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Abstract: Assessing heavy metal pollution and delineating pollution are the bases for evaluating
pollution and determining a cost-effective remediation plan. Most existing studies are based on the
spatial distribution of pollutants but ignore related uncertainty. In this study, eight heavy-metal
concentrations (Cr, Pb, Cd, Hg, Zn, Cu, Ni, and Zn) were collected at 1040 sampling sites in a coastal
industrial city in the Yangtze River Delta, China. The single pollution index (PI) and Nemerow
integrated pollution index (NIPI) were calculated for every surface sample (0–20 cm) to assess the
degree of heavy metal pollution. Ordinary kriging (OK) was used to map the spatial distribution of
heavy metals content and NIPI. Then, we delineated composite heavy metal contamination based
on the uncertainty produced by indicator kriging (IK). The results showed that mean values of all
PIs and NIPIs were at safe levels. Heavy metals were most accumulated in the central portion of the
study area. Based on IK, the spatial probability of composite heavy metal pollution was computed.
The probability of composite contamination in the central core urban area was highest. A probability
of 0.6 was found as the optimum probability threshold to delineate polluted areas from unpolluted
areas for integrative heavy metal contamination. Results of pollution delineation based on uncertainty
showed the proportion of false negative error areas was 6.34%, while the proportion of false positive
error areas was 0.86%. The accuracy of the classification was 92.80%. This indicated the method we
developed is a valuable tool for delineating heavy metal pollution.

Keywords: soil heavy metal pollution; indicator kriging (IK); Nemerow integrated pollution index
(NIPI); uncertainty; pollution area definition

1. Introduction

Anthropogenic activities, such as urbanization processes, not only change the inherent properties
of affected soils, such as their pH, texture, cation exchange capacity, and bulk density, but also
inadvertently cause harmful substances, such as heavy metals, to deposit into the soils [1–3]. Heavy
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metals are natural components of the earth’s crust, and natural concentrations of heavy metals in soils
tend to remain low. However, anthropogenic inputs of several heavy metals into soils greatly exceed
natural inputs from pedogenesis [4]. This problem is more prominent in cities, since cities have a high
density of anthropogenic activities and populations. Therefore, citizens in cities face greater health
threats from heavy metal soil pollution. In China, the Cr, Pb, Cd, Hg, As, Cu, Zn, and Ni concentrations
of soils have frequently been found to exceed the national standard value [5–7]. It has been revealed
that 16.1% of soil has been polluted by heavy metals according to a national survey of soil pollution
released in 2014 by the Ministry of Land and Resources and the Ministry of Environmental Protection
of the People’s Republic of China [8]. Heavy metal pollution in soil attracts great attention, since it can
have a substantially harmful effect on human health by the ways of consumption of infected animals,
and the chronic low-level intake of soil metals through ingestion or inhalation [9,10].

Recently, soils have been widely used as a diagnostic tool to determine environmental conditions
that influence health [11,12]. However, there is a need for better information on heavy metal
contamination in urban soils [13–17]). Accurately delineating pollution is the aim of pollution studies,
and is vital to determining cost-effective remediation plans [18]. In addition, most of the existing related
studies are based on the spatial distribution of pollutants [19–27], which is usually determined through
a number of geostatistical interpolation techniques (generally termed kriging) [28], such as simple
kriging (SK) [29], ordinary kriging (OK) [30], cokriging [31], and universal kriging [32]. However,
due to frequent, very strong positive skewness of pollution data, the use of these methods is not always
optimal and results in uncertainty in the estimations. As a simple but useful method, indicator kriging
(IK) has been widely used to map the probabilities of estimates that exceed given threshold values,
such as standard values of heavy metal contamination in soil [33–35]. To estimate the probability
that the heavy metal concentrations exceed the critical threshold, we need the entire probability
distributions of heavy metal contents at points. We may assume that the estimation errors follow
normal distributions, but this is unrealistic in many situations. Other solutions are to use disjunctive
kriging [36] or indicator kriging [37]. Since indicator kriging can accommodate measurements less
than the detection limit [38], in this study, a method based on an uncertainty analysis, which was
produced by IK, was employed to delineate composite heavy metal pollution contamination.

The aims of this study were to (1) assess the pollution status of the concentrations of eight heavy
metals (Cr, Pb, Cd, Hg, As, Cu, Zn and Ni) in surface soils; (2) investigate the spatial distribution of
heavy metals in the surface soils in study area; and (3) explore spatial distribution of uncertainty of
composite heavy metals pollution and then delineate pollution sites based on this.

2. Methods and Materials

2.1. Description of the Case Study Area

The studied area (28◦51′–30◦33′ N, 120◦55′–122◦16′ E) is located in the Yangtze River Delta (YRD),
which is the most developed economic district in China. It covers an area of 9816 km2 and has a
population of 7.81 million. It is an important and typical coastal industrial city and is one of 14 cities that
implemented the reform and opening policy early in 1984. After that, this area has been undergoing
rapid and intense industrialization and urbanization over the past three decades. Nowadays, it is
well-known for its industries; chemical, textile and garment, petrochemical engineering, and machinery,
and has become an important chemical industrial base in China.

2.2. Sampling, Processing, and Analysis

Sampling was done in the study area based on 2 × 2 km2 grids. In total, 1040 top soil samples
(0–20 cm) were collected. A stainless steel hand auger was used. Each soil sample was collected
at an intersection point and mixed; five subsamples were collected from five locations within 5 m.
A differential global positioning system (GPS) was used to record spatial position of sampling locations
(Figure 1). The details of soil and plant sample analysis have been described in previous study [10].
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Figure 1. Map of the study area.

2.3. Assessment of Heavy Metal Pollution in Soils

The degree of soil heavy metal pollution was assessed according to related national
regulations [39], and a pollution index was used to assess the quality of soil and to estimate the
impact of anthropogenic activities [40]. The details are as follows: first, soil pH values were categorized
into three classes, <6.5, 6.5 ≤ pH ≤ 7.5, and >7.5; second, the pollution threshold for each soil heavy
metal was determined by land use (e.g., paddy fields) and pH class; third, the pollution index (PI) for
each heavy metal was determined (Equation (1)); and finally, the Nemerow integrated pollution index
(NIPI) was calculated (Equation (2)) [41–44].

PI = Ci/Si (1)

where Ci is the concentration of the soil heavy metal i and Si is the pollution threshold of i heavy metal
i in soil.

NIPI = ((Pimax)
2 + (PI)2

)1/2 (2)

where Pimax is the maximum PI value of each heavy metal and P is the mean PI of each heavy metal.
NIPI is a comprehensive index which was used to classify the soils in terms of heavy metal pollution.

PI is divided into four levels from no to high pollution, to indicate the pollution degree and
classified as follows: unpolluted (PI≤ 1), slightly polluted (1 < PI≤ 2), moderately polluted (2 < PI≤ 3),
and highly polluted (PI > 3). However, the classification of NIPI is slightly different from the PI levels,
and can be graded as safe (NIPI ≤ 0.7), precaution (0.7 < NIPI ≤ 1.0), slight pollution (1.0 < NIPI ≤ 2.0),
moderate pollution (2.0< NIPI ≤ 3.0), and heavy pollution (NIPI > 3.0)

2.4. Spatial Distribution of Heavy Metals in Soil

Spatial variability in the concentrations of heavy metals was determined using geostatistical
methods. Experimental semivariograms were developed to reveal the spatial dependence of soil
properties, using the following equation [45]:

γ∗(h) =
1

2N(h)

N(h)

∑
i=1

[Z(xi)− Z(xi + h)]2 (3)

where γ∗(h) is the semivariance, N(h) is the number of experimental pairs separated by distance
h, Z(xi) is the measured sample value at point I, and Z(xi + h) is the measured sample value at
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point i + h. From the analysis of the experimental variogram, a suitable model is typically fit using
weighted least squares and parameters such as range, nugget, and sill prior to the kriging procedure.
All geostatistical analyses were carried out using ArcGIS 10.2 (ESRI, ArcGIS 10.2, Redlands, CA, USA).
Maps of the spatial distribution of heavy metal concentrations in the study area were generated using
ordinary kriging (OK) interpolation of the data in the surface and subsurface soils.

2.5. Delineating Soil Heavy Metal Pollution Based on Uncertainty Analysis

The sample was divided as calibration subset and validation subset with a ratio of 2:1 with a
calibration subset of 693 samples and a validation subset of 347 samples. OK and IK was employed on
calibration subset to get the spatial distribution of NIPI and spatial map of probability of NIPI > 1. IK
is a kriging analysis performed on a binary-transformed sample population. This analysis considers
the problem of estimating the probability that the concentration of a pollutant Z exceeds a critical
threshold Zc at an unsampled point u. This approach that was first proposed by Journel (1983) [46]
can be used if the spatial correlation of a highly variant parameter is difficult to describe with the raw
data. Defining indicators for variables would lead to the following transformation [45]:

I(x; z) =

{
1 Z(x) ≥ z

0 Z(x) < z
(4)

After transforming the observed data to a new set of indicator variables, the experimental
semivariogram is calculated for every set of indicators at each cutoff Zk as

γ∗1(h) =
1

2N(h)

N(h)

∑
i=1

[I(xi; Zk)− I(xi + h; Zk)]
2 (5)

where γ∗1(h) is the indicator experimental semivariogram and N(h) is the number of pairs of indicator
transformations I(χi; Zk) and I(χi + h; Zk) separated by distance vector h.

The conditional cumulative distribution function (ccdf) at each unsampled location, e.g., χ0, is then
obtained by the indicator kriging estimator:

F(χ0; Zk|(n)) = I∗(χ0; Zk) =
n

∑
i=1

λi I(χi; Zk) (6)

where I∗(χ0; Zk) is the estimated indicator transformation at the unsampled location χ0 and λi is the
weight assigned to the indicator transformation I at location xi.

The main steps of delineating heavy metal soil pollution in this study are as follows:

(1) IK was employed on calibration subset to evaluate the spatial distribution of the probability
of NIPI > 1.0, which is the probability of composite heavy metal pollution in the study region.
The higher the pollution probability is, the less the uncertainty is. Therefore, we have a sufficient
basis to delineate the area with a high pollution probability as the contaminated zone.

(2) To obtain the optimal probability for delineating pollution, misclassifications of samples in
validation subset as contaminated or clean with different pollution probabilities were plotted.
The probability that had the highest accuracy was selected as the optimal threshold probability,
meaning that a location with a pollution probability larger than this threshold was regarded as
contaminated land; otherwise, the site was classified as clean land.

(3) The pollution area was delineated according to the optimal pollution probability.
(4) Misclassification rates of delineating pollution based on composited heavy metal pollution

uncertainty based on IK and spatial distribution of NIPI through OK were calculated
and compared using a validation subset. Misclassification includes false positive errors,
which classifies uncontaminated samples as contaminated sites, resulting in unnecessary
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expenditure on site remediation, and false negative errors, which classify polluted sites as
unpolluted sites, leading to a potential decline in human health.

2.6. Data Analysis

Microsoft Excel 2010 (Office 2010, Redmond, WA, USA) was deployed to make statistical analyses,
and ArcGIS10.2 software (ESRI, ArcGIS 10.2, Redlands, CA, USA) and GS 9.0+ (Gamma Design
Software, GS + 9.0, LLC Plainwell, MI, USA) were used to map the sampling sites and perform
geostatistical analyses.

3. Results and Discussion

3.1. Exploratory Data Analysis

The mean contents of As, Cd, Cr, Hg, Ni, Pb, and Zn were 6.55, 0.19, 61.84, 33.87, 0.27, 23.85,
39.86, and 99.60 mg/kg, respectively. The mean concentrations of all heavy metals in the samples were
less than the mean concentrations in the national secondary standard (CEPA, 1995) [47]. However,
the highest levels of Cd, Cu, Hg, Ni, Cu, and Zn were higher than the concentrations in the national
secondary standard. The coefficients of variation for heavy metal concentrations decreased in the
following order: Cd > Hg > Cu > Pb > Ni > Zn > Cr > As. Among them, As, Cr, Ni, Pb, Cu and
Zn exhibited moderate variability, with coefficients of variation of 34.61%, 38.68%, 46.61%, 47.59%,
92.99% and 40.77%, respectively, and Cd and Hg exhibited the greatest variability, with coefficients of
variation of 195.13% and 121.82% (as shown in Table 1).

Table 1. Descriptive statistics of heavy metal concentrations in the research area (mg/kg).

Items As Cd Cr Cu Hg Ni Pb Zn

Sample numbers 1040 1040 1040 1040 1040 1040 1040 1040
Mean 6.55 0.19 61.84 33.87 0.27 23.85 39.86 99.60

Std 2.27 0.37 23.92 31.50 0.33 11.12 18.97 40.60
Min 1.80 0.01 6.50 1.00 0.02 4.00 16.00 31.50
Max 29.10 11.76 262.70 685.40 3.42 131.99 313.00 749.90

CV (%) 34.61 195.13 38.68 92.99 121.82 46.61 47.59 40.77
Background value [48] 5.75 0.161 56.1 23.1 0.076 20.7 36.2 86.6

Data distribution Log ND † Log ND Log ND Log ND Log ND Log ND Log ND Log ND
† ND is the abbreviation of normal distribution.

3.2. Heavy Metal Pollution Assessment

The mean PIs of studied heavy metals Cr, Pb, Hg, Cd, AS, Cu, Zn and Ni in soil were 0.24, 0.13,
0.54, 0.31, 0.24, 0.33, 0.40 and 0.48, respectively (Table 2). The mean PI of all the heavy metals in the
samples was less than 1, which indicated the content of the heavy metals in soil in study are were at
safe levels. However, it is important to note that the maximum PIs for Cr and Pb signified that these
metals were at low pollution levels; based on the maximum PI for Ni and Zn, these metals were at
mild pollution levels; the maximum PI of Hg, Cu, and Cd indicated that they were at a severe level
of pollution.

The mean value of the NIPI was 0.59, which was a safe level. However, the maximum NIPI was
14.02, and this level indicates a severe level of pollution. Overall, the soil contamination in the study
area was at levels considered safe.
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Table 2. Descriptive statistics of the single heavy metal pollution index (PI) of heavy metals in the
study area.

Items Cr Pb Hg Cd As Cu Zn Ni

Sample numbers 1040 1040 1040 1040 1040 1040 1040 1040
Mean value 0.24 0.13 0.54 0.31 0.24 0.33 0.40 0.48

Std 0.10 0.06 0.66 0.62 0.08 0.31 0.16 0.22
Min 0.03 0.05 0.03 0.02 0.06 0.01 0.13 0.08
Max 1.31 1.04 6.84 19.60 0.97 6.85 3.00 2.64

CV (%) 41.58 47.67 121.86 195.24 34.63 92.91 40.73 46.62

3.3. Spatial Distribution of Soil Heavy Metals

The semivariograms for the four heavy metals are listed in Table 3. The semivariogram of Cr,
Hg, As, Cu, and Ni were well fitted with the spherical model, while the semivariogram of Pb, Cd,
and Zn were well fitted with the exponential model. The nugget/sill ratio can be used to classify the
spatial dependence of heavy metals. If the ratio is less than 25%, then the variable has strong spatial
dependence. When the ratio is between 25% and 75%, the variable has moderate spatial dependence,
while the variable shows weak spatial dependence when the ratio is greater than 75% [49].

Table 3. Parameters of the semivariogram models of different heavy metals.

Elements Model Types C0 C A0 (m) R2 RSS C0/(C) Data Distribution

Cr Spherical 0.007 0.040 31,100 0.973 3.69 × 10−5 17.7% Log ND †

Pb Exponential 0.009 0.003 54,500 0.978 8.24 × 10−6 26.0% Log ND †

Cd Exponential 0.014 0.028 11,700 0.703 6.06 × 10−5 49.8% Log ND †

Hg Spherical 0.032 0.187 38,200 0.966 1.24 × 10−3 17.1% Log ND †

As Spherical 0.011 0.023 42,400 0.987 2.69 × 10−6 46.7% Log ND †

Cu Spherical 0.024 0.084 17,000 0.904 2.82 × 10−4 28.9% Log ND †

Zn Exponential 0.007 0.020 38,100 0.978 3.03 × 10−6 36.0% Log ND †

Ni Spherical 0.005 0.050 26,300 0.900 2.43 × 10−4 10.6% Log ND †

† ND is the abbreviation of normal distribution.

The nugget/sill ratios ranged from 26.0% to 49.8% for Pb, Cu, Zn, As and Cd, which indicates that
these metals all had moderate spatial dependence. This result indicated that the spatial variation of Pb,
Cu, Zn, As, and Cd were affected by both structural and random factors. The nugget/sill ratios for
Ni, Cr, and Hg ranged from 10.6% to 17.7%, which indicates that these metals all have strong spatial
dependence. This result revealed that the spatial variation of Ni, Cr, and Hg are mainly controlled by
structural factors.

The highest Cr concentration in the surface soil was in the central portion of the study area. In the
southern part of the study area, the Cr content was very low. The Pb content was high in the central
and southern portions of the study area and low in the other areas. The Cd value was high in the
mid-western and southeastern parts of the study area, while the value was low mainly in the northern
portion of the study area. The concentration of Hg in the central part of the study area was higher
than in any other places in the study area. The As and Ni concentrations were low in the southern
and central portions of the study area and high in other parts of the study area. The concentrations
of Cu and Zn were high in the central region and low in other areas (Figure 2). The central region
was the core urban area of the study area. In addition, many anthropogenic sources of metals such as
industrial and business production activities, vehicle exhaust and aerial deposition are clustered in the
urban area and contribute to the enrichment of heavy metals in the soil.
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Figure 2. Spatial distribution of heavy metal concentrations.
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3.4. Delineating Heavy Metal Soil Pollution Based on Uncertainty Analysis

The spatial distribution of the probability composited heavy metal pollution in the study area is
shown in Figure 3.

Figure 3. Spatial distribution of the probability of Nemerow integrated pollution index (NIPI) > 1.0.

As shown in Figure 3, the central portion of the study area had the highest probability of composite
heavy metal pollution. The probability of composite heavy metal contamination in the soil in this
region was greater than 80%. This result indicated that there was little uncertainty around delineating
this area as a contaminated area.

The spatial distribution of NIPI in study area was shown in Figure 4 which was got by OK. The red
areas represent areas with NIPIs larger than 1.0, and are regarded as polluted areas. The green areas
represent areas with NIPIs less than 1.0, and are regarded as unpolluted areas. As revealed by Figure 4,
the polluted areas are mainly located in the central region of the study area, and almost overlapped
with an area with high probability of being an integrative polluted area, shown in Figure 3. It indicated
the central region of study area was polluted by heavy metals. Since this region was the core urban
area, anthropogenic activities made main contribution to heavy metals pollution in these areas.

Figure 4. Delineation of composite heavy metal pollution according to the spatial distribution of
Nemerow integrated pollution index (NIPI).
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The threshold probability that was used to define polluted and unpolluted areas is critical for
delineating contamination. To obtain the optimal probability for delineating pollution, a plot of the
percentage of locations misclassified versus the probability threshold was generated (as shown in
Figure 5). When the threshold probability is close to 1.00, the misclassification rate will be close to the
proportion of integrative polluted samples with NIPI larger than 1.0, and more and more potential
polluted samples would be classified as unpolluted samples. Therefore, when threshold probability
increased from 0.95 to 1.00, the misclassification rate was sharply increased from 8.36% to 23.34%,
and vice versa. The probability value at which a misclassification was minimal was 0.60. In addition,
the misclassification rate was 7.20%. This threshold was finally chosen to classify areas as polluted
and unpolluted lands as shown in Figure 6. According to the threshold level, polluted areas are
mainly distributed in the central part of study area, which is consisted with the result revealed by
Figures 3 and 4.

Figure 5. Misclassification rate vs the probability thresholds of composite heavy metal pollution risk.

Figure 6. Delineation of composite heavy metal pollution according to pollution probability.
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Then, the result of pollution scope delineation based on probability threshold was used to assess
the validation subset. After that, the assessment based on probability threshold delineation was
compared with the assessment based on NIPI to define the accuracy of pollution scope delineation.
A false positive error occurs when unpolluted samples are classified as polluted, and a false negative
error occurs when polluted samples are classified as unpolluted.

As represented by Figure 6, false positive errors occurred rarely, and are mainly located on
polluted regions. These samples are mainly located at the contaminated area or the boundary between
the contaminated area and the uncontaminated area. When using IK to obtain spatial pollution
probabilities, the probabilities are affected by the surrounding polluted samples, and contamination
probabilities in these areas will be higher than their actual values. However, false negative errors
mainly occurred in isolation in many areas of the study area. This result mainly occurred because
the NIPIs in these locations were high compared with surrounding locations, and when using IK to
obtain spatial pollution probabilities that are affected by surrounding unpolluted areas, contamination
probabilities in these areas will be lower than their actual values. These locations were also easily
ignored, and thus, the threats to the health of citizens were also ignored. So, enough attention is
needed to focus on these locations to provide potential and hidden health caused by soil heavy metals
pollution in these locations.

The misclassification rate of contamination delineation method is based on spatial distribution of
NIPI (Figure 4), and the contamination delineation method based on uncertainty probability (Figure 6)
were calculated and compared, as represented in Table 4. When pollution is defined based on the
spatial pollution of NIPI (as shown in Figure 4), the validation samples with false negative errors
totaled 17, which is 4.90% of the total study area. In addition, samples with false positive errors totaled
17, which accounted for 4.90% of the total study area. Overall, the accuracy of classification was
90.20%.

Table 4. Statistics of the delineated area (total validation sample number = 347).

Items

Classification Based on Uncertainty
Probability of NIPI > 1

Classification Based on Spatial
Distribution of NIPI

Sample Number Proportion Sample Number Proportion

False positive errors 3 0.86% 17 4.90%
False negative errors 22 6.34% 17 4.90%

Correct 322 92.80% 313 90.20%

When delineate pollution based on uncertainty of heavy metals pollution as shown in Figure 6,
the validation samples with false negative errors totaled 22, which is 6.34% of the total study area.
In addition, samples with false positive errors totaled 3, which accounted for 0.86% of the total study
area. Overall, the accuracy of classification was 92.8%. This result indicated that this method can
delineate pollution with very high accuracy, and the accuracy is higher than the pollution delineation
method based on spatial distribution of NIPI obtained by OK. In addition, this method was also very
easy to implement.

4. Conclusions

Surface soil contamination by eight studied heavy metals was evaluated using PI and NIPI with
a set of 1040 soil samples in a coastal industrial city in the YRD of China. The spatial distribution of
heavy metals was assessed by OK. In addition, IK was used to investigate the spatial uncertainty of
the probability of pollution and to delineate soil heavy metal contamination. The results showed that
the mean concentrations of all the heavy metals in the samples were less than the mean concentrations
in the national secondary standard. The mean PI of Cr, Pb, Hg, Cd, AS, Cu, Zn and Ni were 0.24, 0.13,
0.54, 0.31, 0.24, 0.33, 0.40 and 0.48, respectively, all of which were at safe levels. The mean value of the
NIPI was 0.59, which was also at a safe level.
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The central region was the core urban area in the study area. Heavy metals were most accumulated
in this area. This region also had large probabilities of composite heavy metal pollution, with pollution
probabilities even higher than 0.8. A concern is that this region also has the highest population density.
Thus, measures should be taken to hinder the heavy metal accumulation that occurs there.

After validation with the validation subset samples, 0.60 was selected as the optimal probability to
use to define contamination locations. According to the spatial distribution of uncertainty probability
of composite heavy metals contamination (Figure 3), polluted zones were mainly distributed in the
central part of the study area. The sample proportion of false negative errors was 6.34% compared
with 4.90% calculated from the pollution delineation method based on OK, while the percentage of
samples with false positive errors was 0.86% compared with 4.90% when using pollution delineation
method based on OK. The accuracy of classification was 92.80% compared with 90.2% using pollution
delineation method based on OK, which indicated that this method could delineate pollution regions
with very higher and satisfied accuracy.

However, to more precisely delineate the polluted areas, more attention needs to be paid to the
following issues:

(1) The available content of heavy metals should be used to replace the total concentrations of heavy
metals to get a conclusion which is closer to reality.

(2) Other factors that control metal bioavailability, such as chemical partitioning, which in turn is
affected by soil chemical properties, should also be considered.

(3) In this study, sample density was still sparse, and sampling density needs to be improved to
obtain a higher resolution map.

(4) In this study, the ratio of the sample number of validation subset and calibration subset is 1:2,
and the validation subset was randomly extracted from samples. However, the proportion of
sample number of validation subset and calibration subset and the spatial pattern of validation
subset may have a certain effect on the choice of optimum threshold probability which is used to
define pollution sites.

(5) Contamination in soils cannot be adequate, and thresholds based on local variability should be
used for properly assessing heavy metals contamination, which cannot archived by IK.
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