

International Journal of Environmental Research and Public Health

Supplementary Material to the Article

Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H₂O₂ Advanced Oxidation Treatment at Pilot Scale

Eduard Rott *, Bertram Kuch, Claudia Lange, Philipp Richter, Amélie Kugele and Ralf Minke

Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtäle 2, 70569 Stuttgart, Germany

* Correspondence: eduard.rott@iswa.uni-stuttgart.de; Tel.: +49-711-685-60497

A. Influence of H₂O₂ on Total Cl₂ Analysis

A.1. Experimental Procedure

One tablet of $H_2O_2 \cdot CO(NH_2)_2$ (Merck KGaA, Darmstadt, Germany) was dissolved in 1 L pure water and from this stock solution (0.3381 g/L $H_2O_2 \& 0.5970$ g/L $CO(NH_2)_2$) eight different dilutions with H_2O_2 concentrations between 2.5 and 50 mg/L were prepared. The urea concentration in these dilutions varied accordingly between 4.4 and 88.3 mg/L. In addition, 1 L of stock solution was prepared only with 0.5970 g/L $CO(NH_2)_2$ (Merck KGaA, Darmstadt, Germany), which was also divided into several 100 mL dilutions with a maximum urea concentration of 88.3 mg/L. Each dilution was analyzed with the DPD method for total Cl_2 and sporadically some dilutions were analyzed with the DPD method for free Cl_2 .

A.2. Results

Figure S1 clearly shows that H_2O_2 in a sample leads to the finding of total Cl₂ even though no chlorine compounds are present in the sample. Free Cl₂ was not detected in these samples (not shown in the figure). In the samples with up to 88.3 mg/L urea (without H₂O₂), no total Cl₂ and no free Cl₂ were detected (not shown in the figure). The finding of total Cl₂ in the solutions with H₂O₂ and urea can therefore be attributed solely to H₂O₂. The measured total Cl₂ correlates with the H₂O₂ concentration in the form of 0.0388 mg total Cl₂/mg H₂O₂.

Figure S1. Detected total Cl₂ concentrations in samples with different H₂O₂ concentrations without chlorine compounds.

B. UV/Chlorine AOP in the Literature

Table S1. Comparison of the results of different studies regarding the removal of important ECs (in
%) by the UV/chlorine AOP and UV/H2O2 AOP (all studies except for this study and the study of
Sichel et al. [16] were conducting batch experiments).

Reference	Process	Oxidant	UV radiation	Matrix	Time	CBZ	DCF	IBP	E2
This study	Cl ₂	42 µM FAC*	-	WWTE	1 m³/h	2	53		
	H_2O_2	88 µM H2O2	-	WWTE	1 m³/h	0	0		
	UV	-	400 W, 0.4 kWh/m ^{3#}	WWTE	1 m³/h	22	82		
	UV	-	1000 W, 1 kWh/m ^{3#}	WWTE	1 m³/h	29	88		
	UV/Cl ₂	42 µM FAC*	400 W, 0.4 kWh/m ^{3#}	WWTE	1 m³/h	46	87		
	UV/Cl ₂	42 µM FAC*	1000 W, 1 kWh/m ^{3#}	WWTE	1 m³/h	54	94		
	UV/H_2O_2	88 µM H2O2	400 W, 0.4 kWh/m ^{3#}	WWTE	1 m³/h	22	87		
	UV/H2O2	88 µM H2O2	1000 W, 1 kWh/m ^{3#}	WWTE	1 m³/h	38	93		
Sichel et	Cl ₂	85 μM Cl2	-	TW	15 min	4	32		
al. (2011)	UV/H2O2	147 µM H2O2	80 W, 0.32 kWh/m ³	TW	250 L/h	59	100		
[16]	UV/Cl ₂	14 µM Cl2	80 W, 0.32 kWh/m ³	TW	250 L/h	48	100		
	UV/H2O2	147 µM H2O2	40 W, 0.16 kWh/m ³	TW	250 L/h	31	89		
	UV/Cl ₂	85 µM Cl2	40 W, 0.16 kWh/m ³	TW	250 L/h	90	100		
	UV/Cl ₂	85 µM Cl2	40 W, 0.16 kWh/m ³	TW+DOC ^a	250 L/h	82	100		
Wang et	UV	-	41 W, 1.48 mW/cm ²	PW	5 min	0			
al. (2016)	Cl ₂	280 µM Cl2	-	PW	5 min	6			
[19]	UV/Cl ₂	280 µM Cl2	41 W, 1.48 mW/cm ²	PW	5 min	100			
	UV/Cl ₂	280 µM Cl2	41 W, 1.48 mW/cm ²	PW+tBuOH ^b	5 min	12			
Zhou et al.	UV	-	75 W, 1.14 mW/cm ²	PW	60 min	0			
(2016) [43]	Cl ₂	500 µM Cl2	-	PW	60 min	42			
	UV/Cl ₂	500 µM Cl2	75 W, 1.14 mW/cm ²	PW	60 min	84			
	UV/Cl ₂	500 µM Cl2	75 W, 1.14 mW/cm ²	PW+DOC ^c	60 min	39			
Yang et al.	UV	-	10 W	WWTE	1.5 min	1–8			
(2016) [17]	Cl ₂	71 µM Cl2	-	WWTE	1.5 min	0-10			
	UV/Cl ₂	71 µM Cl2	10 W	WWTE	1.5 min	30-60			
	UV/H2O2	147 µM H2O2	10 W	WWTE	1.5 min	10-25			
Xiang et	UV/H2O2	100 µM H2O2	10 W, 1.05 mW/cm ²	PW (pH 6)	20 min			69	
al. (2016)	UV/Cl ₂	100 µM Cl2	10 W, 1.05 mW/cm ²	PW (pH 6)	20 min			99	
[18]	UV/Cl ₂	100 µM Cl2	10 W, 1.05 mW/cm ²	PW (pH 7)	20 min			70	
	UV/Cl ₂	100 µM Cl2	10 W, 1.05 mW/cm ²	TW (pH 7)	20 min			60	
Li et al.	UV	-	2.1 mW/cm ²	PW	9 min				10
(2016) [20]	Cl ₂	141 µM Cl2	-	PW	9 min				99
	UV/Cl ₂	141 µM Cl2	2.1 mW/cm ²	PW	9 min				99
	UV	-	2.1 mW/cm ²	WWTE	9 min				13
	Cl ₂	141 µM Cl2	-	WWTE	9 min				45
	UV/Cl ₂	141 µM Cl2	2.1 mW/cm ²	WWTE	9 min				90

FAC: Free available chlorine, TW: Tap water, PW: Pure water, WWTE: Wastewater treatment plant effluent, CBZ: Carbamazepine, DCF: Diclofenac, IBP: Ibuprofen, E2: 17β-Estradiol, * 103 μ M free Cl₂ dosed, [#] at 0.4 kWh/m³: 9 ± 1 mW/cm² (6–10 s); and at 1 kWh/m³: 18.5 ± 1.5 mW/cm² (6–10 s), ^a 46 mg/L DOC (100 mg/L citric acid and 40 mg/L urea), ^b 741 mg/L tBuOH, ^c 10 mg/L DOC (diluted river sample).

C. Bacterial Count

C.1. Analysis of Bacterial Count

Before they were filled with sample, 100 mL bottles were heated at 105 °C for at least 8 h in order to destroy bacteria which may affect the measurement. In a sterile environment, 100 μ L of the sample were pipetted onto an agar culture medium. After 5 days of incubation at 37 °C, the colony forming units (CFU) were counted. The limit of detection was 10 CFU/mL. In this study, nutrient broth (NB) or lysogeny broth (LB) medium was used.

C.2. Results of Bacterial Count

Table S2 shows the initial CFU measured in the reference samples for both experiments.

Table S2. Initial bacterial count measured in WWTE reference samples collected in both UV/chlorine AOP and UV/H₂O₂ AOP experiments (CFU: colony forming units).

	Variation o Consumption 1 kWh/m³ (E	f UV Energy between 0 and Experiment 1)	Variation of Oxidant Concentration at 0.4 kWh/m³ (Experiment 2)			
Parameter	0 and 3 mg/L	0 and 3 mg/L	1–4 mg/L	5–6 mg/L	1–6 mg/L	
Farameter	FAC	H_2O_2	FAC	FAC	H2O2	
Bact. count (CFU/mL)	1913 ± 64	2317 ± 234	1723 ± 196	1227 ± 215	1973 ± 6	

In the right diagram of Figure S2, the effect of the UV/chlorine AOP and the UV/H₂O₂ AOP at a constant energy consumption (0.4 kWh/m³) on the bacterial count in WWTE can be seen. For both AOPs, two different mediums for the cultivation of bacteria were used: nutrient broth medium (NB) in the UV/H₂O₂ AOP experiment and lysogeny broth medium (LB) in the UV/chlorine AOP experiment. Since both mediums have a similar composition, no great effects on the results are to be expected. Both experiments confirmed that the UV/chlorine AOP has a strong disinfecting effect. While the dosage of 1 mg/L FAC at an energy consumption of 0.4 kWh/m³ had already reduced the bacterial count to less than 10 CFU/mL, at a concentration of 6 mg/L H₂O₂ at 0.4 kWh/m³ UV energy consumption more than 100 CFU/mL were counted. Hence, applying the UV/chlorine AOP the bacterial count could be reduced by up to 3 log₁₀ stages.

Figure S2 compares the influence of the UV/chlorine AOP (left) and the UV/H₂O₂ AOP (middle) on the bacterial count as a function of the UV energy consumption (0.0, 0.4, 0.7, 1.0 kWh/m³). While both the initial concentrations of colony forming units (CFU) in the reference samples were in the same range, the results obtained from UV exposure itself (triangles in the left and middle diagrams) did not correspond to each other. In the UV/H₂O₂ AOP experiment, about ten times the concentration of CFU was counted. Since there were two months between both experiments, it is possible that during the UV/H₂O₂ AOP experiment more UV resistant bacteria were present in the WWTE. Despite this incongruity, the conducted analysis, however, confirmed once more the good disinfecting effect of the UV/chlorine AOP (<10 CFU/mL). Even the sole presence of 3 mg/L FAC in WWTE, without being activated by UV radiation, led to a reduction of the bacterial count by almost 2 log₁₀ stages. In the UV/H₂O₂ AOP experiments, a bacterial count elimination of only 1 log₁₀ stage could be observed. The sole dosage of H₂O₂ did not have any effect.

Figure S2. (Left, Middle) (Experiment 1) Influence of UV/chlorine AOP and UV/H₂O₂ AOP at 0.0, 0.4, 0.7, and 1.0 kWh/m³ UV energy consumption (1 m³/h, 0–1 kW) on bacterial count in WWTE at oxidant concentrations of 0 and 3 mg/L; and (**Right**) (Experiment 2) influence of UV/chlorine AOP and UV/H₂O₂ AOP at 0.4 kWh/m³ UV energy consumption (1 m³/h, 0.4 kW) on bacterial count in WWTE as a function of oxidant concentration.