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Abstract: Is nitrogen oxides emissions spatially correlated in a Chinese context? What is the 

relationship between nitrogen oxides emission levels and fast-growing economy/urbanization? 

More importantly, what environmental preservation and economic developing policies should 

China’s central and local governments take to mitigate the overall nitrogen oxides emissions and 

prevent severe air pollution at the provincial level in specific locations and their neighboring 

areas? The present study aims to tackle these issues. This is the first research that simultaneously 

studies the nexus between nitrogen oxides emissions and economic development/urbanization, 

with the application of a spatial panel data technique. Our empirical findings suggest that spatial 

dependence of nitrogen oxides emissions distribution exists at the provincial level. Through the 

investigation of the existence of an environmental Kuznets curve (EKC) embedded within the 

Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT) 

framework, we conclude something interesting: an inverse N-shaped EKC describes both the 

income-nitrogen oxides nexus and the urbanization-nitrogen oxides nexus. Some well-directed 

policy advice is provided to reduce nitrogen oxides in the future. Moreover, these results 

contribute to the literature on development and pollution. 
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1. Introduction 

China’s economy has developed at an incredibly fast pace for decades and received broad 

attention. By 2010, China’s gross domestic product (GDP) reached 5.8 trillion dollars, making China 

the world’s second largest economy (NBSC 2011b). The country is turning from an agricultural one 

to a modernized one [1], with more than half of the population living in urban areas (NBSC 2011b). 

In the meantime, the rapid economic growth and urbanization came with a rocketing consumption 

of resources and a soaring emission of air pollutants, with nitrogen oxides (NOx) being the fastest 

accelerating air pollutant in China in the last two decades [2,3]. NOx is an important air pollutant 

because it contributes to the formation of photochemical smog, which can have significant impacts 

on human health. The main adverse effects of NOx to public health is that it causes respiratory 

diseases. Chronic exposure to NOx under ultraviolet radiation can cause respiration symptoms in 

people with asthma, and bronchial symptoms (especially in children) and airway inflammation in 

healthy people. In addition, NOx is the main source of nitrate aerosol (the important component of 

particulate matter (PM) 2.5) in China [3–5]. 
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The literature on the relationship between economic development and environmental quality 

is extensive in the field of environmental economics. The present empirical study relies on the 

Environmental Kuznets Curve (EKC) hypothesis carried out by Grossman and Krueger [6] because 

its expanded form has the potential to be a policy tool for sustainable development [7]. Some 

researchers have examined NOx EKC through cross-sectional data [8,9] and panel data [10,11]. Most 

researchers applied country-level data to explore sulfur dioxide (SO2) EKC, while only a few studies 

used prefecture-level data in some specific countries. 

So far, few studies have explored the relationship between nitrogen oxides emissions and 

socioeconomic factors through quantitative empirical approaches in the context of China, even 

though such empirical analyses are sorely urgent, because they can shed some new light on the 

driving forces and precise regularities of pollutants emission levels, and the estimated parameters 

and functions could be very helpful for policymakers to implement suitable policies for emission 

reduction. Brajer, et al. [12] carried out the solely related study through panel data. Although panel 

data have relatively more information and greater degrees of freedom than cross-sectional data, 

spatial dependence is a problem in many panel datasets when the individuals are not sampled at 

random. In reality, an observation in a cross-sectional sample is always related to some other 

observations in the same sample [13]. Anselin and Griffith [14] illustrated this phenomenon as the 

existence of a relationship between what occurs at one spot in space and what occurs somewhere 

else. However, such a relation certainly violates the pre-assumption for standard regression 

analysis: the sampled observations should generally be independent of each other. 

Moreover, spatial effects are critical factors in assessing the impact of the economic 

development on environmental conditions [15,16]. The spatial correlation of data is an inherent 

characteristic in many environmental subjects. The spread of waste effluents, the diffusion of air 

pollutants, and the invasion of new species all might bring about spatial autocorrelation that 

hinders statistical analysis [17]. According to some recent studies on air pollution, China’s air 

pollutants show a spatially correlated pattern [18–21]. For the establishment of EKC, regional 

samples (towns, cities, or provinces) located nearby may interact because of spillovers of economic 

factors and pollutant emission regulations [22]. 

Quite a few air pollution studies did find some evidence supporting an EKC hypothesis in 

China; however, the shape is mixed and different depending on indices as well as sample 

characters. Brajer, Mead, and Xiao [12] found evidence supporting an N-shaped sulfur dioxide 

(SO2) EKC. They investigated the existence of an SO2 EKC through a Chinese annual panel dataset 

consisted of 128 cities from 1990 to 2004 and obtained the classical inverted U-shaped relationship 

and an N-shaped EKC for SO2 emission. However, Song et al. [23] criticized that previous 

researchers failed to consider the potentially non-stationary time series and panel data. Thus, they 

applied a panel cointegration technic to improve the non-stationarity issue and obtained an inverse-

U shape EKCs for exhaust gas, wastewater, as well as solid wastes. Diao et al. [24] applied 11-year 

data (1995–2005) to search for EKC for six kinds of pollutants (four of them are air pollutants) in 

Zhejiang province. They obtained an inversely U-shaped trajectory for the emission of Industrial 

exhaust gas, smoke, and ash. They likewise obtained a positive linear nexus for SO2 emission and 

income. Nevertheless, such a linear relation did not necessarily eliminate an EKC, since this 

province might just have been going through the first upward phase of the inverted-U shape. 

Some recent studies adopted advanced econometric tools in China’s economic environment 

analysis. On the basis of the examination of a provincial panel in the period 1990–2012, Wang et al. 

[25] obtained an inverse U-shaped curve for the relationship between income and SO2 emission and 

a positive linear relation between urbanization and SO2 emission by semi-parametric regression for 

the first time. Zheng, Yu, Wang, and Deng [20], and Kang et al. [26] applied a spatial panel data 

approach in order to control for variables’ spillover effects in their analysis of the connection 

between carbon dioxide (CO2) emission and economic growth. They both found empirical evidence 

for an inverse-N shaped curve. Hao and Liu [18] used spatial econometric tools to examine China’s 

current severe air pollution, i.e., particulate matter (PM) 2.5 from cross-sectional data of 73 Chinese 
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cities in 2013; the outcome suggested a standard inverse-U shaped EKC for the relation between PM 

2.5 concentration and income. 

Some supporters of modernization theories argue that a relationship of EKC exists between 

environmental impact and urbanization rather than economic development [27–29]. However, the 

important issue of urbanization’s impacts on nitrogen oxides emissions in China is left undiscussed 

in the past literature. 

Therefore, the objectives of our study are to systematically estimate the impacts of income and 

urbanization (hereinafter referred to as “income/urbanization”) on nitrogen oxides emissions. Since 

the nitrogen oxides emissions data and other socioeconomic indicators are all sampled at the 

provincial level of contiguity, we naturally applied the spatial panel model as the grounding 

technique in the following empirical analysis. We begin with a brief introduction to provide the 

theoretical basis and methodology for the following empirical analysis. Then, this paper proceeds 

with global Moran’s I test and conventional regression to get diagnostics for the description of 

spatial dependence. In addition, we investigate the relation between the driving forces and the 

dependent variable thoroughly with the spatial panel tool. The outcomes are presented and 

discussed; besides, we offer some policy advice at the end of this study. 

This research mainly contributes to the current literature in the following aspects. First, we 

investigate the relation between nitrogen oxides emissions and economic development in the 

context of China, especially the relationship between nitrogen oxides emissions and economic 

growth/urbanization. As far as we know, this is the first empirical estimation of the impact of 

socioeconomic influential factors on nitrogen oxides emissions in China with the EKC and the 

STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model. 

Second, the spatial panel data tools are applied for the empirical analysis, so that the spatial 

dependence of nitrogen oxides emissions can be taken into account and the biased estimators 

caused by omitting the spatial effects can be avoided. So far, no prior quantitative analysis of the 

nexus between socioeconomic factors and nitrogen oxides emissions has utilized spatial 

econometric tools. Third, we rectify the previous way of calculating the turning points used in those 

EKC studies that applied a spatial econometric approach. 

2. Theoretical Framework and Methodology 

2.1. Environmental Kuznets Curve Hypothesis 

EKC is originally an empirical hypothesis that characterizes an inversely U-shaped curve for 

the relationship between economic development and environmental quality. Various indices of 

environmental quality degenerate with economic growth. After reaching a threshold, the 

environment deterioration starts to decrease [6]. Development may promote environmental quality 

as a result of economies of scale from pollution reduction, technological upgrade, industrial 

structure escalation, and public’s demand for a clean environment [22]. Generally, the considered 

model for the EKC is a polynomial function type as follows: 

2 3

1 2 3 4Y X X X Z            (1) 

Here, Y represents the indices of environmental degradation, while X  refers to the economic 

development level, usually measured by per capita GDP (Gross Domestic Product), and Z  includes 

other influential factors for the environment. The polynomial function form of EKC offers to us an 

adequate tool to estimate the nonlinear relationship (if it exists) between economic 

growth/urbanization and pollutants emission.

2.2. Stirpat Model 

We use the STIRPAT model as our theoretical foundation to test the existence of an EKC for 

nitrogen oxides emissions related to affluence. Ehrlich and Holdren [30] first proposed the concept 

of IPAT (Impact, Population, Affluence, and Technology), a model describing the impacts of 

population, affluence and technology on the environment, while Commoner et al. [31] applied it by 
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algebraic formulation to data analysis. The IPAT identity is concise and well ecologically grounded. 

However, the IPAT model is only an overly simplified function form and just indicates that the 

impact of human activities on the environment can fully be differentiated into population, 

affluence, and technology effects. Thus, the IPAT model cannot estimate to what extent a specific 

factor affects the environment in such a framework, not to mention test any hypothesis. Another 

limitation is that it assumes that only fixed proportionality changes happen between effects and 

factors. Therefore, Dietz and Rosa [32] derived a stochastic version of IPAT, known as STIRPAT and 

later refined by York et al. [33], expressed by the equation: 

b c d

i i i i i iI P A T   (2) 

Here, I  represents the environmental impact, , ,P A  and T  indicate human activities, i.e., 

respectively, population, affluence (per capita), and technological influences (per unit of economic 

activity); , , ,b c d  are coefficients to be estimated;   is the error (the proportionality of IPAT pre-

assume 1b c d      ). The subscript i refers to the ith region, and as indicated by i, 

quantities of , , ,I P A T , and   vary across observations. Its regression form for estimation and 

hypothesis test is obtained by logarithmic transformation of the variables in Equation (1). In this 

case, the coefficients , ,b c  and d  stand for the Ecological Elasticity (EE) which measures the 

sensitivity of environmental impacts to a change occurring in a driving force. It is defined as the 

proportion of change in environmental impacts due to its significant determinants. Since it is highly 

flexible to various functional forms, a quadratic or higher term of affluence can enter the STIRPAT 

equation [33]. Therefore, we applied an augmented STIRPAT for our study purpose: 

2 3

1 2 3ln ln (ln ) (ln ) ln lnI b A b A b A c P d T e        (3) 

2

1 2ln ln (ln ) ln lnI b A b A c P d T e       (4) 

ln ln ln lnI b A c P d T e      (5) 

According to our study purpose and to modernization theories [27,29], per capita GDP and the 

percentage of urban population (to reflect the modernization level) are utilized as the proxies of 

affluence; energy intensity is defined as the indicator of technology impacts/damages[28]. 

Environmental impact refers to the amount of nitrogen oxides emissions. 

2.3. Spatial Panel Data Model 

Before the statistical inference for spatial model specifications is carried out, we make a brief 

introduction to the models. Three currently prevailing spatial panel models were considered: the 

spatial Durbin model (SDM), the spatial lag model (SLM), and the spatial error model (SEM). The 

SDM model can be written in matrix form as: 

         2, 0,T N T N T NT TN NX I W X I IY I W Y u u N I             
 (6) 

The SLM model can be written as: 

       2, 0,T N T NN NTT X I I uY I W Y u N I            (7) 

The SEM model can be written as: 

   

 

 20,

T N N T

T
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N

X I I u

u I uW
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N

    

 

 

   

  

 

 (8) 

In this study, the dependent variable Y is substantively an NT × 1 vector of nitrogen oxides 

emissions amount at China’s provincial level, and X is an NK × K matrix composed of independent 

variables (also known as explanatory variables) in Equations (3)–(5); μ controls for the unknown 

individual effects or heterogeneities (each individual province’s features that might affect emissions 
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level but never changes over time. For example, the geographical distribution of provinces) of the 

30 provinces in the study, since omission can lead to biased estimates, while   controls for the time 

effects, i.e., the constant whole trend of nitrogen oxides emissions levels; δ is the spatial 

autocorrelation and ρ is the spatial autocorrelation that exists in the error term u (the error term in 

regression analysis is usually assumed as a random variable of normal distribution);   is the 

random term existing in the spatially correlated u. Both δ and ρ  reflect the strength of the 

dependent variable’s spatial autocorrelation. Each parameter indicates the responsiveness of the 

dependent variable to a change in the independent variables;γ is the coefficient showing the 

spillover effects of the independent variables on the dependent variable; N  is a column vector of 

all vectors in the length of N, while T  represents a column vector of all vectors in the length of T; 

NI  and TI  are N × N and T × T dimension identity matrixes, respectively. 

NW  is the N × N weight matrix, in which the elements represent the contiguity of provinces. 

The element on the ith row and jth column equals 1 if the ith province and jth province have a 

mutual border, otherwise, it equals 0. As a routine, NW  is always row-normalized in spatial 

econometric analysis, and the elements in normalized NW  are between 0 and 1 [34]. To capture the 

spatial autocorrelation and spillover effects in the model with panel datasets, the weight matrix is 

constructed as NT T NW I W  , where   indicates the Kronecker product. 

To show the necessity and the advantage of applying the spatial panel model rather than the 

traditional panel data methodology, we report the results of the non-spatial panel data model as 

well. The classical Lagrange Multiplier (LM) and robust LM tests come along with these results 

because the LM tests can offer inferences for adopting the SLM or SEM. After the LM tests, the 

estimated results of the SDM, SLM, and SEM are analyzed by the Wald as well as the LR statistics. 

If the null hypothesis of the Wald test (H0: 0  ) cannot be rejected, then the SDM can be 

simplified to the SLM, and if null hypothesis of the LR test (H0: 0   ) cannot be rejected, then 

the SDM can be simplified to the SEM [35]. If both null hypotheses are rejected, then the SDM 

remains reasonable. On the other hand, if H0: 0   holds true and the LM/LM robust tests of the 

SLM rejects its null hypothesis H0: no spatial lag effects, then the SLM can be considered. Similarly, 

if H0: 0    is not rejected, while the LM/LM robust test of the SEM rejects its null hypothesis 

H0: no spatial lag effects in error term, then the SEM should be adopted. Otherwise, the SDM is still 

preferred because of its relatively better flexibility. For example, if the Wald/LR tests suggests a 

model different from the one suggested by the LM tests/robust LM tests, the SDM should still be 

preferred [34]. Lastly, the Hausman test is to be conducted to determine whether fixed individual 

effects or random individual effects should be adopted. 

3. Data and Variables 

This paper investigates the nexus of income/urbanization to nitrogen oxides emissions through 

a balanced panel dataset of 30 provinces in China, spanning from 2010 to 2015 (data of Tibet 

autonomous province, Taiwan province, Hong Kong, and Macau special administrative regions 

were not available.). The data on 2010–2015 nitrogen oxides emissions, income (per capita GDP), 

urban population, and total population all originate from the National Bureau of Statistics of China. 

The nitrogen oxides emissions amount in 2010 was obtained from the webpage of the Ministry of 

Environmental Protection of the People’s Republic of China. Energy consumption (kg of coal 

equivalent) data were collected from the China Energy Statistical Yearbook. The per capita GDP 

data was converted into the 2003 constant price. Table 1 lists all the definitions and descriptive 

statistics of the variables. All variables were processed with natural logarithm transformation. 

Logarithm transformation can diminish the potential estimation bias caused by the large scope of 

data values. 
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Table 1. Definitions and descriptive statistics of the variables. 

Variable Definition Mean Std.Dev Min Max 

log NOX Nitrogen oxides emissions (ton) 13.292 0.703 11.294 14.404 

log GDP Real GDP per capita (RMB) 10.332 0.560 9.016 11.760 

log URB 
Percentage of urban population in the 

total population (%) 
3.9793 0.221 3.521 4.495 

log POP Total Population 8.188 0.739 6.333 9.292 

log EI 
Energy intensity (Energy use per unit 

GDP, kg of coal equivalent/10000 GDP) 
7.052 0.486 6.084 8.260 

Note: The real GDP per capita was measured by the 2003 constant price; RMB refers to Renminbi, 

the official currency of the People’s Republic of China; log NOx, log POP, and log EI are the proxies 

of environmental impact, population size, and technical impacts in Equations (3)–(5); log GDP and 

log URB (urbanization) are the proxies of affluence in Equations (3)–(5). 

4. Empirical Results and Discussion 

4.1. Spatial Distribution of Nitrogen Oxides in China 

We first explore the possible existence of a nitrogen oxides emissions’ spatial autocorrelation 

during the data interval. Global Moran’s I statistics is a widely applied index for spatial 

autocorrelation detection. It reflects the spatial autocorrelation of whole areas of interest with a solo 

value and depends on the spatial weight matrix that shows the geographic relationship among 

samples in adjacent regions. In that way, it assesses the observations’ distribution pattern: random, 

clustered, or dispersed. Here, the Equation (9) is the formula of Global Moran’s I: 

   
1

2

1

( )

N N

ij i j

i i j

N N

i ij

i i i j

w x x x x
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x x w

 

 

 







 
 (9) 

where 
1

1 N
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x x
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  ; ijw  is the element on the ith row and jth column of the spatial weight matrix W

, and N  is 30 in our study (the number of provinces); x  is the indicator of interest. In this research, 

W  is characterized by the commonly accepted specification, i.e., fist-order Rook Adjacency 

(China’s spatial weight matrix of rook contiguity is the same as the matrix of queen contiguity). The 

significance of Global Moran’s I is usually testified by the Z-score (the comparison of Moran’s I and 

its expectation). The calculation of Z statistics was done through Equations (10)–(12) ( iw  and jw  

are the sum of the ith row and jth column of the spatial weight matrix W , respectively). All the 

empirical results in this study are generated through Matlab and ArcGIS. Table 2 illustrates the 

Global Moran’s I of nitrogen oxides emissions from 2010 to 2015. 
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Table 2. NOx emissions’ Global Moran’s I statistics. 

 2010 2011 2012 2013 2014 2015 

Moran’s I 0.212 0.190 0.186 0.173 0.173 0.182 

Z-Score 2.327 2.121 2.080 1.959 1.963 2.052 

p-value 0.020 0.034 0.038 0.050 0.050 0.040 

Note: For consistency with the regression analysis, the spatial weight matrix W  for the Moran’s I 

test was also row-normalized. 

The statistical significances of the Moran’s I are presented by their Z score and corresponding p 

values. As shown above, the Z scores and p values clearly state that the spatial autocorrelation 

effects in nitrogen oxides emissions are significant at a 5% level over six years. The positive Moran’s 

I values indicates that the areas with high nitrogen oxides emissions (provinces in the high-high 

groups) tend to locate together, like the low emission areas (provinces in the low-low groups). 

During 2010–2015, the decreased Global Moran’s I suggests a declining tendency of the 

agglomeration on nitrogen oxides emissions in China. 

In order to visualize and depict the spatial clustering pattern of nitrogen oxides emissions at a 

provincial level more intuitively, Figure 1 demonstrates the emission distribution in provinces in 

2010, 2012, and 2015. 

As shown below, the high-high (HH) cluster is mostly located in the eastern and northern 

regions of China and can be classified into two categories. One category is located in areas with 

dense population, high urbanization level, and developed economy, mostly in the eastern part of 

China (Henan, Shandong, Jiangsu, Shanghai, Zhejiang, etc.). The other category located in areas 

that heavily rely on heavy and mining industries, especially in the northeastern regions (Jilin, 

Liaoning, Hebei, Shanxi provinces, etc.). The low-low (LL) cluster regions of nitrogen oxides 

emissions are mainly located in undeveloped areas and areas of low population density, 

particularly in the north, middle, and south parts of China (Gansu, Ningxia, Shanxi, Chongqing, 

Guizhou, Guangxi, Yunnan, etc.) 

To sum up, the geographical agglomeration of nitrogen oxides emissions is statistically 

significant during our study period, and the discharge of pollutants seemingly correlate with 

economic development and population effects. Specifically, wealthy provinces/cities with a large 

population generally have a higher emissions levels. This phenomenon corresponds to the 

STIRPAT model’s theory. In the next sub-section, we will explore the specific quantitative 

relationship between nitrogen oxides emissions and their driving forces. 

 
(a) 2010 
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(b) 2012 

 
(c) 2015 

Figure 1. China’s NOx emissions distribution in (a) 2010, (b) 2012, and (c) 2015, respectively (Units: 

tons). 

4.2. Econometric Results and Analysis 

4.2.1. Non-spatial Panel Data Results 

To determine the most appropriate model specification, this part firstly applies the non-spatial 

panel model to calculate classical LM and robust LM statistics for model specification (SLM or 

SEM). If the (robust) LM tests reject the non-spatial models, we will further determine which spatial 

panel model is the most appropriate one by the procedure discussed in Section 2.2: the estimated 

results for the SDM will testify if it can be simplified to the SLM or SEM. Once the most appropriate 

model is specified, we will estimate the driving forces’ direct and indirect marginal influences (if 

they exist) on pollutant’s emission, and then explain and discuss the results obtained. 

Table 3 depicts the statistical results of regression models that control for both spatial fixed and 

time-fixed effects (two-way fixed effects) in two fields: GDP–nitrogen oxides and urbanization 

(URB)–nitrogen oxides. In each field, the estimated results of three different model specifications 

(M1–M3 indicating cubic, quadratic, and first terms of affluence models, respectively) are shown in 

three separated columns. The likelihood ratio (LR) test is conducted to verify the incorporation of 

two-way fixed effects against the incorporation of either spatial fixed or time-fixed effects. As we 
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can see, the LR test results in Table 3 overwhelmingly reject the null hypothesis of spatial fixed 

effects as well as that of time period-fixed effects. Therefore, the two-way fixed effects are preferred 

over the spatial/time fixed effects in both GDP–nitrogen oxides and URB–nitrogen oxides models. 

Table 3. Parameter estimates of the non-spatial panel model. 

Dependent Variable: logNOx Per Capita GDP as the Index of Affluence Urbanization as the Index of Affluence 

 M1 M2 M3 M1 M2 M3 

log A −15.272 *** 1.972 *** 0.745 *** −17.495 2.789 0.448 *** 

 
(−3.041) (5.108) (6.453) (−0.535) (1.513) (3.109) 

(log A)2 1.601 *** −0.074 *** 
 

4.943 −0.318 
 

 
(3.288) (−3.322) 

 
(0.584) (−1.274) 

 
(log A)3 −0.054 *** 

  
−0.454 

  

 
(−3.443) 

  
(−0.622) 

  
Log POP 0.271 −0.284 −0.988 *** −0.402 −0.444 * −0.434 * 

 
(0.810) (−0.940) (−4.460) (−1.556) (−1.785) (−1.741) 

Log EI 0.393 *** 0.444 *** 0.503 *** 0.471 *** 0.480 *** 0.481 *** 

 
(7.291) (8.309) (9.706) (8.157) (8.579) (8.598) 

LM test no spatial lag 6.3766 ** 7.1485 *** 10.4617 *** 15.8132 *** 15.3210 *** 16.8318 *** 

robust LM test no spatial lag 0.0136 0.2819 0.0079 2.2739 2.7814 * 1.1501 

LM test no spatial error 8.0278 *** 7.7327 *** 13.1395 *** 13.5398 *** 12.5722 *** 15.9735 *** 

robust LM test no spatial error 1.6647 0.8661 2.6858 0.0005 0.0326 0.2917 

LR-test spatial fixed effects 749.7847 *** 740.0405 *** 747.0445 *** 713.5834 *** 715.3909 *** 732.1524 *** 

LR-test time fixed effects 186.7664 *** 175.4269 *** 179.2426 *** 154.7254 *** 155.5018 *** 157.1568 *** 

N 180 180 180 180 180 180 

Rbar-squared 0.4877 0.4561 0.4253 0.3268 0.3291 0.3268 

Note: Numbers in the parentheses are t-stat; * p < 0.1; ** p < 0.05; *** p < 0.01. M1, M2, and M3 refer to 

the models corresponding to Equations (3)–(5), respectively; log A: logarithm of affluence; log POP: 

logarithm of total population; log EI: logarithm of energy intensity; LM test: Lagrange Multiplier 

test; LR-test: likelihood ratio test 

The LM tests significantly reject the null hypothesis of no spatially lagged dependent variable 

(nitrogen oxides) and no spatially auto-correlated error for the GDP–nitrogen oxides and 

Urbanization–nitrogen oxides models; however, the robust LM tests do not. This gives very 

ambiguous evidence for the validity of the spatial model. As mentioned in Section 2.2, for the final 

determination of which spatial panel model fits our data best, we need to consider the LR and Wald 

tests results. We illustrate these tests results in the following section. 

4.2.2. Spatial Panel Data Results 

We will now turn to the spatial econometric analysis. Tables 4 and 5 report the estimated 

results of the SDM model that controls for both spatial and time effects. Two fields (fixed effects 

estimates and random effects estimates) with triple columns contain these results in each table. In 

Table 4, the three columns in each field list and compare the results of three model specifications: 

the model with a cubic term of GDP (M1), the model with a quadratic term of GPD (M2), and the 

model with a linear term of GDP (M3). In a similar way, Table 5 compares the estimated results of 

the three models incorporating urbanization’s cubic, quadratic, and linear terms. 

Table 4. Parameter estimates of the spatial panel model (GDP as the indicator of affluence). 

Dependentvariable: logNOx Fixed Effects Estimates Random Effects Estimates 

 M1 M2 M3 M1 M2 M3 

logGDP −14.886 *** 2.146 *** 0.715 *** −16.737 *** 2.513 *** 0.306 *** 

 
(−2.796) (4.083) (5.002) (−3.395) (5.583) (2.983) 

(logGDP)2 1.587 *** −0.088 *** 
 

1.761 *** −0.108 *** 
 

 
(3.047) (−3.151) 

 
(3.678) (−5.098) 

 
(logGDP)3 −0.055 *** 

  
−0.060 *** 

  

 
(−3.225) 

  
(−3.894) 

  
logPOP 0.257 −0.197 −0.891 ** 0.787 *** 0.768 *** 0.773 *** 
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(0.592) (−0.466) (−2.532) (9.760) (9.596) (9.721) 

log EI 0.272 *** 0.345 *** 0.455 *** 0.320 *** 0.355 *** 0.461*** 

 
(3.541) (4.523) (6.403) (4.834) (5.206) (6.376) 

WlogGDP 13.293 0.667 −0.402 * 2.723 −0.199 −0.045 

 
(1.064) (0.784) (−1.752) (0.252) (−0.276) (−0.265) 

(WlogGDP)2 −1.354 −0.088 * 
 

−0.320 −0.006 
 

 
(−1.110) (−1.734) 

 
(-0.304) (-0.161) 

 
(WlogGDP)3 0.042 

  
0.011 

  

 
(1.069) 

  
(0.321) 

  
WlogPOP 0.441 0.644 0.211 −0.320 * −0.394 ** −0.627 *** 

 
(0.613) (0.923) (0.343) (−1.945) (−2.411) (−3.978) 

Wlog EI 0.144 0.074 −0.080 0.079 0.021 −0.149 

 
(1.006) (0.501) (−0.547) (0.587) (0.150) (−1.003) 

W*log NOx 0.376 *** 0.350 *** 0.426 *** 0.313 *** 0.318 *** 0.425 *** 

 
(4.536) (4.120) (5.291) (3.731) (3.810) (5.614) 

teta 
   

0.043 *** 0.045 *** 0.051 *** 

    
(5.481) (5.481) (5.482) 

Hausman    26.9213 *** 40.1047 *** 75.0638 *** 

N 180 180 180 180 180 180 

Rbar−squared 0.5397 0.5163 0.4263 0.7208 0.7131 0.7429 

Wald_spatial_lag 16.0228 *** 13.3801 *** 3.3914 15.3446 *** 15.3468 *** 17.7147 *** 

LR_spatial_lag 16.9816 *** 15.3136 *** 2.7463 13.1342 *** 13.5632 *** 15.6328 *** 

Wald_spatial_error 12.5273 ** 11.9753 ** 1.2424 8.5388 8.9657 * 5.5823 

LR_spatial_error 15.2257 *** 14.8212 *** 1.3204 12.8486 *** 13.0801 *** 9.6508 ** 

Note: Numbers in the parentheses are t−stat; * p < 0.1; ** p < 0.05; *** p < 0.01. M1, M2, and M3 refers 

to the models corresponding to Equations (3)–(5), respectively. 

Table 5. Parameter estimates of the spatial panel model (urbanization as the indicator of affluence). 

Dependent Variable: logNOx Spatial Fixed Effects Spatial Random Effects 

 M1 M2 M3 M1 M2 M3 

logURB −86.326 ** 1.505 0.523 *** −71.725 ** 1.868 0.589 *** 

 
(−2.269) (0.799) (2.687) (−2.475) (1.076) (3.446) 

(logURB)2 22.580 ** −0.154 
 

18.711 ** −0.172 
 

 
(2.278) (−0.609) 

 
(2.508) (−0.751) 

 
(logURB)3 −1.958 ** 

  
−1.610 ** 

  

 
(−2.276) 

  
(−2.520) 

  
logPOP −0.333 −0.395 0.104 0.737 *** 0.766 *** 0.817 *** 

 
(−1.022) (−1.189) (0.314) (8.598) (9.083) (10.402) 

log EI 0.215 *** 0.277 *** 0.374 *** 0.311 *** 0.379 *** 0.425 *** 

 
(2.792) (3.705) (4.978) (4.222) (5.132) (5.939) 

WlogURB 44.950 20.596 *** −0.454 119.975 * 5.661 −0.319 

 
(0.530) (4.604) (−1.522) (1.944) (1.541) (−1.166) 

(WlogURB)2 −8.769 −2.881 *** 
 

−30.056 * −0.813 *  

 
(−0.396) (−4.707) 

 
(−1.891) (−1.643)  

(WlogURB)3 0.464 
  

2.485 *   

 
(0.241) 

  
(1.821)   

WlogPOP −0.758 −0.889 −0.864 −0.541 *** −0.565 *** −0.594 *** 

 
(−1.351) (−1.545) (−1.461) (−3.346) (−3.504) (−3.811) 

Wlog EI 0.173 0.145 0.020 −0.017 −0.079 −0.080 

 
(1.196) (0.974) (0.131) (−0.120) (−0.538) (−0.541) 

W*log NOx 0.343 *** 0.328 *** 0.469 *** 0.444 *** 0.410 *** 0.430 *** 

 
(4.068) (3.827) (6.094) (5.975) (5.318) (5.695) 

teta 
   

0.044 *** 0.047 *** 0.050 *** 

    
(5.481) (5.481) (5.482) 

N 180.000 180.000 180.000 180.000 180.000 180.000 

Rbar-squared 0.512 0.485 0.337 0.632 0.657 0.719 

Hausman 
   

26.426 *** 32.269 *** 22.014 *** 
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Wald_spatial_lag 35.5964 *** 26.9514 *** 4.1150 27.9652 *** 21.0943 *** 18.6102 *** 

LR_spatial_lag 39.2325 *** 30.8808 *** 4.5914 24.5783 *** 19.0932 *** 16.1401 *** 

Wald_spatial_error 35.2548 *** 28.3682 *** 5.1504 13.3523 ** 9.2156 * 5.7002 

LR_spatial_error 39.5535 *** 32.8361 *** 6.1206 16.9972 *** 12.0617 ** 8.6987 ** 

Note: Numbers in the parentheses are t−stat; * p < 0.1; ** p < 0.05; *** p < 0.01. M1, M2, and M3 refer 

to the models corresponding to Equations (3)–(5), respectively. 

As shown in Tables 4 and 5, Hausman tests (against fixed effects) under the three model 

specifications all reject the null hypothesis: the unobserved individual effects in the provinces are 

not correlated with the independent variables in the models. Thus, we only focus on the results of 

the GDP–nitrogen oxides and urbanization–nitrogen oxides models with two-way fixed effects in 

the following discussion. 

When including two-way fixed effects in M1 and M2, all the Chi-square statistics of all LR and 

Wald tests of the GDP–nitrogen oxides and urbanization–nitrogen oxides models reject both 

hypotheses, H0: =0  and H0: + =0  . In other words: the SDM cannot be simplified to either the 

SLM or the SEM if one of the polynomial models is adopted. On the other hand, the Wald and LR 

tests in M3 (Tables 4 and 5) do not reject their null hypothesis. 

It is noteworthy that the coefficients’ estimates in the non-spatial model indicate the marginal 

effects of the driving forces (population and energy intensity) on the dependent variable (nitrogen 

oxides emissions), whereas the parameters’ estimates in the SDM or SLM do not. Instead, the 

independent variables’ direct and indirect (spillover) effects on the SDM need to be calculated by 

Equation (13), and the estimate results are reported in Tables 6 and 7. Equation (13) is derived from 

Equation (14), and Equation (14) from Equation (6). The reciprocal term 1( )I W   is calculated by 

Equation (15). All the parameters that need to be brought into Equations (13) and (15) are already 

estimated and reported in Tables 4 and 5. The diagonal elements of the partial derivatives matrix in 

Equation (13) indicates the direct effects (elasticity) of the kth explanatory variable, and all the off-

diagonal elements refer to its spillover effects. Consequently, if =0  and =0 , then spillover effects 

do not exist. The difference between the driving forces’ direct effects and their estimated coefficients 

is due to the feedback effects that travel through adjacent provinces and then back to the provinces 

themselves. The feedback effects consist of two parts: the value of the spatially lagged dependent 

variable (W*ln NOx) and the coefficients of the spatially lagged explanatory variables (population 

and energy intensity). Some prior EKC studies that applied the spatial econometric approaches 

either mistakenly reported the coefficient estimates as the direct and spillover effects, or avoided to 

report these effects in the SDM/SLM [18,20,36]. 
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Another issue that has never been correctly discussed is the calculation of the turning points in 

the environmental Kuznets curve estimated by the SDM/SLM. Kang, Zhao, and Yang [26] applied a 

spatial econometric approach and found an inverse N-shaped CO2 EKC in China. However, they 

derived the turning points directly from the estimates of the GDP coefficients, which is invalid. The 

same problem occurred in Zhou, Ye, and Ge’s [19] study. In most situations, the EKC function is 

smooth, thus the limit points of the EKC function are the turning points. As for the SDM, its right-

hand side contains the dependent variable, thus one needs to first derive the Equations (6)–(14) and 

then let the first-order derivative to be zero, so that the parameters for calculating EKC’s turning 
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points can be obtained (here, we assume the EKC as a single variable function, since the EKC 

hypothesis solely focuses on the affluence’s impact). Thus, we argue that, when fitting the EKC by 

the SDM, one needs to apply the direct effects estimated through Equation (14), instead of using 

parameter estimates of the spatially lagged variable, to calculate the turning points. 

Tables 6 and 7 report the direct and spillover effects estimated according to Tables 4 and 5 

(fixed effects estimates). Model 1 (M1), Model 2 (M2), and Model 3 (M3) are respectively the GDP–

nitrogen oxides/urbanization–nitrogen oxides models with cubic, quadratic, and linear terms of 

GDP/urbanization. 

Table 6. Direct and spillover effects estimation (gross domestic product as the indicator of 

affluence). 

 
M1 M2 M3 

Direct Spillover Direct Spillover Direct Spillover 

logGDP −14.122 ** 11.353 2.281 *** 2.104 * 0.697 *** −0.155 

 
(−2.530) (0.603) (4.629) (1.885) (4.988) (−0.493) 

(logGDP)2 1.512 *** −1.117 −0.100 *** −0.174 ** 
  

 
(2.772) (−0.610) (−3.636) (−2.386) 

  
(logGDP)3 −0.052 *** 0.032 

    

 
(−2.965) (0.540) 

    
logPOP 0.296 0.856 −0.123 0.822 −0.901 *** −0.272 

 
(0.702) (0.858) (−0.315) (0.935) (−2.865) (−0.329) 

log EI 0.297 *** 0.375 * 0.359 *** 0.303 0.468 *** 0.187 

 
(4.322) (1.939) (5.008) (1.635) (7.247) (0.908) 

Note: Numbers in the parentheses are t-stat; * p < 0.1; ** p < 0.05; *** p < 0.01; the direct and spillover 

effects of linear, square, and cubic terms of log GDP are practically meaningless; M1, M2, and M3 

refer to the models corresponding to Equations (3)–(5), respectively. 

Table 7. Direct and spillover effects estimation (Urbanization as the indicator of affluence). 

 
M1 M2 M3 

Direct Spillover Direct Spillover Direct Spillover 

logURBEN −83.932 * 22.233 3.404 * 29.880 *** 0.501 *** −0.377 

 
(−1.904) (0.164) (1.775) (4.319) (2.749) (−0.850) 

(logURBEN)2 22.240 * −1.504 −0.416 −4.156 *** 
  

 
(1.930) (−0.042) (−1.603) (−4.353) 

  
(logURBEN)3 −1.956 * −0.297 

    

 
(−1.948) (−0.096) 

    
logPOP −0.415 −1.268 −0.464 −1.477 * −0.019 −1.404 

 
(−1.364) (−1.680) (−1.490) (−1.979) (−0.062) (−1.524) 

log EI 0.240 *** 0.355 * 0.301 *** 0.333 * 0.403 *** 0.349 

 
(3.223) (1.919) (4.207) (1.744) (5.930) (1.478) 

Note: Numbers in the parentheses are t-stat; * p < 0.1; ** p < 0.05; *** p < 0.01; the direct and spillover 

effects of linear, square, and cubic terms of log URB are practically meaningless. M1, M2, and M3 

refer to the models corresponding to Equations (3)–(5), respectively. 

Turning our attention to the GDP–nitrogen oxides model results, the cubic, quadratic, and 

linear terms of the GDP’s coefficient (Table 4, M1) and direct effects (Table 6, M1) are statistically 

significant at a 5% level. Besides, the greater adjusted R2 and log likelihood (Table 4, M1) of the 

cubic model suggests that Model 1 (Table 6) fits the data better than Models 2 and 3 (Table 6). The 

significant effect estimates of energy intensity have the expected signs in Model 1. As we mentioned 

in Section 4.2.2, if we adopt the polynomial model, the SDM should not be simplified to the SLM or 

SEM. Therefore, the cubic form of the GDP–nitrogen oxides model is the appropriate specification 

for empirical analysis (the linear and quadratic models are inherently nested in the cubic model, 
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therefor the cubic model should be adopted when parameters of linear and polynomial terms are 

significant at the same time). 

This finding shows that the estimated direct and spillover effects (elasticity) of energy intensity 

are highly significant at the 1% and 10% level respectively, and their signs are positive as expected. 

The effect of 1% growth in local energy intensity will lead to an increase in local nitrogen oxides 

emissions by 0.297%, other conditions being constant. LeSage and Pace [37] pointed out that the 

spillover effects are defined as the impact that a specific region exerts on all adjacent regions or vice 

versa. Thus, the impact of a 1% growth in local energy intensity will, on average, cause a 0.375% 

increase in nitrogen oxides emissions in neighboring provinces, all else being equal. On the other 

hand, both the direct and the spillover effects of the population are not significantly different from 

zero, which implies that a specific province’s population barely affects local and other provinces’ 

emissions. The highly significant linear, quadratic, and cubic terms of GDP per capita (Table 6, M1) 

point to an inversely N-shaped EKC for the nexus between NOx emission and economic growth 

(Figure 2), which is consistent with the findings in prior China’s CO2 and SO2 EKC studies 

[19,20,26]. Moreover, two turning points of the inverse N-shaped trajectory are approximately 2551 

Renminbi (RMB) and 102,775 RMB, respectively (these two turning points are estimated on the basis 

of the polynomial equation 3 2log 0.052(log ) 1.512(log ) 14.122logxNO GDP GDP GDP    ). Based on our sample, 

most of the economically developing provinces/cities (e.g., Guangxi, Xinjiang, and Qinghai 

provinces) are in the upward phase after the first turning point. There exists a general uptrend in 

nitrogen oxides emissions in such areas, and the personal incomes in the areas are between these 

two turning points. On the contrary, several developed cities with GDP per capita over 102,775 

RMB (Beijing, Tianjin, and Shanghai) are experiencing a persisting decline in nitrogen oxides 

emissions. None of the observed per capita GDP is below 2551 RMB. The lowest one is 8237 RMB, 

in Guizhou province in 2010. 

We will now turn to the Urbanization–nitrogen oxides model results. Similar to the GDP-

nitrogen oxides model outcomes, all the polynomial terms of the urbanization’s coefficient (Table 5, 

M1) and direct effects (Table 7, M1) are statistically significant. Besides, the greater adjusted R2 and 

log likelihood (Table 5, M1) of the cubic model suggest that this model has the best explanatory 

power. Other than that, the energy intensity estimates remain positive, significant, and almost 

unchanged (0.240 and 0.355). Statistically, the population’s direct and spillover effects on emission 

are still not different from zero. Thus, the cubic Urbanization–nitrogen oxides model results are 

consistent with the cubic GDP–nitrogen oxides model results. 

Because of the significant linear and polynomial terms of urbanization (Table 7, M1), we infer 

that there exists an inversely N-shaped EKC for the Urbanization–nitrogen oxides nexus (Figure 2), 

which is somewhat different from a prior study of China’s urbanization and industrial pollution 

[38]. This is probably because this prior study did not apply the EKC model as the theoretical 

foundation for its empirical analysis and applied different pollution indicators. Two turning points 

of the inverse N-shape trajectory are approximately 34.56% and 56.67%, respectively (these two 

turning points are estimated on the basis of the polynomial equation 

3 2ln 1.956(log ) 22.240(log ) 83.932logxNO URB URB URB    ). In our sample, the urbanization levels of Beijing, 

Tianjin, Shanghai, and Guangdong and Jiangsu provinces are already over 56.67% at the beginning, 

and their local nitrogen oxides emissions indeed experienced downward trends as urbanization 

proceeded in the whole study period. Conversely, emissions in the rest of the provinces in the 

sample firstly experienced upward trends and then declined after approximately reaching 56.67%. 

Unlike the population term, the autoregressive parameters of W log NOx in the SDM (Tables 4 

and 5) are positive and statistically significant at the 1% level, which further testifies and 

demonstrates the spillover effects of nitrogen oxides emissions among the neighboring provinces. 

Specifically, a 1% increase and decrease of local nitrogen oxides emissions would lead to about a 

0.3% corresponding variation in neighboring provinces and vice versa. 
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Figure 2. The partial fit of the GDP–NOx, Urbanization–NOx emissions nexuses (logarithm 

transformed). Note: These two graphs aim to reveal the GDP–NOx and Urbanization–NOx relations, 

but not to predict NOx emissions levels. Thus, the values on Y-axis are omitted. The turning points 

(marked with red dots) in the GDP–NOx nexus are 7.8443 (2551 RMB) and 11.5403 (102,775 RMB), 

whereas in the Urbanization–NOx nexus they are 3.5428 (35%) and 4.0373 (57%). 
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4.3. Discussion 

The empirical findings in this research provide firm evidence of the spatial dependence of 

nitrogen oxides emissions and spillover effects of energy intensity at a provincial and municipal 

level in China. The highly significant global Moran’s I suggests HH and LL spatial clustering 

patterns of nitrogen oxides emissions. Overall, the eastern coastal and economically developed 

areas with higher levels of urbanization suffer more from nitrogen oxides emissions than the less 

developed regions with sparse population in urban areas. With the introduction of the spatial 

econometric analysis, this study empirically validates the economic development, urbanization 

progress, and energy intensity as the driving forces of nitrogen oxides emissions in China. 

We tentatively put forward that the nitrogen oxides emissions spillover effects occur because 

of the imitation of neighbors’ economic and environmental policies. Some literature pointed out 

that such spatial patterns might originate from the government’s economically guided 

manipulation of environmental standards for attracting investment or for trade demand [39,40]. 

Thus, the implementation of environmental policies can be influenced by changes in neighboring 

countries and vice versa. Specifically, governors, officials, and bureaucrats might keep assessing 

their own policies by keeping an eye on the neighboring countries to simplify decision-making and 

shrink its costs. In this way, they can also legitimize their decisions, especially in the case that their 

policies might bring uncertain outcomes. As a result, the imitation of environmental policies by 

neighboring countries possibly leads to similar environmental standards and protection measures. 

In all these cases, externalities can transmit over the boundaries of countries/cities and contribute to 

the spatial effects on economic–environmental issues. The spillover in environmental policies 

among adjacent regions finds evidence also in the sociological literature [41,42]. 

In China, the central government assigns the national achievements of annual economic 

growth and pollution abatement at the provincial and county levels. The evaluation of such 

achievements is processed in each province and county. It is reasonable that competition arises 

among provinces for political performance in terms of economic development and emission 

abatement. If a local government implements rigorous controls on air pollution, the adjacent 

provinces may follow and implement similar ways to reduce emissions. On the contrary, if a local 

area still has a series of loose regulations on environmental protection and take the economic 

growth as its primary goal regardless of the air pollution, its neighbors would probably implement 

a similar strategy to catch up in terms of economic development. In this way, one can interpret the 

spillover effects as “demonstration effects”[36]. 

The GDP–nitrogen oxides model with the inclusion of the cubic term of GDP per capita has the 

best fit. In addition, the cubic-specified Urbanization–nitrogen oxides model is considered as the 

proper model. Based on these results, the enlightening and worthwhile finding of this study is that 

there exists an inversely N-shaped EKCs for both the GDP–nitrogen oxides nexus and the 

Urbanization–nitrogen oxides nexus. The former conclusion (inversely N-shaped EKC) is 

inconsistent with findings on nitrogen oxides emissions of a similar prior study. Brajer, Mead, and 

Xiao [12] asserted that there existed an inversely U-shaped EKC rather than an inversely N-shaped 

one for the nexus nitrogen oxides emissions–GDP per capita in China. We find two major reasons 

for the inconsistency: (a) our study applied the STIRPAT theory and control for the energy-related 

factors that significantly contribute to NOx emission, while Brajer, Mead, and Xiao [12] did not; (b) 

we put forward the application of spatial panel data approaches to explore the relationship between 

nitrogen oxides emissions and economic development for the first time, whereas Brajer, Mead, and 

Xiao [12] did not control for the potential spatial autocorrelation among regional emissions even 

though their samples were also obtained from administrative areas that are usually spatially 

correlated. The combustion of fossil fuels from heating, power generation processes, and motor 

vehicles’ internal combustion engines is mainly responsible for the ambient NOx emission. The 

introduction of the energy consumption term into the regression model is necessary and provides 

results that are more reasonable. This might explain the low fit (R2) in Brajer, Mead, and Xiao [12]. 

Moreover, Anselin and Rey [43] argued that this kind of spillover effect is essential, and incorrect 

omission would invalidate the inferences from a study, although it is difficult to practically 
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designate the exact causes for spatial autocorrelation in the data examined. The existence of spatial 

relationships, after all, offers a potential explanation of instability in the parameters of the EKC. One 

of the speculations is that the behavior of neighboring countries would influence a country’s own 

action, which causes the spatial spillovers. Failure to control for spatially lagged variables may 

result in biased parameters of the EKC [22]. 

Our results are also similar to some recent findings on air pollution–economic 

growth/urbanization nexuses. After studying carbon emission and urbanization in 88 developing 

countries, Martínez-Zarzoso and Maruotti [29] found empirical evidence supporting the CO2 

emission–urbanization EKC hypothesis. CO2 emission–urbanization EKC was also confirmed in 

Wang, Zhang, Kubota, Zhu, and Lu’s [25] study of The Organization for Economic Co-operation 

and Development (OECD) countries. In a dynamic spatial econometric panel analysis of carbon 

dioxide intensity, Zheng, Yu, Wang, and Deng [20] found evidence supporting the inversely N-

shaped CO2 emission–income EKC hypothesis in China. Other than that, the CO2 emission–income 

EKC was also demonstrated to be inversely N-shaped in Kang, Zhao, and Yang’s [26] research on 

the relationship between CO2 emission and GDP per capita, as well as other potential driving forces 

in China. Wang et al. [44] and Zhou, Ye, and Ge [19] established inversely U- and inversely N-

shaped EKCs, respectively, for the SO2 emission–GDP relation at China’s provincial level. On the 

other hand, the insignificant population impacts on pollutant emission suggested by our empirical 

results is inconsistent with the conclusions of these prior studies. This is probably because the CO2 

emission is a comprehensive pollution indicator and it is broadly related to socioeconomic 

activities. Therefore, CO2 emission can reflect the direct influence of human factors. Different from 

CO2 emission, anthropogenic NOx emissions mainly originate from the high-temperature 

combustion process of fossil fuels in industrial and automotive internal combustion engines, which 

can hardly be directly inferred from the total population size. This is because a province/region can 

have a large population but a very low individual vehicle occupancy volume. In this case, people 

are more dependent on public transport, which can improve energy efficiency in the transport 

sectors. Furthermore, if the public transport in such a city/region widely adopts environmental-

friendly energy, the emissions level could decline. In short, a larger population generally means 

increased demand of transportation, but there is no absolute connection between NOx emissions 

and total population. The energy efficiency and structure in the transport sectors are also key 

factors determining NOx emissions levels. 

What is the substantial mechanism behind the phase after the second turning point of the 

inverse N-shaped EKC in this analysis? There are several facts contributing to the impact on 

nitrogen oxides emissions related of economic development and urban sprawl. In an early stage, 

the economy developed speedily with a considerable consumption of energy, which caused a large 

air pollutants emission. As the social wealth accumulated to a certain point, pollution issues arouse 

wide media attention and broad concerns in the public. In order to deal with these pressures and 

reduce pollutants emission, the Chinese government has increased investments to decrease end-of-

pipe emissions and tail gas pollution, and has promoted the use of alternative energy sources to 

fuels since the 11th Five-Year (2006–2010) Plan [45]. In the 12th Five-Year (2011–2015) plan, it was 

proposed that, in 2015, the total amount of NOx emissions in the whole country should not have 

exceeded 20.462 million tons, which is 10% lower than the 22.736 million tons of 2010. To achieve 

this, the government has taken measures and launched a series of projects, such as the elimination 

of vehicles which did not reach the exhaust pollution control standard for motor vehicles, vehicle 

fuel replacement, low NOx combustion retrofits in electric power and cement industries, etc. On the 

basis of the REN21 [46] report, China has a large amount of new energy sources, such as wind 

power, biofuels, solar power, and hydropower. As for the EKC of the urbanization effects, an early 

rapid urban sprawl leads to large amounts of building material consumption to upgrade and 

construct new infrastructures (e.g., drainage systems, road networks) which increase the energy use 

and the pollutant emissions in local areas. In addition, new immigrants to urban areas give rise to 

increasing demands for electricity, and China heavily relies on thermal power generation, which 

drives the rise of nitrogen oxides emissions. Once the urbanization level reaches a certain threshold, 
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the higher population density in urban areas enables more efficient utilization of the public 

infrastructures, such as public transport, which may lower the energy consumption and 

consequently mitigate emission issues [47,48]. A relatively higher urbanization also comes with 

environmental improvements by economies of scale in terms of sanitation services and 

environmental protection [49]. Therefore, the “up-and-down” phase of the inverted N-shaped curve 

nexus of nitrogen oxides emissions and economic growth/urbanization is consistent with the EKC 

hypothesis. We need to remind the reader that, constrained by the sample interval, the mechanism 

of the first downward phase in the inverse N-shaped curve remains unclear. 

5. Conclusions 

This study, for the first time, examines the quantitative relationship between 

income/urbanization and nitrogen oxides emissions for China within the EKC hypothesis and the 

STIRPAT framework through a spatial panel data regression estimation. In comparison with 

conventional econometric approaches, spatial econometric techniques were never used before in the 

exploration of the nexus between nitrogen oxides emissions and income/urbanization. The 

parameters estimated by the spatial panel data model are more reliable than those obtained using 

conventional panel models because of the introduction of nitrogen oxides emissions’ spatial 

dependence on the characteristics of nearby provinces. Our results provide evidence suggesting 

that the relationships between income/urbanization and nitrogen oxides emissions shape inverse N 

curves that are different from the classical inverted U-shaped EKC curves at the current stage. 

According to the findings of this analysis, the following policy suggestions are brought up for 

further mitigation of China’s nitrogen oxides emissions. In general, most provinces are in the 

second upward phase, while the rest few well-developed provinces are in the third downward 

phase in the inversely N-shaped trajectory. In other words, the rapid economic growth and urban 

sprawl with great nitrogen oxides emissions will not last for a long time in China, since the personal 

income in most provinces is either approaching or has already passed the second turning poins of 

per capita GDP and urbanization (102,775 RMB, 56.67%). Even though the society’s affluence 

accumulation could enable the government to invest more on pollution control and on the 

development of new types of energy to reduce pollutants emission, it is not wise to wait until the 

turning point is reached in the less developed provinces, because the environmental system cannot 

withhold pollution influences if pollution accumulation exceeds the threshold of total nitrogen 

oxides. Therefore, it is imperative for both the central and the local governments to implement 

policies and measures to limit the amount of local nitrogen oxides emissions instead of favoring the 

EKC hypothesis, so that economic development and urbanization will eventually benefit the 

environment. In addition, to deal with the adverse effects of the current rapid and continuous 

urban expansion, local governments should take steps to decelerate the sprawl of cities, encourage 

residents to take green commutes (e.g., promote the use of bicycles for short journeys), and invest 

more in technologies and facilities to treat air pollutants emission and improve energy consumption 

efficiency. 

The significant spatial spillover effects of nitrogen oxides emissions suggest that policymakers, 

especially local governments, should not only focus on the local emission level but also consider the 

influence of the neighboring provinces. Meanwhile, China’s central government should make 

nationwide plans on emissions mitigation and define targeted nitrogen reduction goals for 

prefecture administrators, according to the different characteristics of each province. If necessary, 

the local governments should break administrative boundaries and associate for the enhancement 

of nitrogen oxides abatement and economic growth at the same time. 

Although our findings in this study are illuminating, we tend to have a cautious attitude 

toward them because there are still some limitations related to them. First, given the fact that we 

applied a relatively short panel of the sample in the analysis, the time span of the data is limited 

and does not cover the first turning point of the inversely N-shaped KEC. In this regard, further 

research with longer panel data can enhance the knowledge of the fluctuation at the beginning of 

the inversely N-shaped curve. Second, in developed countries (e.g., Europe, North America, Japan), 
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the average level of urbanization already reached 77.7% in 2011 [50]. This figure in China is just 

over 52%. Further studies, including data of the recent years, could provide more evidence for the 

relation between urbanization and emissions. Third, this research used the NOx emissions as the 

pollutant index and made some conclusions on the relationship between development and NOx 

emissions. However, these conclusions are not directly applicable to the relationship between 

development and NOx concentration. This is another issue worth studying, because the 

concentration index is closely related to people’s health (morbidity and mortality) in daily life. 
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