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Abstract: The evaluation of a meteorological disaster can be regarded as a multiple-criteria decision
making problem because it involves many indexes. Firstly, a comprehensive indexing system for an
agricultural meteorological disaster is proposed, which includes the disaster rate, the inundated rate,
and the complete loss rate. Following this, the relative weights of the three criteria are acquired using
a novel proposed evolutionary algorithm. The proposed algorithm consists of a differential evolution
algorithm and an evolution strategy. Finally, a novel evaluation model, based on the proposed
algorithm and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS),
is presented to estimate the agricultural meteorological disaster of 2008 in China. The geographic
information system (GIS) technique is employed to depict the disaster. The experimental results
demonstrated that the agricultural meteorological disaster of 2008 was very serious, especially
in Hunan and Hubei provinces. Some useful suggestions are provided to relieve agriculture
meteorological disasters.

Keywords: disaster evaluation; evaluation model; TOPSIS; Analytical Hierarchy Process (AHP);
differential evolution

1. Introduction

China is a country with a large population and rapid economic development. Agriculture is,
not only related to the daily lives of local residents, but also plays a significant role in the sustainable
development of the country and the stability of the global grain market. A meteorological disaster
is one of the most serious types of natural disasters. It can have devastating effects on water supply,
crop production, and the rearing of livestock. It may lead to famine, malnutrition, epidemics, and the
displacement of large populations from one area to another [1,2]. More importantly, its impact
on agriculture is enormous. Such disasters also cause significant harm to economies, societies,
and environments. They have a large influence on the development of China, and have become
bottlenecks for the sustainable development of the national economy [3–5]. Therefore, it is useful to
learn about the realities of meteorological disasters. It can help us to take more useful measures in
order to protect agriculture from being destroyed by these disasters.

There are currently two main approaches that are used to evaluate meteorological disasters: The
fuzzy comprehensive evaluation method and the risk probabilistic method [6–10]. The probabilistic
method is widely used in the financial and insurance sectors to assess potential losses. The fuzzy
comprehensive evaluation method constructs an index system, which employs fuzzy mathematics and the
analytic hierarchy process (AHP), according to the formation mechanism of the meteorological disaster.
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This method has been widely used to evaluate agricultural disasters. However, the weights of the
indexes are generally acquired using the AHP theory. Since the evaluation of a meteorological disaster
involves the use of many indexes, it can be regarded as a multiple criterion decision making problem.
This technique can be employed to solve this problem. In order to make a fair evaluation, a model
that uses multiple criterion decision making methods is proposed. The technique mainly includes a
novel evolutionary algorithm and the Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS). Firstly, the meteorological disaster indexes are established. In order to solve for the weights,
the weight acquisition is converted into a constraint optimization problem. This is a novel idea that
is used to solve for the weights. In this article, a novel algorithm—based on differential evolution
(DE)—and evolution strategy are combined to design an optimization algorithm. Following this,
the algorithm is used to acquire the weights of the indexes. Lastly, a novel evaluation model—based
on the proposed algorithm and the TOPSIS—is put forward to estimate the meteorological disaster in
China. The geographical information system (GIS) technique is used to depict the disaster.

A disaster that caused unprecedented low temperatures, rain, snow, and ice occurred in Southern
China from 10 January 2008 to 5 February 2008. As a result of its unusual persistence and intensity,
this disaster caused great losses for the national economy, especially in transportation, energy supply,
electric power transmission, communication facilities, agricultural and ecological systems, and peoples’
lives across most of the country. In order to make a comprehensive evaluation, the disaster that occurred
during this year was selected. The experimental results have demonstrated that the meteorological
disaster of 2008 was very serious. In order to relieve agricultural meteorological disasters, some useful
suggestions are provided.

The paper is organized as follows: The related works are presented in Section 2. The AHP,
the TOPSIS, and DE are briefly introduced in Section 3, and the proposed algorithm and evaluation
model are put forward. The experiments are conducted, based on the standard benchmarks and the
disaster data, in Section 4. A discussion is given in Section 5. The conclusions are made in Section 6.

2. Related Works

The effects of agricultural disasters have been studied in recent decades. The strengthening
of disaster risk assessment is necessary. This is important in order to reduce the influence of and
losses from meteorological disasters. There are currently two principal methods that are used to
evaluate meteorological disasters: the fuzzy comprehensive evaluation method [6,7] and the risk
probabilistic method.

The meteorological disaster risk of Southern China was analyzed from 1949–2012 [8]. Drought and
waterlogging disasters were analyzed in Anhui Province using the fuzzy comprehensive evaluation
method [9]. Rainstorm and flood disaster losses were evaluated in the Chinese mainland from 2004–2009 [10].
Since urban areas are susceptible to natural disasters [11], the AHP and the GIS are combined to
map landslide, flood, and seismic hazards [12,13]. The flood hazard assessment model—based on the
AHP method—is proposed for urban areas [14]. The grey incidence multiple-attribute decision model
is used to evaluate China’s regional rainstorm and flood disasters [15]. Based on a series of drought
data that was acquired from 1952–2011, the evolutionary characteristics and the changing trends of
agricultural drought disasters are analyzed using quantitative and qualitative methods [16].

Based on probability distribution functions, a methodology for risk analysis, assessment,
and the combination of drought disasters under the different irrigational levels in Baicheng City
is presented [17]. The risk of China’s agriculture drought disaster is evaluated using the higher spatial
resolution of the county unit, based on the information diffusion theory [18]. An agricultural drought
intensity index, based on rainfall and the demand for water for crops, is proposed [19]. The quantitative
relationship between the hazard-induced factors of extreme meteorological disasters and the affected
area in the tail of the distribution is depicted [20]. Based on the least squares method, the area that was
affected by meteorological disasters, especially by floods and droughts, increased significantly in China
during 1950–2013 [21]. The different kinds of meteorological disasters, including floods, droughts,
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tropical storms, hail disasters, and snowstorms, are analyzed using the grey cluster model [22].
The features of the major natural disasters that occurred in the Chinese mainland between 1980–2011
were explored using a regression analysis [23]. A crop yield-climate analysis and a regression analysis
are employed to analyze and quantify the relationship between the fluctuation of maize yield and
agro-meteorological disasters [24].

3. Methodology

3.1. AHP

AHP is used to apply multiple criterion decision making to real applications [25,26]. In the AHP,
multiple pairwise comparisons come from a standardized comparison scale consisting of nine levels.
Suppose that C = {Ck|k = 1, 2, . . . , n} is the set of criteria. An evaluation matrix can be obtained in
which every element aij(i, j = 1, 2, . . . , n) represents the relative weights of the criteria C. If matrix A
is completely consistent, then it has complied with following condition:

aii =
wi
wi

= 1 (1)

aji =
wj

wi
=

1
aij

(2)

aijajk =
wi
wj
×

wj

wk
=

wi
wk

= aik (3)

According to the above properties, the following equations can be obtained:

n

∑
k=1

(aikwk) =
n

∑
k=1

(
wi
wk

)
wk = nwi, i = 1, 2, . . . , n (4)

n

∑
i=1

∣∣∣∣∣ n

∑
k=1

(aikwk)− nwi

∣∣∣∣∣ = 0 (5)

In other words, if a judgment matrix meets Equation (5), then it is completely consistent. However,
it is very difficult to achieve this condition in real applications. In fact, the matrix must just meet the
satisfactory consistency, then Equation (4) can be converted into the following format:

min CIF(w) =

n
∑

i=1

∣∣∣∣ n
∑

k=1
(aikwk)− nwi

∣∣∣∣
n

(6)

0 < wk < 1,
n

∑
k=1

wk = 1 (7)

A smaller consistent inspection function (CIF) indicates a more consistent matrix A. Therefore,
the weight acquisition is converted into the single objective optimization with a constraint.
The objective is to minimize the CIF, and the constraint is 0 < wk < 1, ∑n

k=1 wk = 1.
To solve the constraint optimization problem, the equality constraints are generally converted to

inequality constraints as follows: ∣∣∣∣∣ n

∑
k=1

wk − 1

∣∣∣∣∣− δ ≤ 0 (8)
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where δ is the tolerance value for the equality constraints. Generally speaking, δ is set to 0.0001.
The absolute value operator can then be removed by transforming Equation (8) into the inequality
constraints, in which k ranges from one to the number of criteria.

−δ ≤
n

∑
k=1

wk − 1 ≤ δ→


n
∑

k=1
wk − 1 ≤ δ

−(
n
∑

k=1
wk − 1) ≤ δ

(9)

The constraint violation (CV) can be briefly expressed as follows:

CV(
→
x ) = max((

n

∑
k=1

wk)− 1− δ, 0) + max(−(
n

∑
k=1

wk)− 1)− δ, 0) (10)

3.2. Proposed Algorithm Based on DE and Evolution Strategy

3.2.1. Conventional DE

DE is a population-based algorithm [27]. There are three operators in DE: The mutation,
the crossover, and the selection.

(1) Mutation

DE employs the mutation operation to generate a trial vector Vi. Vi can be produced by mutation
strategies. The following mutation strategy was proposed first, and is one of the most successful
strategies [28,29]. Thus, it is adopted.

DE/rand/1:
Vi = Xri

1
+ F.(Xri

2
− Xri

3
) (11)

The indexes ri
1, ri

2 are randomly generated within the range [0,NP], where NP is the population size.
Xri

1
, Xri

2
, and Xri

3
are the current vectors. The mutation scale factor F is used to control the amplification

of the differential variations. Vi is the mutation vector.

(2) Crossover

The crossover operation is employed on Vi =
{

v1
i , v2

i , . . . , vD
i
}

and Xi =
{

x1
i , x2

i , . . . , xD
i
}

to
produce a trial vector Ui =

{
u1

i , u2
i , . . . , uD

i
}

as follows:

uj
i =

{
vj

i i f randj[0, 1) ≤ CR or (j = jrand)

xj
i others

(12)

CR ∈ [0,1] is the crossover rate, which has to be determined by the user. The index jrand ∈ [1,D]
ensures that the trial vector Ui will be different from xi.

(3) Selection

The trial vector Ui is compared with xi. If the fitness value of ui is better than that of xi, then ui
will replace xi. Otherwise, the old value xi is retained.

xi =

{
ui i f f (ui) ≤ f (xi)

xi otherwise
(13)

3.2.2. The Proposed Algorithm Based on DE

If a solution meets the requirements of the constraints in Equation (8), it is a feasible solution. If it
does not meet the requirements of the constraints in Equation (8), the solution is an infeasible solution.



Int. J. Environ. Res. Public Health 2018, 15, 612 5 of 17

In conventional DE, greedy selection is used. If the trial vector Ui yields a better function value than xi,
then ui will replace xi and enter the population of the next generation. If the trial vector Ui does not yield
a better function value than xi, the old value xi is retained. However, this operation cannot ensure that
all of the feasible solutions will have better chances of survival than the infeasible solutions. In order
to improve more of the feasible solutions’ chances of survival, a selection scheme that is similar to an
evolution strategy (ES) is utilized, since ES have strong theoretical support [30]. Firstly, the offspring
are generated by DE. Following this, the parent population and the offspring population are combined
to form a mating pool. The mating pool is then divided into feasible solutions and infeasible solutions.
The feasible and infeasible solutions are then sorted into ascending order, according to the fitness
value and the CV, respectively. If the number of feasible solutions is greater than the population size,
the population that will enter the next generation will be selected directly from these solutions. If the
number of feasible solutions is smaller than the population size, some of the infeasible solutions will
be chosen to enter the next generation.

According to the above discussion, the main procedure of the proposed algorithm is presented
as follows:

Step 1: Initialize the parameters. Max_FES: maximum number of function evaluations,
NP: population size, mutation scale factor F, and crossover constant CR.

Step 2: Set G = 1 and randomly generate NP individuals from pop = {X1,G, X2,G, . . . ,XNP,G}
with Xi,G = {X1

i,G, . . . , XD
i,G}, i = 1, 2, . . . , NP uniformly distributed in the range [Xmin, Xmax]. D is the

dimension of X.
Step 3: Calculate the fitness value and the CV.
Step 4: FES = FES + NP
Step 5: If the stopping criterion is not met
Step 5.1: Generate vector Vi according to the population pop using Equation (11)
Step 5.2: Generate vector Ui using Equation (12).
Step 5.3: If the trial vector Ui is outside the boundary, then randomly generate them within the

search space
Step 5.4: Calculate the fitness value and CV of Ui
Step 5.5: p = (pop, Ui);

(pf, pinf) = divide (p);// pf: feasible solutions and pinf: infeasible solutions
Sort pf by the fitness value
Sort pinf by the CV
If(size(pf) ≥ NP)
pop = pf(1:NP);
Else
pop = pf + pinf(NP−size(pf));
End

Step 5.6: FES = FES + NP;
Step 6: End while

3.3. Proposed Evaluation Model Based on TOPSIS

3.3.1. TOPSIS

TOPSIS is one of the multiple criterion decision making methods that are used to evaluate
alternatives [31–33]. It consists of the following steps:

Step 1: Obtain the decision matrix.
The number of alternatives is m and the number of criteria is n. The decision matrix

fij (i = 1, 2, . . . , n; j = 1, 2, . . . , m), with n rows and m columns, will be obtained. fij is a value
that indicates the performance rating of each jth alternative with respect to each ith criterion.

Step 2: Normalize the decision matrix.
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According to Equation (14), the normalized value fij is calculated as follows:

rij =
fij√

∑m
j=1 f 2

ij

, i = 1, 2, . . . , n; j = 1, 2, . . . , m (14)

Step 3: Calculate the weighted normalized decision matrix.
The matrix is calculated by multiplying normalized decision matrix. Its weights are presented as

follows:
vij = wi × rij (15)

where wi is the weight of the ith criterion and ∑n
i=1 wi = 1.

Step 4: Find the negative-ideal and positive-ideal solutions.

A− =
{

v−1 , v−2 , . . . , v−n
}
=
{(

minvij
∣∣i ∈ I′

)
,
(
minvij

∣∣i ∈ I ′′
)}

(16)

A+ =
{

υ+1 , υ+2 , . . . , υ+n
}
=
{
(maxυij

∣∣i ∈ I′), (minυij
∣∣i ∈ I′)

}
(17)

where I’ is associated with the cost criteria and I” is associated with the benefit criteria.
Step 5: Calculate the n-dimensional Euclidean distance.
The separation of each algorithm from the ideal solution is presented as follows:

D+
j =

n

∑
i=1

d(vij, v+j ) (18)

The separation of each algorithm from the negative solution is presented as follows:

D−j =
n

∑
i=1

d(vij, v−j ) (19)

Step 6: Calculate the relative closeness to the ideal solution.
The relative closeness of the jth alternative is defined as follows:

CCj =
D−j

D−j + D+
j

, i = 1, 2, . . . , m (20)

Step 7: Rank the alternative order.
The CCj is between zero and one. A larger CC indicates a better alternative j.

3.3.2. The Proposed Model

The proposed model for evaluating agricultural meteorological disasters (composed of the AHP,
the evolutionary algorithm, and the TOPSIS) has the following three phases:

(1) Identify the criteria and acquire the data

In the first phase, the provinces and the criteria that will be used in the ranking are determined
and the decisional hierarchy is formed. The AHP model is established. The objective is in the
first level, the criteria are contained in the second level, and the provinces are contained in the
third level. According to the statistical data from the Chinese Ministry of Agriculture, the criteria of the
multi-objective decision include the disaster rate (C1), the inundated rate (C2), and the complete loss
rate (C3). Out of the three criteria, the complete loss rate, meaning that no gains have been realized
as a result of the disasters, is regarded as the most serious. The inundated rate, which can cause
some loss, is regarded as being more serious. The disaster rate is regarded as being serious. The larger
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the planting area is, the larger the loss is. It is unfair to directly use the areas as criteria. Thus, the rate
is adopted in order to obtain fair results.

C1 =
disaster area
planting area

× 100% (21)

C2 =
inundated area
planting area

× 100% (22)

C3 =
complete loss area

planting area
× 100% (23)

(2) Calculate the criteria weights using the proposed algorithm

In this phase, the pairwise comparison matrix is constructed in order to acquire the criteria weights.
The experts make their evaluations using the scale (1~9). The evaluation matrix can be obtained in
order to determine the weights of the criteria. According to Equations (6) and (7), the calculation of the
weights can be converted to a single constraint optimization problem. The proposed algorithm can be
used to solve the optimization problem.

(3) Evaluate the disaster and determinate the final ranks using TOPSIS

There are 31 provinces and cities and the number of criteria is three. Therefore, the decision
matrix fij (i = 1, 2, . . . , 3; j = 1, 2, . . . , 31) can be obtained. Following this, the disaster evaluation is
determined by using the TOPSIS in the third phase, according to Equations (14)–(20). The province
rankings are determined, according to the CC that is calculated using TOPSIS, in descending order.
Figure 1 presents the whole process.

Figure 1. The proposed model.
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4. Results

4.1. Algorithm Experiment

In order to verify the performance of the proposed algorithm, eleven benchmark functions are
selected from the special session on constrained real-parameter optimization of the 2006 Congress
on Evolutionary Computation (CEC) [34]. These well-known benchmark functions are presented
in Table 1. In Table 1, ρ is the evaluated ratio between the feasible solution and the search space,
LI denotes the number of linear inequality constraints, NI is the number of nonlinear inequality
constraints, LE denotes the number of linear equality constraints, NE is the number of nonlinear
equality constraints, α is the number of active constraints at the optimal solution, and f (x∗) is the
objective function value for the optimal solution x∗.

Table 1. Benchmark test functions.

Test Function n Objective Function ρ LI NI LE NE ff f(x∗)

g01 13 quadratic 0.0111% 9 0 0 0 6 −15.0000000000
g02 20 nonlinear 99.9971% 0 2 0 0 1 −0.8036191042
g03 10 polynomial 0.0000% 0 0 0 1 1 −1.0005001000
g04 5 quadratic 51.1230% 0 6 0 0 2 −30,665.5386717834
g05 4 cubic 0.0000% 2 0 0 3 3 5126.4967140071
g06 2 cubic 0.0066% 0 2 0 0 2 −6961.8138755802
g07 10 quadratic 0.0003% 3 5 0 0 6 24.3062090681
g08 2 nonlinear 0.8560% 0 2 0 0 0 −0.0958250415
g09 7 polynomial 0.5121% 0 4 0 0 2 680.6300573745
g10 8 linear 0.0010% 3 3 0 0 0 7049.2480205286
g11 2 quadratic 0.0000% 0 0 0 1 1 0.7499000000

In order to eliminate random discrepancies, 25 independent runs were performed for each
test function. The parameters were set as NP = 100, F = 0.8, CR = 0.9, and FES = 350,000. The above
parameters were set based on our experiments and they were maintained in all of the runs. In order to
make comparisons, three search-bias algorithms, ISR [35], HS [36], and YK [37], and two multi-objective
optimization algorithms, ATMES [38] and VY [39], are selected. The results of these seven algorithms
are taken directly from [40]. The differences between the optimal values from the six algorithms and
the ground truth are listed in Table 2.

Table 2. The differences between optimal values from the six algorithms and the ground truth.

Function Proposed ATMES TC YK ISR HS

g01 0 × 100 0 × 100 0 × 100 0 × 100 0 × 100 0 × 100

g02 6.7 × 10−3 1.3 × 10−2 7.6 × 10−3 1.3 × 10−2 2.1 × 10−2 2.6 × 10−2

g03 0 × 100 5.0 × 10−4 5.0 × 10−4 1.0 × 10−35 5.0 × 10−4 5.0 × 10−4

g04 7.64 × 10−11 3.2 × 10−4 7.7 × 10−3 3.3 × 10-4 3.3 × 10−4 3.10 × 10−1

g05 1.10 × 102 1.15 × 100 1.62 × 102 2.17 × 100 2.86 × 10−5 3.47 × 102

g06 3.37 × 10−11 1.2 × 10−4 1.20 × 10−4 6.69 × 101 1.20 × 10−4 6.55 × 101

g07 7.26 × 10−6 9.8 × 10−3 1.68 × 100 1.68 × 10−2 2.10 × 10−4 1.11 × 10−1

g08 8.20 × 10−11 9.8 × 10−3 1.68 × 100 1.7 × 10−2 2.1 × 10−4 1.1 × 10−1

g09 0 × 100 8.9 × 10−3 3.3 × 10−2 4.9 × 10−3 5.7 × 10−5 3.3 × 10−2

g10 4.38 × 10−2 2.01 × 102 8.43 × 102 1.32 × 102 2.0 × 10−3 3.16 × 102

g11 0 × 100 1.0 × 10−4 1.0 × 10−4 1.0 × 10−4 6.1 × 10−3 7.71 × 10−2

It can be noticed that the proposed algorithm has the ability to succeed in finding feasible solutions
that are close to the best known solutions for g02, g04, g06, g07, and g08. For g01, g03, and g10,
the DE-based algorithm is successful in finding the optimal value. It is indicated that the algorithm
can obtain the results that are approximately equal to the optimal solutions for these test functions.

Only the ATMES, TC, YK, ISR, and HS algorithms are able to find the best known solution for g01.
The ISR algorithm achieves the best result for g05. The proposed algorithm has achieved the third
best result for g05. g05 has two equality constraints and two inequality constraints, and the optimal
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value is 5126.4967140071. The rest of the functions have either equality constraints or inequality
constraints. This is the difference between g05 and the rest of the functions. According to the free
lunch theorem, any algorithm’s elevated performance over one class of problems is exactly offset by its
poor performance over another class of problems. However, the proposed algorithm has achieved the
best results for the remaining 10 test functions, revealing that the algorithm can consistently find the
best solutions in the experiments.

The above observations signify that the mean performance of the proposed algorithm is better
than the mean performance of the six algorithms. Therefore, the proposed algorithm is competitive.

4.2. Acquire the Relative Weights among Different Criteria

The criteria consist of the disaster rate (C1), the inundated rate (C2), and the complete loss rate (C3).
The complete loss rate is extremely serious, the inundated rate is very serious, and the disaster rate
is serious. According to the AHP theory, the following evaluation matrix A can be presented by the
experts from the agricultural meteorological disaster field.

A =

∣∣∣∣∣∣∣
1 3 7

1/3 1 5
1/7 1/5 1

∣∣∣∣∣∣∣
Based on the matrix A, the min CIF is as follows:

min CIF(w) =
∑3

i=1

∣∣∣∑3
k=1(A(k, i)× wk)− 3× wi

∣∣∣
n

The CIF can be optimized and the weights can be solved for using the proposed algorithm.
The convergence graph is presented in Figure 2. The weights are acquired as W = [0.6541, 0.2782, 0.0677].

Figure 2. Convergence graph for the min consistent inspection function (CIF).

4.3. Evaluation Results

During the middle and the end of January in 2008, South China experienced a rare and severe cold
surge that produced extremely damaging frosts, snow, and ice storms. Prolonged, heavy precipitation
occurred over an extensive area of South China [41,42]. There were 31 provinces and cities that
were evaluated. The data of these criteria are presented in Figures 3–5, respectively.
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Figure 3. The data of disaster rate (C1) in 2008.

Figure 4. The data of the inundated rate (C2) in 2008.
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Figure 5. The data of the complete loss rate (C3) in 2008.

Figures 3–5 indicate that Hunan Province had the greatest disaster rate and inundated rate,
at 59.21% and 37.6%, respectively. The autonomous region of Tibet had the largest complete loss rate.
Shanghai experienced the lightest disaster, with rates of 5.4%, 2.1%, and 0%, respectively.

According to Equation (14), the data can be normalized. The weighted normalized decision matrix
can be obtained using Equation (15). Based on Equations (16) and (17), the negative-ideal (A−) and
positive-ideal solutions (A+) can be found.

A− = {1.9%, 0.58%, 0%};

A+ = {21%, 10.7%, 3.14%};

Following this, the distances (D+ and D−) are calculated according to Equations (18) and (19),
as demonstrated in Table 3. The disaster degree is determined by the CC, which is calculated as shown
in Equation (20), and presented in Table 3 and Figure 6.

Table 3. The CCj values calculated by Equation (20).

Area Province and City D+ D− CC

North

Beijing 0.1974 0.0223 0.1015
Tianjin 0.1647 0.0540 0.2469
Hebei 0.1834 0.0354 0.1618
Shanxi 0.0338 0.2006 0.8558

Northeast

Inner Mongolia 0.0993 0.1205 0.5482
Liaoning 0.1814 0.0369 0.1690

Jilin 0.1949 0.0237 0.1084
Heilongjiang 0.1621 0.0566 0.2588
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Table 3. Cont.

East

Shanghai 0.2183 0 0
Jiangsu 0.2121 0.0067 0.0306

Zhejiang 0.0773 0.1450 0.6523
Anhui 0.1840 0.0344 0.1575
Fujian 0.2005 0.0184 0.0841
Jiangxi 0.0694 0.1527 0.6875

Shandong 0.2153 0.0035 0.0160

South central
Henan 0.2104 0.0089 0.0406
Hubei 0.0194 0.2029 0.9127
Hunan 0.0044 0.2177 0.9802

South
Guangdong 0.1003 0.1194 0.5435

Guangxi 0.0864 0.1346 0.6090
Hainan 0.0724 0.1513 0.6764

Southwest

Chongqing 0.1567 0.0617 0.2825
Sichuan 0.1822 0.0365 0.1669
Guizhou 0.0869 0.1314 0.6019
Yunnan 0.1423 0.0760 0.3481
Xizang 0.1437 0.0784 0.3530

Northwest

Shanxi 0.1435 0.0757 0.3553
Gansu 0.1005 0.1180 0.5400

Qinghai 0.1438 0.0745 0.3413
Ningxia 0.0444 0.1876 0.8086
Xinjiang 0.0467 0.1723 0.7868

Table 3 and Figure 6 indicate that the Hunan Province has the largest CC value. Therefore,
the agricultural disaster in the Hunan Province was the most serious agricultural disaster in 2008.

Figure 6. The CCj values from the evaluation.

5. Discussion

At the beginning of 2008, a serious ice and snow disaster occurred in parts of South China.
This was considered to be a rare nightmare. A massive failure in staple crops occurred in several
provinces, with Hunan Province experiencing the most serious failure. The temperature was much
lower than that of former years in Hunan Province. The Guangzhou railway was once interrupted.
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Hubei Province is located near Hunan Province. The snow disaster also greatly influenced Hubei
Province. The evaluation results indicate that it can be ranked as the second most affected province.
However, the CC values of the other provinces that are located around these two provinces are
much lower than the CC values of these two provinces. In order to demonstrate the influence of the
snow disaster, a time series of the disaster rates from the two provinces is presented in Figure 7. It can
be noticed that, except for 2008, the disaster rates of the two provinces are very low. Thus, it can be
concluded that the heavy snow had a larger influence on Hunan Province and Hubei Province.

Figure 7. The disaster rate of Hunan Province and Hubei Province from 2000 to 2015.

Moreover, the CC value of Shanxi Province is 0.8558, indicating that the area suffered from
more natural disasters in 2008. The disaster rate of Shanxi Province is more than 50% (up to 58.1%).
The inundated rate and the complete loss rate is 27% and 5%, respectively, which is also very high.
Shanxi province is restricted by natural conditions. The area lacks rain and water, which is a
serious issue. The agricultural environment is very fragile. Floods, droughts, low temperatures and
other natural disasters have caused heavy losses every year.

Meanwhile, the CC value of the Ningxia province is 0.8086. The Ningxia Province lies in the
east area of Northwest China, which is far away from the ocean. With mild temperatures and
semi-dry climate, the climate varies greatly and climate disasters occur frequently. Therefore, it is one
of the provinces that is most severely affected by disasters.

However, the CC values of Shanghai, Jiangsu, Fujian, Shandong, and Henan provinces are less
than 0.1, indicating that the disasters that occurred around these areas were not severe in 2008. In fact,
Henan and Shandong provinces are the two main production areas in China. However, their CC values
are very small.

To enhance the defense against agricultural natural disasters, and in an attempt to reduce
the losses from agricultural disasters, the relevant departments must firmly establish disaster
prevention and anti-disaster measures according to the geographical and climatic features of the
region. Moreover, they should make sure that the disaster prevention and alleviation measures are
thoroughly implemented.

(1) Speed up the establishment of the disaster warning mechanism, and improve the ability of
agricultural natural disaster forecasting.

It is of great importance to make timely, accurate and scientific predictions of agricultural natural
disasters using advanced techniques [43]. Before the disaster, a full understanding of the disaster and
the necessary preparation is required. During the disaster, strengthening the control of the disaster
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and resolving the damage are necessary. After the disaster, strengthening the guidance, service, and
coordination of agricultural production; disaster relief; and loss compensation are important.

(2) Further strengthen the infrastructure construction of farmland, and enhance the natural disaster
prevention ability.

Farmland capital construction is essential for stabilizing grain production and improving the
agricultural comprehensive production capacity. Therefore, it is necessary to implement the most
stringent farmland protection system. Meanwhile, it is also necessary to increase the intensity of the
water conservation facilities, so that the ability of the agricultural natural disaster prevention can
be enhanced.

(3) Strongly promote practical agricultural technology, and improve the level of science and
technology in order to improve the ability of agriculture to defend against natural disasters.

Further strengthening scientific and technological training; increasing the promotion of
comprehensive, practical water saving technology; constantly conducting scientific research;
developing new practical technologies; and improving the technological anti-disaster abilities of
agricultural stability are required.

(4) Establish the emergency plan for major disasters and improve the ability of emergency responses
to natural disasters.

It is necessary to further develop and improve emergency plans for natural disasters.
An agricultural production safety and response report system should be established. It will
ensure that the information could be timely, accurately, objectively, and comprehensively reported
and disseminated.

(5) Increase the support for agricultural disaster recovery and make an effort to reduce agricultural
disaster losses.

Farmers could be financially supported by establishing financial funds, special bank credit funds,
public welfare investment funds, disaster relief funds, and more. The victims of disasters should
be provided with high-quality seeds, seedlings, pesticides, and fertilizers at a low cost, in case the
agricultural disaster relief is worsened by fake or shoddy agricultural resources. It is important for
victims to fully and accurately grasp the technical essentials and the requirements of breeding varieties.

Moreover, we must speed up the establishment of policy-oriented agricultural insurance
institutions and agricultural natural disaster risk protection funds. It is important to appropriately
compensate farmers and ensure that they have the capacity to recover production and save themselves
after disasters.

6. Conclusions

A meteorological disaster is one of the most serious types of natural disasters. It has a serious
influence on agriculture. In order to fairly evaluate meteorological disasters, three criteria are designed
in order to form the comprehensive indexing system of meteorological disasters. The problem of how
to solve for the weights is converted to a single constraint optimization problem. A novel algorithm
is proposed to solve for the weights of the criteria. An evaluation model—based on the proposed
algorithm and the TOPSIS—is proposed to estimate the agricultural meteorological disaster of 2008
in China.

In order to validate the performance of the proposed algorithm, 11 testing benchmark functions
are selected. The experimental results have indicated that the proposed algorithm is competitive when
compared with ATMES, TC, YK, ISR, and HS. The weights of the disaster criteria are obtained by
the proposed algorithm. The evaluation results have indicated that the agriculture meteorological
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disaster of 2008 was serious, especially in Hunan Province, Hubei Province, Shanxi Province, and the
Ningxia Autonomous Region. The snow had a great influence on Hunan Province and Hubei province.
Suggestions are provided to relieve agriculture meteorological disasters.
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