), vi = qi/θ, qi is specific discharge or
Darcy flux, qs is volumetric flow rate per unit volume of aquifer representing fluid sources (positive) or
sinks (negative), T−1; Ck

S is concentration of source or sink flux for species k, ML−3; ∑Rn are chemical
reaction terms, ML−3T−1.

The left-hand side of Equation (1) can be expanded into two terms:
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where qs
′ = ∂θ

∂t is the rate of change in transient groundwater storage (T−1).
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We consider two basic types of chemical reactions that can be described by:

∑ Rn = −ρb
∂Ck

∂t
− λ1θCk − λ2ρbCk (3)

where ρb is bulk density of subsurface medium (ML−1); Ck is concentration of species k sorbed on
subsurface solids (MM−1); λ1 is the first-order reaction rate for dissolved phase (T−1); λ2 is the
first-order reaction rate for sorbed (solid) phase (T−1).

Substituting Equations (2) and (3) into Equation (1) and dropping the species index for simplicity
of presentation, this reduces Equation (1) with further rearrangements to:

θ
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− ∂
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(4)

Equation (4) essentially complies with mass balance, i.e., the change in the mass storage (both
dissolved and sorbed phases) at any given time is equal to the difference in the mass inflow and
outflow due to dispersion, advection, sink/source, and chemical reactions. For details about deriving
Equation (4), readers may refer to the documentation of MT3DMS [6].

By analyzing the governing equation and the program structure of MT3DMS, we find that the
most time-consuming code regions are located at Advection package (ADV), Dispersion package
(DSP), and Generalized Conjugate Gradient Solver package (GCG). The ADV and DSP Packages solve
the concentration change due to advection and dispersion processes, respectively. For a MT3DMS
solver using the explicit scheme, both ADV and DSP are compiled to formulate the big coefficient
matrix. The GCG solves the matrix equation based on the implicit finite-difference approach via the
generalized conjugate gradients methods. Abdelaziz and Le [37] analyzed time consumption of each
procedure by running MT3DMS on the Intel® Advisor for a specific numerical model; their results
further support our argument that ADV, DSP, and GCG dominantly consumed most of running time
(Table 1). In this study, the parallelization of MT3DMS was carried out by adding OpenMP directives
into ADV, DSP and GCG packages. Using OpenMP directives, the parallelization can be applied
separately to individual subroutines without changing the rest of serial program structure.

Table 1. Time consumption for different packages of MT3DMS.

Package Fraction of Time Consumption

ADV 63%
DSP 20%
GCG 13%

Others 4%

2.2. Speedup of Parallelization

The performance of parallelized MT3DMS is assessed by the term ”speedup”, which is a standard
metric in parallel computing and is defined as the ratio of required time to get work done with only
one processor to the time with N processors [40]. For example, if T(N) (parallel MT3DMS) is the time
to complete a task on N processors and T(1) (serial MT3DMS) is the time to finish the task on a single
processor, then the speedup S(N) can be mathematically defined as:

S(N) =
T(1)
T(N)

(5)
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2.3. OpenMP Programming Paradigm

The OpenMP API uses the fork-join model that is executed in parallel (Figure 1) [32]. Multiple
threads of execution perform tasks that are either defined implicitly or explicitly by OpenMP directives.
At the beginning of program execution, only one thread is active. This thread executes sequentially
unless a parallel construct is found. Then this thread creates a team of threads (namely a fork) and
itself becomes the master thread. Within the parallel region, the master thread and derived threads
work together. Upon completion of the parallel region, these derived threads will quit or hang up,
and only the master thread continues, which is called a join. As OpenMP supports the incremental
parallelization, it has been widely adopted in scientific computing communities [38].

Int. J. Environ. Res. Public Health 2018, 15, x  5 of 15 

 

a fork) and itself becomes the master thread. Within the parallel region, the master thread and derived 
threads work together. Upon completion of the parallel region, these derived threads will quit or 
hang up, and only the master thread continues, which is called a join. As OpenMP supports the 
incremental parallelization, it has been widely adopted in scientific computing communities [38].  

Master Thread

Parallel
Region

Nested
Parallel
Region

 
Figure 1. Fork-Join model in OpenMP. 

2.4. Parallelization of MT3DMS Using OpenMP 

2.4.1. Analysis of Parallelization 

The advantage of OpenMP is that the parallelization can be done incrementally, that is, the 
majority of serial code remains unchanged and the users only need to identify and parallelize the 
most time-consuming parts of serial code, which are usually within loops [9]. This feature is critical 
for parallelizing the ADV, DSP and GCG packages [10]. Profiling the execution of the sequential 
ADV, DSP and GCG packages code shows that the block structures with a three-level nested DO-
Loop or single DO-Loop takes up most of execution time. The block structures are: 

 

 
where the variables K, I, and J are the loop counter of each DO-Loop, the variables NLAY, NROW, 
and NCOL are the total numbers of layer, row, and column in the model, respectively. NODES = 
NLAY × NROW × NCOL. The parallelization of MT3DMS is achieved by simply adding OpenMP 
compile detectives into these three-level nested DO-Loop and single DO-loop to significantly speed 
up execution time and thus improves computational efficiency. 

2.4.2. Data Sharing Attribute Clauses 

Since OpenMP is a shared memory programming model, most variables are shared to all threads 
by default [32]. However, private variables are sometimes necessary to avoid race conditions. A race 
condition occurs if two or more threads access the same variable concurrently and at least one thread 

DO K=1, NLAY 

DO I=1, NROW 

    DO J=1, NCOL 

        Execution 

     ENDDO 

ENDDO 

ENDDO 

DO I=1, NODES 

Execution 

ENDDO 

Figure 1. Fork-Join model in OpenMP.

2.4. Parallelization of MT3DMS Using OpenMP

2.4.1. Analysis of Parallelization

The advantage of OpenMP is that the parallelization can be done incrementally, that is, the
majority of serial code remains unchanged and the users only need to identify and parallelize the most
time-consuming parts of serial code, which are usually within loops [9]. This feature is critical for
parallelizing the ADV, DSP and GCG packages [10]. Profiling the execution of the sequential ADV,
DSP and GCG packages code shows that the block structures with a three-level nested DO-Loop or
single DO-Loop takes up most of execution time. The block structures are:
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where the variables K, I, and J are the loop counter of each DO-Loop, the variables NLAY, NROW,
and NCOL are the total numbers of layer, row, and column in the model, respectively. NODES =
NLAY × NROW × NCOL. The parallelization of MT3DMS is achieved by simply adding OpenMP
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compile detectives into these three-level nested DO-Loop and single DO-loop to significantly speed up
execution time and thus improves computational efficiency.

2.4.2. Data Sharing Attribute Clauses

Since OpenMP is a shared memory programming model, most variables are shared to all threads
by default [32]. However, private variables are sometimes necessary to avoid race conditions. A race
condition occurs if two or more threads access the same variable concurrently and at least one thread
induces update [41]. Race condition would result in inaccurate simulation results. Therefore, when
parallelized MT3DMS using OpenMP, variables should be defined either shared (variables are shared
among all threads) or private (each thread has its own copy of variable).

• Shared clause

When parallelized MT3DMS using OpenMP, certain variables are shared and available to all
threads within the scope of a directive-pair. For example, in the above-mentioned three-level nested
DO-Loop, NLAY, NROW and NCOL are needed by all threads, therefore these variables can be defined
as follows:

!$OMP PARALLEL SHARED(NLAY, NROW, NCOL)

This means all threads have access to the same memory location for reading from/writing to the
shared variables. Consequently, declaring a shared variable saves computational memory.

• Private clause

In contrast to the shared variables, some variables should have different values in each thread.
This is feasible if every thread has its own copy of variable. The private clause can achieve this by
copying the variable that is temporarily existent to each thread. For example, in the above three-level
nested DO-Loop, loop counter I, J and K have different values in each thread, therefore these private
variables can be defined as follows:

!$OMP PARALLEL PRIVATE(I, J, K)

2.4.3. Reduction Clause

In MT3DMS, there is DO-Loop applied to compute the sum of variables, the block structure can
be simply represented as follow:
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Variable RESULT has a local copy in each thread and the local copies will be summarized (reduced)
into a global shared variable. By using the REDUCTION clause, it can help to avoid unpredictable
results (see the following block structure). The REDUCTION clause performs a reduction operation on
the variable RESULT [32]. At the beginning of reduction, a private copy for RESULT is created and
initialized for each thread. At the end of reduction, the local copies will be summarized (reduced) into
a global shared variable. Since only one thread at a time is allowed to update RESULT for the shared
variable, this ensures the final summation is correct without repeating summing up RESULT.
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RESULT= RESULT + A(I) 
ENDDO 
!$OMP END PARALLEL DO 

!$OMP PARALLEL DO 
!$OMP& PRIVATE(I) 
!$OMP& SHARED(NODES) 
!$OMP&REDUCTION(+:RESULT) 
DO I = 1, NODES 

RESULT= RESULT + A(I) 
ENDDO 
!$OMP END PARALLEL DO 

2.4.4. Grain Size

The efficiency of parallelized MT3DMS additionally depends on the grain size. In parallel
computing, grain size is a measure of the amount of work (i.e., computation) that is performed by a
given task [42]. A large grain size can reduce the amount of available parallelism. Moreover, a small
grain size cannot make full use of single processor. Therefore, the balance between grain size and
number of processors should be achieved to maximize the computational efficiency. Consequently,
there are only two concerned situations regarding the grain size and number of processors, which are
either (1) number of layers ≥number of processors or (2) number of layers < number of processors.
In this study, we considered these two different situations when we parallelized the three-level nested
DO-Loop that included grain size’s effect.

• Case 1: number of layers ≥ number of processors

Adding OpenMP compile directives to parallelize the three-level nested DO-Loop can speed up
computation on parallel computers. When the number of layers is larger or equal than that of processors
(for example, the number of layers and processors are 8 and 2, respectively), the parallelization should
be performed on the outer loop because the inner loops are automatically run in parallel if the outer
loop is in parallel. For example, if a three-dimension model has 8 layers and the number of thread of
multiprocessor computer is 8 as well, parallelizing the K loop should achieve a satisfactory performance
since all eight processors can be fully used simultaneously. In addition, the program only incurs the
fork/join overhead once. This is shown graphically in Figure 2.
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• Case 2: number of layers < number of processors

On the contrast, when the model has little number of layers which is less than the number
of processors (for example, the number of layers is 2 while the number of processors is 8),
the computational performance will be inefficient if we parallelize the outer loop. Specifically, given
a two-dimensional model with a single layer but the number of thread of multiprocessor computer
is 8; parallelizing the K loop will force the task being processed by only one thread and leave the other
seven processors unused; this results in inefficient computation. Note that in such a case, the number
of rows or columns maybe very large, so parallelizing I or J loop would be a better option (Figure 3).
By parallelizing I or J loop, the K loop will be performed in a serial mode using only one processor, but
the I or J loop will be processed in parallel with all eight processors.
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2.4.5. Other Issues Need Be Addressed for Parallelization

There are relevant issues when parallelizing the blocks with OpenMP.

• The time-stepping loops and iteration loops are not parallelizable because the results are
interconnected between two successive time steps and iterations.

• The code enclosed in a parallel region must be a structured block of code. That is, it is not allowed
to jump in or out of a given parallel region, for example, by using a GOTO command.

3. Performance Results

The performance and robustness of the parallelized version of MT3DMS was assessed by two
benchmark numerical models as discussed below. All tests were performed on a Windows workstation
equipped with two quad-core 2.4 GHz Intel Xeon-E5620 processors. The metric ”speedup” was used
to measure the performance of parallel computing. The MT3DMS 5.3 serial program was also run for
the sake of comparison. All numerical codes were compiled by Intel® Visual Fortran Composer XE
2013 on Windows 8.

3.1. Benchmark Test 1

A numerical model P07 consisting of 21 columns, 15 rows, and 8 layers was used to solve the
three-dimensional transport problem; this model was taken and modified from the manual document
of MT3DMS. More detailed information of this model can be found in the document of MT3DMS [6].
Eight processors were used to assess the performance of parallel computing.

3.1.1. Comparison between Parallel MT3DMS and Serial MT3DMS

These numerical models were simulated separately by the parallelized MT3DMS and serial
MT3DMS. The execution times and speedup of the parallelized MT3DMS with different number of
threads are shown in Figure 4. The parallelized MT3DMS can significantly shorten the execution time
and speed up the computation with the running time 4.15 times faster when using 8 processors than that
when using single processor. As expected, the speedup increased and the execution time declined with
increasing number of threads. However, we observed that the efficiency (=speedup/number of threads)
was declined when the thread number increased from 5 to 8 as shown in Figure 5. The reduction of
efficiency were mainly due to the system overhead of synchronization between threads, overload, data
race problems, creation threads, and hang up threads.
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3.1.2. Comparison between Three GCG Preconditioning Options

The Generalized Conjugate Gradient Solver package (GCG) has three preconditioning options,
Jacobi, Symmetric Successive Over Relaxation (SSOR), and the Modified Incomplete Cholesky (MIC)
for solving the matrix equation. All three preconditioning options have been parallelized using
OpenMP to some degree. The performance of parallel MT3DMS with these three preconditioning
options were furthered assessed as following.

The SSOR preconditioner and Jacobi preconditioner perform very well while the MIC
preconditioner performs poorly in terms of speeding up computation (Figure 6) and shortening
the running time (Figure 7). When the number of threads was 1, the execution time of the MIC
preconditioner was about 1000 s which was nearly 3 times longer than that of the SSOR and Jacobi
preconditioners. The main reason is that the MIC preconditioner usually takes more iterations to
converge than the Jacobi or SSOR and demands much more memory [6]. Both the SSOR and Jacobi
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preconditioners can significantly reduce the execution time with increasing number of threads, however
the SSOR preconditioner are faster than the Jacobi preconditioner when the number of threads >2
(Figure 7); the maximum speedup of the SSOR and Jacobi preconditioners are 4.15 times and 3.24 times,
respectively, when the number of threads was 8 (Figure 6). These results indicate that the parallelization
of the SSOR and Jacobi preconditioners can pronouncedly improve the computational efficiency. On the
contrary, the MIC preconditioner produces only a marginal difference in the execution time with
increasing threads, in which the maximum speedup was only 1.41; this suggests the parallelization of
MIC preconditioner is ineffective.

In short, both parallel SSOR and Jacobi preconditioners are effective for improving computational
efficiency; therefore, they are a good choice for simulating groundwater solute transport problems
with massive grids.
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3.2. Benchmark Test 2

In order to evaluate the influence of grain size, an exploratory numerical model HSSTEST
consisting of 46 columns, 31 rows, and only 1 layer was taken and modified from the manual document
of MT3DMS [6]. Based on model HSSTEST, we further show the effects of different strategies in
parallelizing MT3DMS when number of layers is less than the number of processors.

3.2.1. Parallelizing the K Loop

We added OpenMP compile directives to parallelize the K loop (i.e., the layer loop) of the
three-level nested DO-Loop. The execution time and speedup were shown in Figure 8. Apparently,
the execution time and speedup only had a marginal difference with increasing thread numbers. This is
because the number of layers (=1) was far less than the number of processors, so only one processor
was performed during the entire simulation, which was remarkably inefficient since the other seven
processors were not used.
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Figure 8. The Speedup and execution time with different number of threads when parallelizing the
K loop.

3.2.2. Parallelizing the I Loop

We further modified the OpenMP compile directives to the I loop (i.e., the row loop) of the
three-level nested DO-Loop. As a result, the K loop will run in serial with only one single processor
and the I and J loop (i.e., the column loop) will run in parallel with all eight processors. The execution
time and speedup were shown in Figure 9. For example, the maximum speedup was about 2 when
the thread number was 8. Furthermore, the speedup increased with thread number. The results
indicated that more satisfactory performance can be achieved by parallelizing the I loop than that by
parallelizing the K loop. Note that in real-life cases for groundwater transport simulations, the number
of layers are usually very small while the number of rows or columns are usually very large. Therefore,
parallelizing the I loop unarguably outperforms that of parallelizing the K loop since all processors
can be fully used.
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Figure 9. The Speedup and execution time with different number of threads when parallelizing the
I loop.

4. Conclusions

The traditional serial solute transport numerical simulators have challenges in solving large-scale
problems due to the huge computational ability requirement, large memory capacity requirement,
and the restriction on the data channel bandwidth. To address this challenge, a parallelized version
of MT3DMS is developed to speed up the groundwater solute transport simulation with fine mesh
discretization and long time periods by taking advantage of multi-core shared memory computers.
The parallelization of MT3DMS is accomplished by adding OpenMP compile directives into three-level
nested DO-Loop and a single DO-Loop of MT3DMS. The performance of parallelized MT3DMS was
assessed by two benchmark numerical models. The results showed that the parallelized MT3DMS
can effectively shorten the execution time and improved the computational efficiency. In the first
benchmark, the maximum speedup of 4.15 times could be achieved for an 8-layer numerical model
when thread number was 8; this demonstrates a significant improvement for the parallelized MT3DMS.
We additionally compared the three preconditioning options of Generalized Conjugate Gradient Solver
package. Results indicated both the Symmetric Successive Over Relaxation and Jacobi preconditioners
performed very well while the Modified Incomplete Cholesky preconditioner performed poorly in
terms of computational efficiency. In order to handle the situation when the number of layers of
numerical model is less than the number of processors, we further modified the parallelization strategy
by parallelizing the row loop instead of the layer loop. The performance of this modification was
assessed in the benchmark 2 for a one-layer numerical model. In this case, we found that parallelizing
the row loop is more efficient than parallelizing the layer loop.

Overall, this study developed a novel parallelized version of MT3DMS to resolve problems of
massive groundwater solute transport simulation. This study is not the end of parallel computing;
however, our study serves as the first step that shows the advantage of parallelizing MT3DMS using
OpenMP. Further developments are also necessary to improve computational efficiency. Currently,
not all the packages have been parallelized and more packages will be parallelized in future. In order
to further improve the efficiency, the input and output formats of hydrogeologic data have to be in
parallel in future as well. Moreover, the current application of proposed parallelized MT3DMS is
restricted in a shared-memory architecture, so the hybrid OpenMP/MPI approach would be applied
to ensure it can run on either shared-memory architecture or on distributed-memory architecture to
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take advantage of more advanced parallel computers. More case studies are needed to additionally
demonstrate the applicability of the parallelized model.
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