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Abstract: A constructed rapid infiltration (CRI) system is a new type of sewage biofilm treatment
technology, but due to its anaerobic zone it lacks the carbon sources and the conditions for
nitrate retention, and its nitrogen removal performance is very poor. However, a shortcut
nitrification–denitrification process presents distinctive advantages, as it saves oxygen, requires
less organic matter, and requires less time for denitrification compared to conventional nitrogen
removal methods. Thus, if the shortcut nitrification–denitrification process could be applied to the CRI
system properly, a simpler, more economic, and efficient nitrogen removal method will be obtained.
However, as its reaction process shows that the first and the most important step of achieving
shortcut nitrification–denitrification is to achieve shortcut nitrification, in this study we explored
the feasibility to achieve shortcut nitrification, which produces nitrite as the dominant nitrogen
species in effluent, by the addition of potassium chlorate (KClO3) to the influent. In an experimental
CRI test system, the effects on nitrogen removal, nitrate inhibition, and nitrite accumulation were
studied, and the advantages of achieving a shortcut nitrification–denitrification process were also
analysed. The results showed that shortcut nitrification was successfully achieved and maintained
in a CRI system by adding 5 mM KClO3 to the influent at a constant pH of 8.4. Under these
conditions, the nitrite accumulation percentage was increased, while a lower concentration of 3 mM
KClO3 had no obvious effect. The addition of 5mM KClO3 in influent presumably inhibited the
activity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), but inhibition of
nitrite-oxidizing bacteria (NOB) was so strong that it resulted in a maximum nitrite accumulation
percentage of up to over 80%. As a result, nitrite became the dominant nitrogen product in the
effluent. Moreover, if the shortcut denitrification process will be achieved in the subsequent research,
it could save 60.27 mg CH3OH per litre of sewage in the CRI system compared with the full
denitrification process.

Keywords: shortcut nitrification; constructed rapid infiltration system; potassium chlorate inhibition;
domestic sewage

1. Introduction

Sewage treatment technology for domestic sewage and polluted surface water treatment in small
towns—a constructed rapid infiltration (CRI) system—is a new sewage biofilm treatment technology
put forward by Zhong Zuoshen et al. [1]. It presents both advantages of a sewage rapid infiltration
land treatment system and a constructed wetland system [2]. A CRI system is mainly composed of
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a feeding tank, grill, preliminary sedimentation tank, rapid infiltration tank, and outlet system. A CRI
system adopts the dry-wet (alternate running of feeding and drying in the CRI system) alternating
operation mode and uses natural river sand, coal gangue, natural gravel, etc., to replace natural soil
as the filling medium to improve the hydraulic load to 1.0–1.5 m/day [3]. Pictures of a practical
example of a CRI system are shown in Figure 1. The removal mechanism of the CRI system is
to use the filling medium and microorganisms grown on the filling medium to adsorb, intercept,
and decompose the pollutants in sewage [4]. Especially, since the CRI system has the unique structure
and feeding mode, its filling medium has the aerobic, facultative, and anaerobic environment to
grow abundant microorganism to allow for efficient sewage treatment [5]. As the previous practice
showed, a CRI system has a significant effect on the treatment of domestic sewage in small towns [6],
whose removal rates of CODcr (chemical oxygen demand determined by potassium dichromate
method), NH4

+-N, suspended solid (SS), and linear alkylbenzene sulfonates (LAS) could reach above
85%, 90%, 95%, and 95%, respectively, and has the advantages of being less energy-intensive, more
environmentally-friendly, and has a remarkable economic benefit compared with the conventional
treatment systems [7]. Although a CRI system has a good removal effect of NH4

+-N, due to its
anaerobic zone it lacks the carbon sources for denitrification and the condition for nitrate retention [8],
the concentration of nitrate in effluent is so high that the total nitrogen (TN) removal rate can only
reach upwards of 10–30% [9].

Figure 1. Practical engineering of the Phoniex River constructed rapid infiltration (CRI) system operated
successfully for 12 years in Chengdu, China.

To enhance the nitrogen removal performance of the CRI system, the methods of adding external
carbon sources, optimizing the packing structure [10], and changing the water feeding patterns [1]
were adopted. However, those methods were all based on the full nitrification–denitrification process,
making it difficult to overcome the problem of carbon source consumption and reduction of denitrifying
bacteria activity during long-term operation, and were also difficult to popularize in the actual
engineering due to their complex operating process.

Shortcut nitrification–denitrification is a novel biofilm nitrogen removal process which allows
oxidation of ammonia to nitrite, but no further oxidation to nitrate and reduces nitrite into nitrogen
gas directly to achieve nitrogen removal in the system. As Figure 2 shows, compared to the full
nitrification–denitrification process, the shortcut nitrification–denitrification process reduces two
reaction steps, which are “NO2

−→NO3
−”and “NO3

−→NO2
−”. Thus, it will present the advantages

of saving oxygen and requiring less organic matters. However, it can also be seen from Figure 2,
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for shortcut nitrification–denitrification to be employed, the key point is to achieve shortcut nitrification.
In other words, the system must accumulate and maintain enough nitrite, which is produced by
ammonium-oxidizing bacteria (AOB) and, at the same time, inhibit or wash out nitrite-oxidizing
bacteria (NOB), which would oxidize the produced nitrite to nitrate [11]. The conditions required
to inhibit nitrite oxidization can be established with high concentrations of ammonium, a low
concentration of dissolved oxygen, a high concentration of free nitrous acid, a relatively high
temperature (30–35 ◦C) and a high pH (8–9). So far, shortcut nitrification has been achieved in
various systems, such as aerated constructed wetlands [12], a sequencing batch reactor (SBR) [13] and
submerged biofilters [14], all of which resulted in high nitrite accumulation percentages. The use of
specific inhibitors can further improve shortcut nitrification. For example, Xu et al. [13] studied the
effect of hydroxylamine addition on shortcut nitrification in SBR, and Chen et al. [15] used this same
inhibitor in a CRI; both found nitrite accumulation percentages reaching more than 90%. Sukru and
Erdal [14] and Cui et al. [16] found that increasing salinity could further promote the accumulation of
nitrite. Moreover, Ge et al. [17] showed that low concentrations (4 mg/L) of chlorine could improve
the nitrite accumulation percentage to reach 60–70%. Already in 1957 chlorate was described as
a specific inhibitor of NOB: chlorate could inhibit the growth of autotrophic nitrite oxidizers at
low concentration (4.2 × 10−3 M) and completely inhibit nitrite oxidation at high concentrations
(1.7 × 10−2 M) [18]. Subsequent studies reported that the addition of chlorate could result in nitrite
to become the dominant product of NOx in the effluent, by allowing AOB activity while inhibiting
NOB. For instance, Xu et al. [11] showed that the addition of chlorate to aerobic granules resulted in
a 90% increase of nitrite accumulation in the effluent. Other studies showed that chlorate inhibited
the oxidation of nitrite to nitrate, but it did not affect the oxidation of NH4

+ to NO2
− [19]; likewise,

Xu et al. [11] found that oxidation of NH4
+ to NO2

− was not severely inhibited by chlorate. Such studies
showed that shortcut nitrification can be achieved effectively by the addition of specific inhibitors,
including chlorate, but the effect of adding potassium chlorate (KClO3) in CRI system has not yet been
studied in detail.

In this study, we tested whether potassium chlorate could improve the performance of shortcut
nitrification and removal efficiency of pollutants in a CRI system under experimental conditions and
prospected the benefits of achieving shortcut denitrification.

Figure 2. Comparison of the full nitrification–denitrification process and shortcut nitrification–denitrification
process (→ represents the process of full nitrification–denitrification; 99K represents the process of shortcut
nitrification–denitrification).
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2. Materials and Methods

2.1. Experimental Design

Four separate CRI columns were constructed using PVC (polyvinyl chloride) (diameter 8 cm,
height 30 cm) in the laboratory under controlled conditions. The temperature was kept constant
at 34.2 ± 0.64 ◦C by constructing a temperature-controlling box around the CRI columns (Figure 3).
The filling medium of the columns consisted of two functional layers: a 5 cm deep supporting layer
consisting of pebbles (5.0–10.0 mm) and gravel (3.0–4.0 mm) at the bottom, a 20 cm deep treatment
layer filled with 90% river sand (0.25–0.30 mm), 5% marble sand (1.0–2.0 mm), and 5% zeolite sand
(1.5–1.7 mm) on the top of the supporting layer. The influent sewage was lifted by a peristaltic pump
so that it entered at the top of the column, moved through the packing medium vertically, and left by
the outlet where water quality was measured.

Figure 3. Experimental CRI system. CRI: constructed rapid infiltration.

2.2. Sewage and Operational Conditions

The influent sewage used in this study was a mixture of synthetic sewage and domestic sewage,
the synthetic sewage was mainly made up of glucose, CH3COONa, (NH4)2SO4, KH2PO4, Na2CO3,
and peptone and was refilled every three days. The water quality parameters are shown in Table 1.
The whole experiment lasted for 110 days. The sewage was fed into the system by a dry-wet alternating
operation mode as follows: water feeding was allowed twice daily with a hydraulic load of 0.6 m/day,
each feeding time would last for 1.5 h, each drying time would last for 10.5 h, and the water flow
was 200 mL/h. The system was operated for 70 days until the removal percentages of ammonium
nitrogen (NH4

+-N) in effluent of all columns reached to 88%, which indicated the biofilms had formed
successfully in the CRI system.

In order to investigate the effect of potassium chlorate inhibition and pH control, the experimental
columns were used as individual Tests. Test 1 was the control treatment not receiving additions, the pH
of influent of Tests 2–4 was adjusted to 8.4 by addition of NaOH solution. Moreover, in Test 3, KClO3

was added to the influent at a final concentration of 5 mM while, in Test 4, a concentration of 3 mM
KClO3 was used. Both the NaOH solution and KClO3 were added and mixed in the regulating tank
after it loaded with 600 mL sewage from feeding tank. Moreover, the scanning electron microscope
(SEM) pictures (Figure 4) of the filling medium (sand) were taken on day 70, which could further show
the situation of biofilm formation on the filling medium of tests 1–4. As we can see from Figure 4,
the blank filling medium (picture a) which was not fed sewage, can hardly investigate the microbial
flora attachment. However, the filling medium of Tests 1–4 (pictures b–e) which were fed sewage
for 70 days had an obvious microbiological attachment, which indicated that biofilms were formed
successfully in the filling medium of Tests 1–4.
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Figure 4. Scanning electron microscope (SEM) images of filling medium (sand) in the CRI columns
after 70 days of operation. (a) blank filling medium; (b–e) filling medium (formed with biofilm) of
Tests 1–4.

Table 1. Water quality parameters of influent.

Water Quality Parameters Mean Concentration (mg/L)

Chemical Oxygen Demand (COD) 245.22 ± 27.11
NH4

+-N 53.93 ± 3.81
NO3

−-N 1.15 ± 0.67
NO2

−-N 0.14 ± 0.09
Total Nitrogen (TN) 55.35 ± 6.01

pH 7.3 ± 0.14 (control), 8.4 (Tests 2–4)
Temperature (◦C) 34.2 ± 0.64

2.3. Analytical Methods

Water samples from influent and effluent were collected every two days, filling medium samples
were collected after biofilm formed successfully (on day 70). Concentration of COD in the sewage was
determined using the potassium dichromate method (in a strong acid solution, a certain amount of
potassium dichromate is used to oxidize the reducing substances in the water sample, then, ferroin
(indicator) is added to the excess potassium dichromate before it is titrated with ammonium ferrous
sulfate solution, and the oxygen consumption of the reductive substance in the water sample is
calculated according to the amount of ammonium ferrous sulphate); the concentration of nitrogen in
the form of ammonium was determined by Nessler’s reagent colorimetric method (an alkaline solution
made of mercuric iodide and potassium iodide reacted with ammonium nitrogen would generate
reddish brown complex, the absorbance of the complex which was measured at 420 nm (visible light)
and is proportional to the content of ammonium nitrogen), nitrate (NO3

−-N) by UV spectrometry (the
concentration of nitrate nitrogen can be quantified by the absorption value of nitrate ion at a wavelength
of 220 nm, however the dissolved organic matter was absorbed at both 220 nm and 275 nm, while the
nitrate ion was not absorbed at 275 nm, therefore another measurement is made at 275 nm to correct
the absorption of nitrate nitrogen), nitrite (NO2

−-N) by molecular absorption spectrophotometry
(in phosphoric acid medium, nitrite is reacted with para-aminobenzene sulfonamide to produce
diazonium salt, then, coupling with N-(1-naphthyl) ethylenediamine to produce red dye, finally,
determining the absorbance of production at 540 nm (visible light)), and total nitrogen (TN) by UV
spectrometry (at 120–124 ◦C basic potassium persulfate solution is used to convert nitrogen-containing
compounds into nitrate in the water sample, then, the ultraviolet spectrophotometry method is used to
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determine the absorbency of the sample at 220 nm and 275 nm respectively, the corrected absorbance
(A) is calculated according to the formula (A = A220 − 2A275) and is proportional to the total nitrogen
content), using standard procedures [20]. The nitrite accumulation percentage was calculated as the
ratio of NO2

−/(NO2
− + NO3

−) × 100% [12].

2.4. Scanning Electron Microscope Detection

The biofilm of the filling medium was prepared by the glutaraldehyde fixation method [21]
and observed by using a scanning electron microscope (SEM) (S-3000N, Hitachi Limited, Tokyo,
Japan). The filling medium samples were fixed with 2.5% glutaraldehyde for 15 h and then rinsed
in distilled water three times. Subsequently, the samples were dehydrated with series of ethanol
(30%, 50%, 70%, 85%, 95%) for one time, and 100% ethanol for two times (20 min/time). After rinsing
twice (20 min/time) with isoamyl acetate, the prepared samples were natural dried for 12 h. Finally,
the dewatered samples were sputter-coated with gold and observed with SEM.

3. Results and Discussion

3.1. Effect of Potassium Chlorate on Removal Efficiency of Ammonium Nitrogen

The removal efficiency of nitrogen in the form of ammonium in the CRI system was compared
between the controls (with and without pH adjustment) and after the addition of two concentrations
of KClO3 to the influent. Removal efficiency was calculated as the difference in concentration between
influent and effluent (influent concentration minus effluent concentration) divided by the concentration
in influent.

Adjustment of the influent pH to 8.4 of Test 2 only had a minor effect on ammonium nitrogen
removal during the first 10 days (Figure 5), the reason may be that the AOB need time to adapt the new
pH environment in the system. There was no difference in removal efficiency between Test 4 (pH 8.4,
3 mM KClO3) and Test 2 (pH 8.4), as both reached approximately 87% removal on average (Figure 5).
However, in presence of 5 mM KClO3 (Test 3), the NH4

+-N removal efficiency was reduced, though
it still reached 66% on average. Xu et al. [11] also found that oxidation NH4

+ to NO2
− was slightly

inhibited by chlorate. This is most likely the chlorate has a slight inhibition of AOB activity, as a result
of which NH4

+-N oxidation efficiency was less efficient.

Figure 5. Cont.
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Figure 5. Ammonium-nitrogen removal. (a) Absolute concentrations of NH4
+-N in effluent and

influent; (b) Ammonium-nitrogen removal efficiency (in %) of the four experimental tests of CRI.

3.2. Effect of Potassium Chlorate on Nitrate Accumulation in a CRI System

As can be seen in Figure 6, there was no significant difference between Test 2 (pH 8.4), resulting
in a nitrate concentration of on average 36.24 mg/L, and Test 4 (pH 8.4, 3 mM KClO3), resulting in
34.51 mg/L. Very similar results were obtained for the control in which the pH of the influent had not
been adjusted (Test 1, pH 7.3). In contrast, Test 3 (pH 8.4, 5 mM KClO3) resulted in much lower nitrate
concentrations of approximately 7.39 mg/L on average, which represented an 80% reduction compared
to the control. As shown, the nitrate concentration in effluent of Test 3 was reduced within 48 h after
addition of 5 mM KClO3 and reached a minimum of 2.92 mg/L on day 13. This result shows that
addition of 5 mM KClO3 to the influent was able to strongly prevent the oxidation of nitrite, a condition
that favours the accumulation of nitrite and is desired for shortcut nitrification achievement.

Figure 6. The nitrate-nitrogen concentration in influent and effluent in the four experimental tests of
CRI system.
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3.3. Effect of Potassium Chlorate and pH on Nitrite Accumulation in a CRI System

Previous studies have described that the pH of the influent is a decisive factor for inhibiting
NOB activity. For instance, Banashri [19] described that nitrite accumulation can be improved at high
pH (8–9). Glass and Silverstein [22] observed a significant increase of nitrite accumulation (250, 500 mg/L)
in sequencing batch reactors when wastewater pH was increased during nitrification (pH 7.5, 8.5,
respectively). Thus, we adjusted the influent sewage pH to 8.4 of Test 2 and observed (Figure 7a) that
the average nitrite accumulation percentage of Test 2 (pH 8.4) was 1.5%, which was slightly higher than
that of Test 1 (0.50%, pH 7.3). Nevertheless, this increase was too weak to support shortcut nitrification.
Thus, a pH of 8.4 is, by itself, insufficient to enable effective shortcut nitrification in a CRI system.

Figure 7. Nitrite accumulation in effluent. (a) Effect of pH on nitrite accumulation percentage (bars) and
concentration (curves) in the effluent of Test 1 (pH, 7.3) and Test 2 (pH 8.4); (b) The nitrite accumulation
percentage (bars) and concentration (curves) in effluent of Tests 2–4.
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The average nitrite accumulation percentage in our tests are shown as bars in Figure 7b. As can
be seen, these percentages were very low in Test 2 (1.56% on average) and Test 4 (3.43% on average),
but much increased in Test 3, resulting in 59.80% accumulation percentages on average. Thus,
the addition of 5 mM KClO3 strongly supported accumulation of nitrite in the test CRI system.
Combined with the data presented in Figures 5–7, it can be concluded that, whereas nitrate was the
dominant product in effluent of Tests 1, 2, and 4, nitrite was the dominant nitrogen product of Test 3,
as a result of effective nitrite oxidation inhibition.

As apparent in Figure 7b, the nitrite accumulation percentage in effluent of Test 3 increased
sharply during the first seven days (from, initially, 9.02% to 52.76%) and further increased to reach
a plateau of up to 80% during days 15–23. The nitrite concentration peaked at day 21 at 24.54 mg/L.
After this, the nitrite accumulation percentage slightly decreased, but still reached 53% at day 39.
The reason may be that the long-term addition of the chlorate will cause a slight inhibition of AOB
activity. However, the result also indicates that shortcut nitrification can be not only be achieved, but
also maintained in the tested CRI system by the addition of 5 mM KClO3 in the influent at a pH of 8.4.

3.4. Prospects for the Achievement of Shortcut Nitrification–Denitrification in a CRI System

Xu et al. [11] mentioned that the shortcut nitrification–denitrification process could save 40% of
carbon source consumption, compared with the full nitrification–denitrification process. Chen [23]
observed that an increased COD concentration (51.3, 69.3, 73.3 mg/L) in the effluent in biological filters
when the nitrite percentage (NO2

−/(NO2
− + NO3

−) × 100%) in the influent was increased (0%, 50%,
80%, respectively). As we can see from Figure 7, the shortcut nitrification could be achieved successfully
in the CRI system by adding 5 mM KClO3 in Test 3, and its mean concentration and accumulation
percentage of nitrite could reach to 12.98 mg/L and 59.80%, respectively. Thus, the accumulation of
nitrite in Test 3 could provide electron acceptor for the subsequent shortcut denitrification. However,
Chen et al. [15] found that the removal efficiency of COD could reach 90% during shortcut nitrification
in the CRI system. Wang et al. [8] mentioned that carbon source, nitrate/nitrite and anaerobic
environment are essential for denitrification in the CRI system since most of the denitrifying bacteria
are facultative anaerobic and use organic matters as carbon sources under the anoxic condition to
provide energy. However, in this study, we calculated that the removal percentage of CODcr of four
tests all reached more than 91%, and the mean concentration of residual CODcr of Test 3 was only
around 7.28 mg/L, which was too low to support the subsequent shortcut denitrification. Therefore,
if a shortcut denitrification experiment will be conducted, an external carbon source is required to
be added to the influent. Methanol, ethanol, acetic acid, and cellulose were all studied as external
carbon sources for denitrification in previous studies. Yan et al. [24] found that methanol is easily
biodegraded and used by denitrifying bacteria and the denitrification rate of methanol is very high.
Zhang [25] found that the complete removal of nitrogen in effluent can be achieved by adding sufficient
methanol in denitrification process. Gómez et al. [26] found that methanol is an ideal carbon source
for denitrification. Thus, if methanol (CH3OH) is chosen as an external carbon source for subsequent
shortcut denitrification, the equations of full denitrification (Equation (1)) and shortcut denitrification
(Equation (2)) are shown as follows:

NO3
− + 1.08CH3OH + 0.24H2CO3 → 0.056C3H7O2N + 0.47N2 + 1.68H2O + HCO3

− (1)

NO2
− + 0.67CH3OH + 0.53H2CO3 → 0.004C3H7O2N + 0.48N2 + 1.23H2O + HCO3

− (2)

According to Equations (1) and (2) and the data from Figures 6 and 7, the mean nitrate
concentration of Test 2 (pH 8.4) and Test 3 (pH 8.4, 5 mM KClO3) are about 36.24 mg/L and
7.39 mg/L, respectively, the mean nitrite concentration of Test 2 and Test 3 are about 0.57 mg/L
and 12.98 mg/L, respectively. If the subsequent shortcut denitrification will be achieved, the dosage of
CH3OH used for Test 2 denitrification will consume 98.38 mg CH3OH per litre of sewage during the
operating period, but, Test 3 only needs 38.11 mg CH3OH per litre of sewage for denitrification and
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shortcut denitrification, which was only 38.73% of the consumption of Test 2. Moreover, an anaerobic
environment is also important for the denitrification in the CRI system. Fan et al. [1] added a sub-section
intake and overflow pool in the CRI system simulated columns and found this method will increase
the total nitrogen removal efficiency to 64.8%. Therefore, if the shortcut nitrification–denitrification
process in the CRI system is implemented in the subsequent research, not only will the external carbon
source be added in the denitrification section, but a saturated water layer will also be constructed in
the bottom of the denitrification section to improve the total nitrogen removal performance of the
CRI system. Furthermore, although, the chlorate is easily biodegraded by nitrate reductase in an
organic-rich environment, the appropriate amounts of reductant also need to be added into the reactor
to fully eliminate potential pollution when the shortcut nitrification process ended [11]. Thus, although
achievement of shortcut nitrification–denitrification process in the CRI system will present many
advantages, such as improving the denitrification rate, simplifying the reaction process, and saving
carbon source consumption, there is still much research work needed to be done towards applying
this new technology in a practical project.

4. Conclusions

(1) The addition of 3 mM KClO3 to influent at a constant pH of 8.4 is not sufficient to inhibit that of
NOB so that shortcut nitrification does not take place in the CRI system.

(2) Adjusting the pH of influent to 8.4 alone did not contribute much to establish shortcut nitrification
in CRI.

(3) Although, the addition of 5 mM KClO3 in influent could both inhibit the activity of
ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), the inhibition of NOB
was so strong that made the NO2

−-N to be the dominant product of total oxidized nitrogen in
effluent for a long period, showing that shortcut nitrification could be achieved and maintained
successfully in a CRI system.

(4) According to the data of nitrate and nitrite in Figures 6 and 7, the consumption of external carbon
source (CH3OH) for subsequent denitrification was calculated and analysed by using Equations
(1) and (2), the results showed that the consumption of carbon source (CH3OH) of Test 3 (pH 8.4,
5 mM KClO3) was only 38.73% of the consumption of Test 2 (pH 8.4). Therefore, compared with
conventional sewage treatment methods, achievement of the shortcut nitrification–denitrification
process in the CRI system will take both the advantages of the CRI system and shortcut
nitrification–denitrification process; it will not only have a unique structure and feeding mode to
construct aerobic, facultative, and anaerobic environments for microorganism enriching in the
filling medium, but also improve the denitrification rate and save the carbon source consumption
during the reaction process.
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