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Abstract: Daily land surface temperature (LST) forecasting is of great significance for application in
climate-related, agricultural, eco-environmental, or industrial studies. Hybrid data-driven prediction
models using Ensemble Empirical Mode Composition (EEMD) coupled with Machine Learning (ML)
algorithms are useful for achieving these purposes because they can reduce the difficulty of modeling,
require less history data, are easy to develop, and are less complex than physical models. In this
article, a computationally simple, less data-intensive, fast and efficient novel hybrid data-driven
model called the EEMD Long Short-Term Memory (LSTM) neural network, namely EEMD-LSTM,
is proposed to reduce the difficulty of modeling and to improve prediction accuracy. The daily LST
data series from the Mapoling and Zhijaing stations in the Dongting Lake basin, central south China,
from 1 January 2014 to 31 December 2016 is used as a case study. The EEMD is firstly employed
to decompose the original daily LST data series into many Intrinsic Mode Functions (IMFs) and
a single residue item. Then, the Partial Autocorrelation Function (PACF) is used to obtain the
number of input data sample points for LSTM models. Next, the LSTM models are constructed
to predict the decompositions. All the predicted results of the decompositions are aggregated
as the final daily LST. Finally, the prediction performance of the hybrid EEMD-LSTM model is
assessed in terms of the Mean Square Error (MSE), Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE), Pearson Correlation Coefficient (CC) and
Nash-Sutcliffe Coefficient of Efficiency (NSCE). To validate the hybrid data-driven model, the hybrid
EEMD-LSTM model is compared with the Recurrent Neural Network (RNN), LSTM and Empirical
Mode Decomposition (EMD) coupled with RNN, EMD-LSTM and EEMD-RNN models, and their
comparison results demonstrate that the hybrid EEMD-LSTM model performs better than the other
five models. The scatterplots of the predicted results of the six models versus the original daily
LST data series show that the hybrid EEMD-LSTM model is superior to the other five models.
It is concluded that the proposed hybrid EEMD-LSTM model in this study is a suitable tool for
temperature forecasting.
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1. Introduction

Accurate forecasting of daily land surface temperature (LST) is highly important for various fields,
including weather maintenance services, agriculture, eco-environment, and industry [1]. Daily LST
forecasting is the main forecasting factor in the daily weather forecast system [2]. In agriculture,
daily LST forecasting can be adopted for agriculture irrigation systems, pest management schemes
and diseases warring systems to predict the crop growth conditions that are useful for scheduling
proper actions for drought development, as well as trends in the spread of diseases and pests [1,3,4].
Temperature (i.e., water temperature, soil temperature and Urban Heat Island, etc.) forecasting plays an
important role in eco-environment-related research involving the functioning of the eco-environment
system [5–13]. In industry, accurate forecasts of temperature are part of an energy-management
strategy to reduce energy consumption while maintaining an internal temperature within a specified
comfort range [14,15]. As the dramatic and continuous increase of rapid socio-economic development,
population growth, and industrial, commercial and residential emissions of large amounts of heat have
led to local temperature increases, they have in turn attracted attention from national governments
and scientists [16–20]. However, daily LST variations are extremely nonstationary and nonlinear in
nature, because the meteorological processes have been heavily impacted by global and local warming
and climate change, as well as human activities [21]. Thus, improving prediction accuracy has been
a major challenge. Therefore, the accurate daily LST forecasting model should be built to overcome
these challenges.

Until now, many data-driven models have been proposed for time series forecasting. From different
points of view, these models can be largely divided into four classes: climate models, statistical
models, Neural Network (NN) models and hybrid models. Climate models are most widely used
models for climate simulation, which apply quantitative methods to simulate the interactions of the
important drivers of climate for various purposes, from study of the dynamics of the climate system to
projections of future climate [18,22]. All of these climate models adopted the idea of energy balance.
However, these models need many physical parameters gained from solar ongoing radiation energy,
the earth’s outgoing surface radiation energy, the absorbed energy of surface cover and others from
empirical data, etc. [18]. Due to the complexity of the physical processes of climate variations and
the large amount of money and instruments required to obtain these data, the application of these
models is limited, especially in developing countries. Statistical models, also known as Box-Jenkins
models, are widely and successfully used for time series modeling and forecasting in recent decades,
for example, the Auto-Regressive (AR) model, the Auto-Regressive Moving Average (ARMA) model
and the Auto-Regressive Integrated Moving Average (ARIMA) [23]. However, these models require
that the time series be stationary and have a large number of data points for a robust forecasting result.
Nonlinear data-driven models, such as the Artificial Neural Network (ANN), with its advantage of
learning and identifying complex data patterns with less data, has captured significant attention in
precipitation, rainfall, runoff, drought, evapotranspiration and temperature forecasting problems in
the past few years [24–31]. However, one of the major challenges faced by ANN is that it requires an
iterative adjustment of model parameters, a slow response of the gradient-based learning algorithm
used, and a relatively low prediction accuracy compared with more advanced NN algorithms [32–34].
Therefore, hybrid data-driven models, particularly in the last few years, have received much attention
and have been widely adopted and applied in hydro-climate analysis to improve prediction accuracy
as powerful alternative modeling tools. The hybrid models, especially the Wavelet Transform (WT)
coupled with NNs, have provided promising levels of accuracy for time series forecasting, such as
WT coupled with Back-Propagation Feed-Forward Multilayer perceptron (BP-FFML) [35], Artificial
Neuron-Network Back-Propagation (ANN-BP) [36,37], Radial Basis Function (RBF) [38], Support
Vector Machine (SVM) [39,40], Adaptive Neuro Fuzzy Inference System (ANFIS) [39], and so forth.
However, WT requires and predetermines basis functions. Therefore, different basis functions can
produce different results [41]. To solve this problem, a self-adaptive decomposition method has
been introduced by Wu and Huang [42] for time series processing: The Ensemble Empirical Mode
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Decomposition (EEMD), which is based on the development of Empirical Mode Decomposition
(EMD) [42,43]. Many hybrid methods that use a combination of EEMD and other algorithms have
successfully been applied in some fields. For example, Wang et al. [44] utilized the EEMD coupled
with the ARIMA for annual runoff time series forecasting. Zhang et al. [45] proposed a two-stage
method that combined the EEMD with the multidimensional k-nearest neighbor model for financial
time series forecasting. Niu et al. [46] applied the EEMD and the Least Square Support Vector Machine
(LSSVM) base to Phase Space Reconstruction (PSR) for day-ahead PM2.5 concentration predictions.
Wang et al. [30] proposed a hybrid model that utilized the EEMD coupled with ANN for long-term
runoff forecasting. Zhang et al. [31] adopted the EEMD coupled with the Elman Neural Network (ENN)
for annual runoff time series forecasting. Their research results demonstrated that the EEMD coupled
with other popular methods can significantly improve time series forecasting precision compared with
some other popular methods.

In this paper, a hybrid data-driven model, EEMD coupled with Long Short-Term Memory (LSTM),
namely the EEMD-LSTM, is proposed for daily LST data series forecasting. Thus, the EEMD is
employed to decompose daily LST data series into many relatively stable Intrinsic Mode Functions
(IMFs) and one residue item. Then, the PACF algorithm is used to determine the number of inputs
for LSTM models. Next, the decomposed results (IMFs and residue item) are modeled and forecasted
using different LSTM models. The final predicted results are obtained by aggregating all the forecasted
results of LSTM models. Finally, six statistical evaluation metrics (i.e., MSE, MAE, MAPE, RMSE, CC
and NSCE) are used to measure the performance of the hybrid EEMD-LSTM compared with the hybrid
EMD-RNN, EMD-LSTM and EEMD-RNN models and single RNN and LSTM models. In order to test
this hybrid data-driven model, the daily LST data series from the Mapoling station in the Dongting
Lake basin, central China, from January 1, 2014 to December 31, 2016 are used as a case study.

The reminder of this paper is organized as follows: Section 2 describes the EMD, EEMD, LSTM
and the proposed hybrid EEMD-LSTM model in detail. Section 3 provides a case study in detail.
Section 4 presents the conclusions of this paper.

2. Methodology Descriptions

2.1. Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD) is a self-adaptive decomposition method which is
developed for nonstationary and nonlinear signal processing [43]. Unlike Singular Spectrum
Analysis (SSA), Fourier Transform (FT) and Wavelet Transform (WT), EMD does not require and
predetermine basis functions and can decompose the original signal into many finite oscillation time
scale components called IMFs and a residual component in a self-adaptive way [47]. Each IMF stands
for the information on different scales of the original signal data series and must meet the following
two rules: (1) In the whole signal data series, the number of extrema must be equal to the number of
zero crossing or differ by one at most; (2) At any point, the mean value of the envelope defined by the
local maxima and the minima must be zero.

Giving original signal data series x(t)(t = 1, 2, . . . , n), the procedure of EMD can be described
as follows:

1. Identify all the local maxima and minima of the original signal data series x(t).
2. Using the three-spline interpolation function to create the upper envelopes eup(t) and the lower

envelopes elow(t) of the original signal data series.
3. Calculate mean value m(t) of the upper and lower envelopes. The mean value m(t) can be

computed using the following formula:

m(t) =
eup(t)− elow(t)

2
, (1)
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4. Calculate the difference value d(t) between the original signal series x(t) and the mean
value m(t). d(t) can be obtained through the following formula:

d(t) = x(t)−m(t), (2)

5. Check d(t): (a) if d(t) meets the two IMFs rules, then d(t) is defined as the ith IMF. The x(t)
is replaced by the residue item r(t) = x(t)− d(t). Here, the ith IMF is represented as ci(t); (b) if d(t)
does not meet the two rules, this means d(t) is not an IMF, so the x(t) is replaced by d(t).

6. Repeat steps 1 to 5, until the residue item r(t) becomes a monotone function or the number
of extrema is less than one or equal to one, so that no more IMFs can be extracted. r(t) indicates the
tendency of the original signal data series.

Finally, the original signal data series can be reconstructed through all the decomposition IMFs
ci(t) and a residue r(t). It can be expressed as the following formula:

x(t) =
n

∑
i=0

ci(t)− r(t), (3)

The EMD method decomposes the original signal data series into many IMFs step-by-step from
high frequency to low frequency and a trend item by self-adaptive, direct, complete, effective and
approximately orthogonal, which doesn’t change the information and physical characteristics of the
original signal data series. For original signal data series with data length N, it can be decomposed
into log 2 N IMFs at most.

2.2. Ensemble EMD (EEMD)

Although the EMD method has many apparent advantages in processing nonstationary and
nonlinear signal data, there also have some unavoidable defects [42]. The majority of these problems
are: (1) endpoint effects and (2) mode-mixing. Endpoint-effects means that different ways of handling
endpoint-effects in the EMD decomposition process will bring different results. Because the whole
process is related to extrema points, it is very important whether the endpoint is an extrema value
point. When the data are relatively short, the problem becomes even more pronounced. Mode-mixing
refers to the fact that the same IMF contains different frequency components, or the frequency of the
same and similar scale is distributed in different IMFs. So, the mode-mixing will not only cause the
mixing of various scale vibration modes but can even lose the physical meaning of the individual IMF.
In order to solve these problems of the EMD algorithm, a new Noise-Assisted Data Analysis (NADA)
method is developed, namely Ensemble EMD (EEMD) [42]. The main procedure of EEMD method is
expressed as follows:

1. Add white noise wi(t) to the original signal data series x(t). Then the new data series can be
computed as follows:

Xi(t) = x(t)− wi(t), (4)

2. Afterwards, decompose the new data series into IMFs using the EMD algorithm;
3. Repeat steps 1 and 2 with different white noises, adding to the original signal data series

each time;
4. Obtain the mean of the ensemble corresponding IMFs of the decomposition results as the

final results.
For the EEMD method, the first important step is to determine the ensemble times and the

amplitude of adding noise. If the amplitude of added white noise is too small, it will probably not play
a significant role in EMD decomposition. If it is too large, it will cause more interference and affect the
results of the final decomposition. However, how to select the best ensemble times and the amplitude
of adding noise is still an open question. Wu and Huang [42] suggest the amplitude of adding noise to
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0.2 after comparing the results of the actual signal analysis. The effect of adding white noise should
obey the following statistics rule:

εn =
ε√
N

, (5)

where N is the number of ensemble times, ε represents the amplitude of the added noise and εn is the
final standard deviation of error, which is the difference between the original signal data series and the
corresponding IMFs.

2.3. Long Short-Term Memory (LSTM) Neural Network

The Recurrent Neural Networks (RNNs) are improved multilayer perceptron networks and
somewhat different from those of traditional ANNs [48]. They have internal connections that can
pass the processed signals at the current moment to the next moment. In RNNs model, each NN
unit is connected with other hidden layers at different time steps, passing previous information to
the current moment and computing with the input to form the output. Through loops in the hidden
layer, information can thus be passed from one step to the next in the network (Figure 1). Because of
the advantages of RNNs, the use of RNNs on many issues has achieved many incredible successes
in the past few years, such as speech recognition, language modeling, translation, image captioning,
and time series prediction [49–51].
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Figure 1. The architecture of (a) a traditional Artificial Neural Network (ANN) and (b) a Recurrent
Neural Network (RNN).

Obviously, RNNs are suitable and able to process the complex long-term dependency problem
in a simple way. However, RNNs tend to be severely affected by the vanishing gradient problem,
which may increase indefinitely and eventually lead to network collapse [52]. Thus, simple RNNs may
not be ideal for predicting long-term dependencies. To avoid this problem based on RNNs, Hochreiter
and Schmidhuber [53] proposed a special type of RNN, namely the Long-Term Short Memory (LSTM)
recurrent neural network. They were refined and popularized by many scholars. The architecture of
LSMT is shown in Figure 2. As can be seen from Figure 2, the major advantage of LSTM is that LSTM
replaces traditional neuron unit in the hidden layer of RNNs with a memory block, which has one or
more memory cells and three adaptive multiplications known as the input gate, forget gate and output
gate controlling the information flow through the cell and the neural network. Thus, the features and
advantages of LSTM can effectively alleviate the vanishing gradient problem and makes it suitable for
processing complex problems with long-term dependencies.

Figure 2 shows how the LSTM neural network works. The first step in LSTM is to determine
whether information from the cell state is forgotten or remembered. This determination is made by
a sigmoid layer called the forget gate layer. The output of forget gate is 0 (completely expunged) or
1 (completely retained). The calculating formula is as follows:
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ft = σ
(

W f ·[ht−1, xt] + b f

)
, (6)

The second step is to determine what new information needs to be stored in the cell state. This step
consists of two parts. First, a sigmoid layer called the “input gate layer” determines which values are
used for updating, and then, a tanh layer is used to generate a new candidate value C̃t, which could be
added to the cell state. At last, these two are combined to create an update to the state. The calculating
formulas are expressed as follows:

it = σ(Wi·[ht−1, xt] + bi), (7)

C̃t = tanh(WC·[ht−1, xt] + bC), (8)

The third step is to update the old cell state Ct−1. First, we multiply the old cell state Ct−1 by ft to
remove the information that we don’t need, we add it ∗ C̃t to get the new candidate value, which scaled
by how much we determine to update each state value. It can be calculated as the following formula:

Ct = ft ∗ Ct−1 + it ∗ C̃t, (9)

The final step is to determine the output of the model. First, we run a sigmoid layer to determinate
what parts of the cell state we’re going to output, and then we put the cell state through tanh function
and multiply it by the output of the sigmoid gate. The calculating formulas are defined as follows:

ot = σ(Wo·[ht−1, xt] + bo), (10)

ht = ot ∗ tanh(Ct), (11)

where in Equations (6)–(11), xt is the input at time t; ht−1 and ht t are the outputs of the hidden layer at
time t− 1 and t, respectively; Ct and Ct−1 are the cell output states at time t− 1 and t, respectively;
C̃t is the cell input state at time t. ft, it and ot are the outputs of the forget gate, input gate and
output gate at time t, respectively; W f , Wi, Wo and WC are the weights connecting ht−1 and xt to
the forget gate, input gate, output gate and the cell input, respectively; b f , bi, bo and bC are their
corresponding bias terms. σ denotes the sigmoid function 1

1+exp(−x) and tanh indicates the hyperbolic

tangent function exp(x)−exp(−x)
exp(x)+exp(−x) .
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2.4. The Novel Hybrid EEMD-LSTM Data-Driven Model

Meteorological data series often shows different frequencies that can be nonstationary and
nonlinear. Therefore, it is difficult to accurately model and forecast using a simple model. Thus,
a hybrid model based on EEMD method and LSTM neural networks, namely EEMD-LSTM, is proposed
to improve the prediction accuracy to solve and improve the long-term dependencies forecasting
problem of daily LST. The EEMD method is firstly used to decompose the daily LST data series
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into many relatively stable IMFs and a residue item to reduce the difficulty of modeling. Then,
all decomposed results are forecasted using the LSTM neural network. Finally, all of the forecasting
results of decompositions are accumulated as the final predicted results. The workflow chart of
the proposed hybrid EEMD-LSTM model is clearly shown in Figure 3. The main procedures of the
EEMD-LSTM are as follows.

1. Daily LST data series decomposing. The original daily LST data series is decomposed into
many IMFs and a residue item using the EEMD method.

2. Number of inputs determining. The PACF algorithm is used to gain the number of inputs of all
the LSTM models.

3. IMFs and residue item modeling and forecasting. All the decomposition results are divided into
two parts: the training data set and testing data set. The training data set is used for LSTM modeling.
The testing data set is input into the trained LSTM models to predict all the IMFs and residue item.
Then, many predicted IMFs and residue item results are achieved.

4. Final predicted results reconstructing. All the predicted results are accumulated as the final
predicted results of the daily LST.

5. Model performance evaluation. Several statistical evaluation metrics are applied to assess the
hybrid data-driven model between the predicted results and the original daily LST data series.Int. J. Environ. Res. Public Health 2018, 15, x 7 of 22 
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3. Case Study

3.1. Study Area

The Dongting Lake basin is situated in the middle and lower reaches of the Yangtze River basin
in the central south of China and lies approximately between the longitude of 107◦16’ E~114◦15’ E
and the latitude of 24◦38’ N~30◦24’ N (Figure 4) [54]. It can be clearly seen from the Figure 4b that
the Dongting Lake basin consists of four main rivers, including the Xiangjiang river, Zishui river,
Yuanshui river and Lishui river, which flows through the six provinces of Guangdong, Guangxi,
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Guizhou, Jiangxi, Hubei and Hunan, discharging water into the Yangtze River through the Chenglingji
outlet [55]. The Dongting Lake basin has a total drainage area of 26.3 × 10 4 km2, accounting for
14.6% of the total drainage area of the Yangtze River basin [31]. It can be clearly seen from Figure 4c
that the topography of the basin is dominated by mountains and hills and varies from mountainous
and hilly areas in the south, west, southwest and east to the alluvial plains in the central, north and
northeast. The basin is in a subtropical monsoon climate zone with high temperatures and high levels
of rainfall in summer, as well as low temperatures and less rain in winter. The annual precipitation
level is from approximately 1300 mm to 1800 mm and the annual average temperature ranges from
16 ◦C to 18 ◦C [31].Int. J. Environ. Res. Public Health 2018, 15, x 8 of 22 

 

 
Figure 4. (a) Location of the Dongting Lake basin in central south China; (b) Composition of the basin; 
(c) Distribution of the Mapoling and Zhijiang meteorological stations. 

3.2. Data Collection 

In this study, daily LST data from the Mapoling and Zhijiang stations were obtained from the 
China Meteorological Data Sharing Service System (http://data.cma.cn) during 1 January 2014 to 31 
December 2016. All the daily LST data are the daily average data of the four measuring times (2:00, 
8:00, 14:00, 20:00), which have undergone a series quality control by the China Meteorological 
Administration (CMA), including the extreme values’ check and the internal consistency check. The 
accuracy rate of the daily LST data was generally more than 99%. The obtained daily LST data series 
are used to construct the hybrid EEMD-LSTM model and evaluate the model’s performance. The 
Mapoling station is located on the lower reaches of Xiangjiang river, in Changsha city, near the 
Dongting Lake, while the Zhijiang station is located on the mountain areas upper reaches of Yuanshui 
river, in Zhijiang county. We collected 1096 daily LST observation sample points, which are included 
in this study. The daily LST data series is shown in Figure 5. It is clear from the figure that the daily 
LST data series shows fluctuation characteristics. The whole data set is separated into the training 
data set and the testing data set. The training data set covering 1 January 2004 to 30 June 2016 is used 
for constructing models, while the testing data set ranges from 1 July to 31 December 2016 is used for 
assessing the prediction performance of the models. 

 

Figure 4. (a) Location of the Dongting Lake basin in central south China; (b) Composition of the basin;
(c) Distribution of the Mapoling and Zhijiang meteorological stations.

3.2. Data Collection

In this study, daily LST data from the Mapoling and Zhijiang stations were obtained from the
China Meteorological Data Sharing Service System (http://data.cma.cn) during 1 January 2014 to
31 December 2016. All the daily LST data are the daily average data of the four measuring times
(2:00, 8:00, 14:00, 20:00), which have undergone a series quality control by the China Meteorological
Administration (CMA), including the extreme values’ check and the internal consistency check.
The accuracy rate of the daily LST data was generally more than 99%. The obtained daily LST
data series are used to construct the hybrid EEMD-LSTM model and evaluate the model’s performance.
The Mapoling station is located on the lower reaches of Xiangjiang river, in Changsha city, near the
Dongting Lake, while the Zhijiang station is located on the mountain areas upper reaches of Yuanshui
river, in Zhijiang county. We collected 1096 daily LST observation sample points, which are included
in this study. The daily LST data series is shown in Figure 5. It is clear from the figure that the daily
LST data series shows fluctuation characteristics. The whole data set is separated into the training data
set and the testing data set. The training data set covering 1 January 2004 to 30 June 2016 is used for
constructing models, while the testing data set ranges from 1 July to 31 December 2016 is used for
assessing the prediction performance of the models.

http://data.cma.cn
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3.3. Statistical Evaluation Metrics for Forecasting Performance

Six commonly and highly statistical evaluation metrics are employed to assess the prediction
performance of the hybrid EEMD-LSTM model in this study. They are the mean squared error (MSE),
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Square Error
(RMSE), Pearson Correlation Coefficient (CC) and Nash-Sutcliffe Coefficient of Efficiency (NSCE).
The MSE is commonly used for measuring the degree of difference predicted and original data
(Equation (12)). The MAE is a measure of the difference between predicted and original data
(Equation (13)). The MAPE is selected for assessing the percentage deviation between predicted
and original data (Equation (14)). The RMSE, as one of the most widely, frequently and commonly
applied metrics, is used to measure the difference between values predicted by model and the actually
observed (Equation (15)). The smaller the RMSE value is, the closer the predicted data are to the
original data. The CC is a frequently and widely used indicator for measuring how well the predicted
data correspond to the original data (Equation (16)). A CC equal to 0 indicates no or weak linear
correlation, while a CC is closer to −1 or 1 indicates negative or positive linear correlation, respectively.
The NSCE, proposed by Nash and Sutcliffe (1970), is one of the most powerful and popular evaluation
indicators for assessing the power of hydro-climate models (Equation (17)). The NSCE value ranges
from negative infinity and 0. An NSCE value of 1 corresponds to a perfect match of the model’s
predictions to the original data. An NSCE of 0 indicates the model predictions are as accurate as
the mean of the original data, whereas an NSCE less than 0 indicates the model is not trustworthy.
Essentially, the closer the model NSCE is to 1, the more accurate the model is.
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NSCE = 1−
∑n
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i

)2
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(
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i − To
)2 , (17)

where in Equations (12)–(17), To
i and Tp

i are the original and predicted daily LST data series at time i,
respectively. Whereas To and Tp are the mean value of original and predicted daily LST data series at
time i, respectively. n represents the number of data sample points.

3.4. Daily LST Data Series Decomposition by EEMD

EEMD is an excellent and powerful method for conducting nonstationary and nonlinear signal
analysis. It decomposes the original data series into many relatively stable IMFs and one residue
item. In the current study, the ensemble number is set to 1000 and the amplitude of added noise is
set to 0.2 times the standard deviation of the corresponding data to decompose the daily LST data
series of the two stations. Nine independent IMFs and one residue item from each station are obtained
(Figures 6 and A1). As can be seen from Figures 6 and A1, IMF presents the oscillation characteristics
in the order from high frequency to low frequency at various time scales and the last item is the overall
trend of the original daily LST data series. Tables 1 and A1 give the statistics of the original daily LST
data series and decomposition results of the two stations. It is evident that the variance and standard
deviation of the original daily LST data series from Mapoling and Zhijiang stations are 67.8232 and
8.2355, and 63.8016 and 7.9876, respectively. In contrast, the variance and standard deviation of all the
decomposition results (every IMF and one residue item) are much smaller than the original daily LST
data series. This indicates that the decomposition results have less volatility and are closer to their
mean values. The skew of the original daily LST data series and decomposition results are closer to
zero, indicating that the distribution of the data is approximately symmetric. While most kurtosis
of the original daily LST data series and decomposition results are much smaller, indicating that
the data have less extreme values. Therefore, the EEMD can be a powerful method to decompose
nonstationary and nonlinear daily LST data series into many relatively stable IMFs for improving the
prediction accuracy.
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Table 1. Statistics of the original daily LST data series and the decomposition results of Mapoling station.

Series Period Min. Max. Mean Variance SD 1 Skewness Kurtosis

Original
data set

1 January 2014 to
31 December 2016 −1.5 32.8 17.6599 67.8232 8.2355 −0.2036 −1.0706

1 January 2014 to
30 June 2016

(Training)
−1.5 32 17.0957 65.1861 8.0738 −0.2059 −1.0738

1 July 2016 to
31 December 2016

(Testing)
0.8 32.8 20.4565 71.4957 8.4555 −0.3571 −1.1502

IMF1

1 January 2014 to
31 December 2016 −3.7604 3.9356 −0.0045 1.076 1.0373 0.0456 1.2377

1 January 2014 to
30 June 2016

(Training)
−3.7604 3.9356 -0.0047 1.1645 1.0791 0.0466 0.9976

1 July 2016 to
31 December 2016

(Testing)
−2.9097 2.8863 −0.0037 0.6374 0.7984 0.0279 2.92

IMF2

1 January 2014 to
31 December 2016 −4.1524 4.2432 −0.008 1.508 1.228 0.0174 0.5498

1 January 2014 to
30 June 2016

(Training)
−4.1524 4.2432 −0.0063 1.4944 1.2224 0.0309 0.4341

1 July 2016 to
31 December 2016

(Testing)
−4.1085 3.6196 −0.0162 1.5756 1.2552 −0.0441 1.1147

IMF3

1 January 2014 to
31 December 2016 −4.1166 4.8691 −0.0506 1.734 1.3168 0.0441 1.1287

1 January 2014 to
30 June 2016

(Training)
−4.1166 4.8691 -0.0763 1.6987 1.3034 0.0537 1.3837

1 July 2016 to
31 December 2016

(Testing)
−3.9231 3.6299 0.0768 1.8891 1.3745 -0.025 0.1554

IMF4

1 January 2014 to
31 December 2016 −2.9359 3.4556 −0.0027 1.1967 1.0939 −0.0078 0.0501

1 January 2014 to
30 June 2016

(Training)
−2.9359 3.4556 -0.0072 1.2543 1.12 0.0216 0.0981

1 July 2016 to
31 December 2016

(Testing)
−2.1632 2.0125 0.0197 0.9102 0.9541 −0.2184 −0.7181

IMF5

1 January 2014 to
31 December 2016 −3.5915 4.826 −0.044 1.2316 1.1098 0.0722 3.0066

1 January 2014 to
30 June 2016

(Training)
−3.5915 4.826 0.0478 1.0681 1.0335 0.294 5.0861

1 July 2016 to
31 December 2016

(Testing)
−2.4797 1.6551 −0.499 1.7933 1.3392 0.0258 −1.2748
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Table 1. Cont.

Series Period Min. Max. Mean Variance SD 1 Skewness Kurtosis

IMF6

1 January 2014 to
31 December 2016 −10.941 11.8481 0.7883 49.9635 7.0685 −0.124 −1.4036

1 January 2014 to
30 June 2016

(Training)
−10.941 10.1515 0.1742 47.1743 6.8684 −0.0974 −1.4479

1 July 2016 to
31 December 2016

(Testing)
−9.9938 11.8481 3.8317 52.6572 7.2565 −0.4786 −1.234

IMF7

1 January 2014 to
31 December 2016 −0.9518 1.2903 −0.0991 0.4445 0.6667 0.6826 −0.5425

1 January 2014 to
30 June 2016

(Training)
−0.9518 1.2903 −0.0261 0.4801 0.6929 0.5038 −0.8375

1 July 2016 to
31 December 2016

(Testing)
−0.8916 0.2486 −0.4609 0.1108 0.3328 0.5094 −0.959

IMF8

1 January 2014 to
31 December 2016 −0.1752 0.2321 0.0247 0.0217 0.1472 0.0304 −1.5499

1 January 2014 to
30 June 2016

(Training)
−0.1749 0.2321 0.0593 0.0188 0.1371 −0.304 −1.3216

1 July 2016 to
31 December 2016

(Testing)
−0.1752 −0.0809 −0.1463 0.0008 0.0281 0.7649 −0.6715

IMF9

1 January 2014 to
31 December 2016 −0.067 0.0673 0.0225 0.0016 0.0401 −0.6397 −0.8557

1 January 2014 to
30 June 2016

(Training)
−0.067 0.0673 −0.0274 0.0005 0.0216 −0.138 −1.1845

1 July 2016 to
31 December 2016

(Testing)
−0.067 0.0073 17.0341 0.3258 0.5708 −0.5572 −0.9412

Residue

1 January 2014 to
31 December 2016 15.7958 17.7251 17.0341 0.3258 0.5708 −0.5572 −0.9412

1 January 2014 to
30 June 2016

(Training)
15.7958 17.6306 16.9026 0.2884 0.537 −0.4171 −1.0568

1 July 2016 to
31 December 2016

(Testing)
17.6314 17.7251 17.6859 0.0008 0.0274 −0.337 −1.1062

1 SD, represents the standard deviation. The unit of minimum value, maximum value and mean value is ◦C.

3.5. Forecasting IMFs

To improve the prediction accuracy, a four-tier layer LSTM is built to predict the daily LST data
series and the decompositions (IMF1 to IMF9 and one residue item) in this study. However, the question
of how to determine the appropriate number of inputs is still a key issue. In general, a common method
of identifying the number of inputs is empirical. In this study, the Partial Autocorrelation Function
(PACF) is used to analyze the original data and the decomposition results [56]. This is because the PACF
can effectively identify the correlation between the current value and the previous values. A PACF
value beyond the 95% confidence level indicates a strong correlation degree; otherwise there is a weak
correlation degree. Therefore, the number of lags beyond the 95% confidence level is considered as
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the number of inputs. The PACF graphs of the original daily LST data series and their decomposition
results of Mapoling and Zhijiang stations is shown in Figures 7 and A2, respectively. Evidently the
number of inputs of LSTM models for the original daily LST data series and their decomposition
results of the Mapoling station are shown as 4, 6, 5, 5, 6, 6, 1, 1, 1, 1 and 1, respectively. While 4, 7, 8, 5,
6, 7, 1, 1, 7, 1, 1 are shown for Zhijiang station. Obviously, the number of inputs of each LSTM model
is different. Since, the first several IMFs have high frequencies, the current value is related to many
previous values. As the frequency decreases, the IMFs become more and more stable, and the current
value is related only to its former one.
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Mapoling station.

After the determination of the number of inputs of LSTM models, one-step-ahead is used to
predict the results. That is, several previous data sample points are used to predict the current data
point. The LSTM model consists of one input layer with several inputs which is determined by PACF
before, for example, up to several previous (xt−1, xt−2, . . . , xt−n) sample points of the original daily
LST data series and the decomposition results are set as the model inputs; two hidden layers including
32 neurons each; and one output layer having one output, for example, xt is the current value of
predicted results. Next, the LSTM model is implemented with TensorFlow which is an opensource and
widely used neural network framework developed by Google [57]. In addition, the epoch for training
is set to 4000 and in each training period, the MSE is employed as the loss function for determining
the optimum performance results. Furthermore, the predicted results of the decomposition IMFs are
obtained. Finally, all the predicted results are aggregated as the final prediction results of the daily
LST data.

3.6. Performance Comparison Analysis

To understand the performance of the hybrid EEMD-LSTM model, the predicted results of
the hybrid EEMD-LSTM model are compared with the RNN, LSTM, EMD-RNN, EMD-LSTM and
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EEMD-RNN five models. The predicted results of the six models are illustrated in Figure 8. Obviously,
the six models give different forecast results of the daily LST data series of the Mapoling and Zhijiang
stations. But the hybrid EMD-RNN, EMD-LSTM, EEMD-RNN and EEMD-LSTM models perform
better than single RNN and LSTM models for the two stations. Furthermore, the hybrid EEMD-LSTM
model has a more powerful forecasting capacity, particularly when there have sudden changes in the
data series. The reason is that the original daily LST data series are characteristic with nonstationary
and nonlinear. There have been lots of sudden changes in the original data series. Thus, single RNN
and LSTM models can hardly catch the sudden changes in the original data series. While the EMD
decomposition results exit the drawbacks of edge-effects and mode-mixing. However, EEMD has
overcome these drawbacks. Therefore, the hybrid EEMD-LSTM model achieves the highest accuracy
for one-step-ahead forecasting compared with the other models.Int. J. Environ. Res. Public Health 2018, 15, x 14 of 22 
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Figure 8. Performance comparison of the forecasting results of (a) Mapoling station and (b) Zhijiang
station among RNN, LSTM, Empirical Mode Decomposition (EMD)-RNN, EMD-LSTM, EEMD-RNN
and EEMD-LSTM.

The scatterplots of the predicted results of the RNN, LSTM, EMD-RNN, EMD-LSTM, EEMD-RNN
and EEMD-LSTM models versus the original daily LST data series in Mapoling station and Zhijiang
station from 1 July 2016 to 31 October 2016 are shown in Figure 9. In general, it is obvious that the
fitted lines (red line) of the predicted results of the six models are close to the 1:1 line (dot black line),
which indicates that all the six models present high performance accuracy. Evidently, the RNN has
the worst prediction results for the daily LST, while the LSTM obtains slightly better results than the
RNN. However, the hybrid models (i.e., EMD-RNN, EMD-LSTM, EEMD-RNN and EEMD-LSTM
models) perform better compared with the single RNN and LSTM models. The EEMD-LSTM model
outperforms the other hybrid models with the highest coefficient of determination (R2) value for the
two sites.
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Figure 9. Scatterplot of the daily LST comparison of Mapoling station (left) and Zhijiang station (right)
between (a) original data and RNN; (b) original data and LSTM; (c) original data and EMD-RNN;
(d) original data and EMD-LSTM; (e) original data and EEMD-RNN; (f) original data and EEMD-LSTM
from 1 July to 31 December 2016.

To demonstrate the prediction capability of the EEMD-LSTM model, residual analysis is applied
in this study. We calculate the residuals and normalized residuals of the two stations for original
data vs. EEMD-LSTM (Figures 10 and A3). Evidently, most of the residuals are between −1 and 1,
and most of the normalized residuals are between the confidence level of 95%. But there are a few
residuals and normalized residuals beyond the −1 and 1, and 95% confidence level. The potential
reason for this is sudden changes in the original daily LST data series. Moreover, the prediction results
close to the training data set have less residuals and normalized residuals, while far from the training
data set have large residuals and normalized residuals. In order to obtain high prediction results,
therefore, we suggest that the time span of daily LST data series prediction should not exceed three
months. Otherwise, it is recommended to retrain the EEMD-LSTM model. Furthermore, compared
with Figure 8, the daily LST data series are more stationary, the residuals are smaller and the prediction
results are more perfect and trustworthy.

To further assess the prediction performance of the hybrid EEMD-LSTM model, six statistical
evaluation metrics (i.e., MSE, MAE, MAPE, RMSE, CC and NSCE) are utilized to measure performance.
The statistical evaluation results of performance comparison of the six models for daily LST data series
are shown in Figure 11. According to the comparison of the RNN, LSTM, EMD-RNN, EMD-LSTM,
EEMD-RNN and EEMD-LSTM models for the Mapoling and Zhijaing stations, all the six models
clearly show high performance accuracy with the CC values greater than 0.97. Meanwhile, the CC
values of the six models are significant at the significance level of 0.01. This means that the prediction
results of the six models significantly correlate with the original daily LST data series and have the
potential to predict the daily LST. Among all the six models, it is evident that the RNN model has
the worst performance results compared with the other models. The LSTM model performs slightly
better than the RNN model. The reason for the poor performance of the RNN and LSTM modes is
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the nonstationary and nonlinear nature of the original daily LST data series. However, the hybrid
EEMD-LSTM model outperforms the other models with the smallest MSE, MAE, MAPE and RMSE,
as well as the largest CC and NSCE for daily LST forecasting. Furthermore, the NSCE values of
the six models are close to 1. This indicates that the predicted results of the six models perfectly
match the original daily LST data series and the six models are trustworthy. However, the hybrid
EEMD-LSTM has the largest NSCE value, which indicates that the hybrid EEMD-LSTM model is
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Depending on the comparison of the aforementioned six models, we can reach the conclusion
that using the EEMD method to decompose the original daily LST data series to many relatively stable
IMFs and one residue item as the input for LSTM models can, to a large extent, improve the prediction
accuracy. Thus, the proposed EEMD-LSTM model is a better model than the RNN, LSTM, EMD-RNN,
EMD-LSTM and EEMD-RNN models and can achieve better predicting results with a significant
improvement on the basis of six statistical evaluation metrics for daily LST forecasting.

4. Conclusions

In this study, we proposed a hybrid data-driven model based on EEMD and four-layer LSTM
models to predict the daily LST data series. The daily LST data series from the Mapoling station
located on the lower reaches of the Xiangjaing river and Zhijiang station located on the upper reaches
of Yuanjiang river in Dongting Lake basin, central south China, from 1 January 2014 to 31 December
2016 are used as a case study. The main conclusions of this study are as follows: (1) the original
daily LST data series are decomposed into nine relatively stable IMFs and one residue item using the
EEMD method to reduce the difficulty of modeling and improving the prediction accuracy. Then,
all the decomposition results are divided into the training data set and the testing data set. Next,
the PACF algorithm is employed to choose the best number of inputs. After the best number of inputs
is determined, the training data set is used to construct the LSTM models and the testing data set is
used for predictions and performance comparisons. Finally, the predicted results of the decompositions
are obtained and aggregated as the final prediction of the daily LST data. (2) Six statistical evaluation
metrics (MSE, MAE, MAPE, RSME, CC and NSCE) are adopted to assess the performance of the RNN,
LSTM, EMD-RNN, EMD-LSTM, EEMD-RNN and EEMD-LSTM models. The performance comparison
of prediction results in this study shows that all the six models have high prediction accuracy. But the
hybrid EEMD-LSTM model has performs better than the RNN, LSTM, EMD-RNN, EMD-LSTM and
EEMD-RNN models. While, the hybrid EEMD-LSTM obtained a perfect prediction results for daily
LST data series forecasting, the model needs additional future studies in other regions in mainland
China. In brief, developing a hybrid data-driven forecasting model by using the LSTM coupled with
EEMD algorithm may significantly improve the prediction accuracy.
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Table A1. Statistics of the original daily surface temperature data series and the decomposition results
of Zhijaing station.

Series Period Min. Max. Mean Variance SD 1 Skewness Kurtosis

Original
data set

1 January 2014 to
31 December 2016 −0.7 31.8 18.0538 63.8016 7.9876 −0.2423 −1.1268

1 January 2014 to
30 June 2016

(Training)
−0.7 30.85 17.5038 61.452 7.8391 −0.2228 −1.1137

1 July 2016 to
31 December 2015

(Testing)
3.15 31.8 20.7796 66.5181 8.1559 −0.491 −1.1334

IMF1

1 January 2014 to
31 December 2016 −3.4876 3.3164 −0.0006 1.0313 1.0155 −0.006 0.5469

1 January 2014 to
30 June 2016

(Training)
−3.4876 3.3164 −0.0038 1.0904 1.0442 0.0142 0.4111

1 July 2016 to
31 December 2016

(Testing)
−2.6808 2.4776 0.0154 0.738 0.8591 −0.1602 1.4322

IMF2

1 January 2014 to
31 December 2016 −4.9666 4.6916 −0.0137 1.4461 1.2025 −0.0209 1.3251

1 January 2014 to
30 June 2016

(Training)
−4.9666 4.6916 −0.0151 1.4498 1.2041 −0.0145 1.3825

1 July 2016 to
31 December 2016

(Testing)
−3.5345 3.7363 −0.0067 1.4281 1.195 −0.0533 1.0959
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Table A1. Cont.

Series Period Min. Max. Mean Variance SD 1 Skewness Kurtosis

IMF3

1 January 2014 to
31 December 2016 −3.9453 4.4972 −0.0368 1.5168 1.2316 0.0842 0.8224

1 January 2014 to
30 June 2016

(Training)
−3.9453 4.4972 −0.0552 1.5108 1.2292 0.0978 0.899

1 July 2016 to
31 December 2016

(Testing)
−3.6699 3.4617 0.0546 1.5364 1.2395 0.0151 0.5368

IMF4

1 January 2014 to
31 December 2016 −3.2607 3.8574 −0.0131 1.0952 1.0465 −0.0819 1.0059

1 January 2014 to
30 June 2016

(Training)
−3.2607 3.8574 −0.0216 1.1767 1.0848 −0.0533 0.9823

1 July 2016 to
31 December 2016

(Testing)
−2.0462 1.8588 0.029 0.6889 0.83 −0.2818 −0.2253

IMF5

1 January 2014 to
31 December 2016 −3.8762 5.271 0.0365 1.05 1.0247 0.3922 6.5503

1 January 2014 to
30 June 2016

(Training)
−3.8762 5.271 0.0542 1.1226 1.0595 0.4193 6.897

1 July 2016 to
31 December 2016

(Testing)
−1.2743 1.1222 −0.051 0.6811 0.8253 −0.1313 −1.4911

IMF6

1 January 2014 to
31 December 2016 −11.189 11.9534 0.7483 46.884 6.8472 −0.1075 −1.3765

1 January 2014 to
30 June 2016

(Training)
−10.6116 10.1684 0.1262 42.3756 6.5097 −0.0985 −1.4462

1 July 2016 to
31 December 2016

(Testing)
−11.189 11.9534 3.8314 57.8063 7.603 −0.5543 −1.1442

IMF7

1 January 2014 to
31 December 2016 −1.6727 1.9026 −0.0502 0.7532 0.8679 0.9044 −0.1937

1 January 2014 to
30 June 2016

(Training)
−1.6727 1.9026 0.047 0.8221 0.9067 0.7038 −0.6052

1 July 2016 to
31 December 2016

(Testing)
−0.9499 0.2884 −0.5321 0.1329 0.3645 0.6622 −0.7966

IMF8

1 January 2014 to
31 December 2016 −0.496 0.5448 0.0197 0.1395 0.3736 0.0206 −1.5351

1 January 2014 to
30 June 2016

(Training)
−0.496 0.5448 0.0921 0.1335 0.3654 −0.3236 −1.362

1 July 2016 to
31 December 2016

(Testing)
−0.4884 −0.0747 −0.339 0.0148 0.1216 0.569 −0.9077
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Table A1. Cont.

Series Period Min. Max. Mean Variance SD 1 Skewness Kurtosis

IMF9

1 January 2014 to
31 December 2016 −0.0582 0.0586 0.0196 0.0012 0.0349 −0.6397 −0.8556

1 January 2014 to
30 June 2016

(Training)
−0.0582 0.0586 0.0283 0.0009 0.0306 −1.1161 0.3131

1 July 2016 to
31 December 2016

(Testing)
−0.0582 0.0068 −0.0235 0.0004 0.0189 −0.1403 −1.1839

Residue

1 January 2014 to
31 December 2016 16.2408 17.8054 17.345 0.2196 0.4686 −0.7969 −0.652

1 January 2014 to
30 June 2016

(Training)
16.2408 17.8008 17.2537 0.2142 0.4628 −0.5833 −0.9155

1 July 2016 to
31 December 2016

(Testing)
17.7763 17.8054 17.798 0.0001 0.0083 −1.1065 −0.0229

1 SD represents the standard deviation. The unit of minimum value, maximum value and mean value is ◦C.
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