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Abstract: With the growing interest in studying the characteristics of people’s access to the food
environment and its influence upon individual health, there has been a focus on assessing individual
food exposure based on GPS trajectories. However, existing studies have largely focused on the overall
activity space using short-period trajectories, which ignores the complexity of human movements
and the heterogeneity of the spaces that are experienced by the individual over daily life schedules.
In this study, we propose a novel framework to extract the exposure areas consisting of the localized
activity spaces around daily life centers and non-motorized commuting routes from long-term GPS
trajectories. The newly proposed framework is individual-specific and can incorporate the internal
heterogeneity of individual activities (spatial extent, stay duration, and timing) in different places
as well as the dynamics of the context. A pilot study of the GeoLife dataset suggests that there are
significant variations in the magnitude as well as the composition of the food environment in different
parts of the individual exposure area, and residential environment is not representative of the overall
foodscape exposure.

Keywords: foodscape exposure; activity space; commuting route; space-time kernel density
estimation; time-weighted exposure; Beijing

1. Introduction

The relationship between the built environment and individual health has long been of interest
to the public and researchers [1]. Within nutritional and epidemiological research, substantial focus
has been placed on uncovering the spatial inequalities of the food environment (“foodscape”) and
measuring their effects on personal health outcomes as well as eating behaviors such as obesity, body
weight, body mass index (BMI), and food consumption [2–6]. Historically, most studies characterized
the food environment solely based on the residential neighborhood including administrative units
and residence-based buffers [7]. Such choices were primarily due to the availability of censuses and
surveys data that can be easily used to estimate the population health [8]. However, the spatial extent
of a neighborhood was individual-specific, and the artificially designated neighborhood often failed to
coincide with the observations [9,10]. Indeed, people are not bound to their neighborhoods: they move
around to perform their routine activities and may encounter different types and levels of resources in
their activity locations [11].

The popularity of location-aware devices, geo-sensor networks, and web-based mapping tools
enables us to objectively collect detailed data on human movement, which is a favorable step towards
the refined assessment of environmental exposure accounting for daily mobility [12]. Recently,
a growing body of studies have used GPS-based travel surveys to measure the food exposure
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and have made great progress in re-examining the effects of non-residential contexts in foodscape
exposure [13–15]. For example, Christian et al. (2012) compared neighborhood-based food exposure
with activity-based food exposure and found that 83.4% of the participants encountered very
different food environment in their daily travels compared with the residential neighborhoods [16].
Conventionally, the majority of the current literature have generally used the short-termed GPS data
and adopted the overall activity space—the subset of all the locations within which an individual
has direct contact as a result of his or her day-to-day activities—to conceptualize the environment
experienced by the individuals [17]. They employed exhaustive GPS logging points and generated a
uniform geospatial boundary in the form of standard deviation ellipse (SDE), daily path area (DPA),
kernel density surface or minimum convex polygon (MCP) to represent the exposure area [18–20].
However, this approach has some limitations.

The widely-used overall activity space ignores the internal heterogeneity of its component places
and the complexity of daily movement [21,22]. Basically, human activities are multi-centered [23].
The daily life centers (also termed anchor points) are usually composed of the places where people
organize their daily activities (e.g., home) and to which people are relatively obligated to go (e.g.,
workplace) [24]. Each anchor point serves an aspect of daily life for the individual (e.g., dwelling,
working, schooling, and recreation) and in turn the activities around these places have different
spatial patterns and temporal rhythms such as the spatial extent people move around, the activity
duration and the timing of these activities, which are very relevant to quantify the individual
exposure [8]. Nevertheless, the uniform spatial delimitation of the overall activity space usually
involves a considerable part of unexperienced areas that the participant rarely visits and would
indirectly give rise to the overestimation of individual exposure [25]. Moreover, this uncertainty
is particularly evident in the short-period GPS studies, wherein the observation window of a few
days could hardly capture the relevant geographic contexts that an individual encounter and may
import some occasional travels in this period [26,27]. To address this issue, a promising solution is to
differentiate GPS data based on the characteristics of the activities practiced at different places and
reconstruct the multiple contexts from the long-term GPS data [28]. Despite the advance in theory,
little progress has been made in practice to incorporate the spatial extent and temporal patterns of the
individual activities into the foodscape exposure assessment in a multi-context environment from GPS
data [29].

The overall activity space also ignores the heterogeneity of the transportation modes of individual
commuting behavior [30]. To date, numerous GPS-based studies have simply utilized all the traveling
paths to model the exposure areas and failed to account for the transportation modes [20,31,32].
However, people within high-speed vehicles or underground transport tend to isolate themselves from
the outside environment, and therefore have less opportunity to access food outlets without the vehicle
stopping and them getting out [30]. To this end, it will be more reasonable for researchers to investigate
the individual foodscape exposure along the commuting journeys based on the non-motorized trips
rather than the entire paths [24,30].

In this paper, we proposed investigating individual foodscape exposure from the long-term GPS
trajectories using a novel framework to incorporate the localized activity spaces around the daily life
centers (residence, workplace and other major places) and non-motorized commuting routes across
these places (Figure 2). To address this issue, we first integrated the density-based spatial clustering
of applications with noise (DBSCAN) and the space-time kernel density estimation (ST-KDE) to
identify clusters of frequently visited places [33,34]. A supervised machine-learning method, namely,
the stochastic gradient descent (SGD) classification, was later used to extract the non-motorized
segments [35]. Then, the clusters of frequently visited places and non-motorized commuting routes
were used to construct the exposure areas. Finally, a case study in the Beijing metropolitan area
was conducted to explore the characteristics of food environment exposure around the residence,
workplace, other major places, and along the commuting journeys from a long-time perspective.
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2. Study Dataset

The study area consisted of the urban area and three suburb districts with dense residential
communities or industrial parks (Huilongguan, Dongxiaokou and Yizhuang) in Beijing, with an area
over 1473 km2 (Figure 1). The GPS dataset was part of the GeoLife project by Microsoft Research
Asia (MSRA) in Beijing [36]. The preliminary dataset contained 17,621 GPS trajectories collected by
182 volunteers from a period of over five years (from April 2007 to August 2012). In the data collection
program, a great portion of participants (n = 107) remained living in the study area, while some of
the others only stayed in Beijing for a few months and then migrated from/to other cities later. The
GPS loggers used in the project were handheld GPS receivers including Magellan Explorist 210/300,
G-Rays 2 and QSTARZ BTQ-1000P. In general, the sampling rate of the GPS loggers was two seconds
and the positioning accuracy was more than three meters. In this dataset, a GPS trajectory was a
time-stamped sequence of GPS points pi = (xi, yi, ti), where xi, yi and ti represented the latitude,
longitude and time-stamp, respectively. Typically, each trajectory recorded one complete trip of
individual movement in the outdoor space, such as going to work, going home or leisure activities, and
a considerable part of the trajectories were annotated with transportation modes by the participants
(9813 tracks from 73 users).
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The points of interest (POIs) dataset were obtained from the AutoNavi Map, a Chinese navigation
and location-based service provider. The dataset was collected in 2012 and was the only POI data
available to us, which contained various types (22 groups, 728 classes) of POIs, such as the commercial
facilities, hospitals, schools, and residential communities in Beijing. After online validations of the POIs,
we classified the food services into five categories for exposure estimation, namely, convenience stores,
fast food outlets, supermarkets, restaurants, and vegetable and fruit stores based on the Standard
Industrial Code (SIC). Furthermore, the road and public transport datasets were supplied from the
Beijing Municipal Commission of Transportation [37].

3. Methodology

As shown in Figure 2, the proposed framework was composed of four phases, namely, the data
pre-processing phase, significant places extraction phase, non-motorized commuting paths extraction,
and exposure area construction phase.
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Figure 2. The methodology flowchart.

3.1. Identification of Significant Places

Several criteria were developed to reduce the spatial drift and data insufficiency in the
pre-processing stage. GPS trajectories or points that satisfied the following criteria were removed:
(1) GPS points further than 500 m from their consecutive points; (2) GPS trajectories with less than one
minutes traveling time; and, (3) GPS points located outside the study area.

3.1.1. Step 1: Extraction of Activity Locations

As a single GPS point has no semantic information, we first extracted human activity from the
GPS trajectories, which was defined as a meaningful location where people spent their time [38].
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As illustrated in Figure 3, two situations should be considered to extract human activities: one case
was that an individual roamed around a geospatial region for a certain period like visiting a park; and
the other situation was that a user stayed at a fixed location exceeding a time threshold, like entering
a building [39]. Furthermore, it should be noted that for the latter case, there were some random
movements in the GPS records due to the inaccuracy of the GPS loggers even if the participant did not
move [40]. Therefore, a human activity could be detected if the sub-trajectory from point pm to point
pn satisfied the following constraints:

Dist(pm, pn)< Dmax && Td(pm, pn) >Tmin (1)

where Dist(pm, pn) refers to the Euclidean distance between pm and pn. Td(pm, pn) refers to the
timespan of the sub-trajectory. Dmax and Tmin are the two tuning parameters corresponding to
the spatial range and dwelling time, respectively. In this study, we followed previous studies to
use a distance threshold of 200 m and a time threshold of 20 min [41,42]. The centroid of the
sub-trajectory—interpreted as a human activity—was used to represent the activity location [41].
In addition, the origins and destinations (ODs) of travels over one hour were also obtained due to their
significance in mining individual activity patterns. As the individual stay activities are not bound to
the street, in this stage, we did not match the activity locations to the street network.
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3.1.2. Step 2: Detection of Significant Place Candidates

In the next step, ST-KDE was integrated with DBSCAN to identify individual significant places
according to the space-time proximity of the activity locations. By extending two-dimensional (2D)
kernel density estimation to the three-dimensional (3D) form that accounts for time dimension, ST-KDE
provides an efficient way to interpret the space-time patterns of point events and lifts our ability to
reveal the spatio-temporal hotspots [43]. In this study, the input was the activity locations obtained in
Step 1, and the output was a raster volume where each space-time cube C(x, y, t) was assigned a density
estimation. For each cube, the space-time density f̂ (x, y, t) was estimated using the following formula:

f̂ (x, y, t) =
1

nb2
s bt

n

∑
i=1

ks

(
x − xi

hs
,

y − yi
hs

)
kt

(
t − ti

ht

)
(2)

where n is the number of the activity locations. hs and ht are the spatial and temporal bandwidths,
respectively. ks and kt are the space and time kernel functions to determine the weight of point
Pi(xi, yi, ti) according to its space-time distance to the cube centroid P(x, y, t). In particular, the
Epanecknikov kernel was utilized as a result of its good fitness to geographic phenomenon [44]. The
space-time K-function algorithm proposed by Delmelle et al. (2011) was adopted to find the optimal
bandwidths, and a pair of bandwidth (200 m, 1 day) was applied [45]. Figure 4a shows an example of
ST-KDE cube based on user #065’s activity locations.
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locations of #user 065. The base of the cube was the cumulative density by summing space-time density
on each layer together. (b) Schematic diagram of compressing the space-time density cube into the
space-time evenness grid.

To identify significant places from the long-term GPS dataset, we proposed a space-time evenness
index (STEI) to measure the spatio-temporal dispersion of the activity locations by compressing the
human activity intensities into a continuous surface (Figure 4b). For each cell Gridi, we got the STEI
value by calculating the coefficient of variation (CV) of all of the space-time density with the same
spatial base. The formulas are:

STDi =
∑T

t=1 STDit
T

(3)

δi =

√
∑T

t=1
(
STDi − STDit

)2

T
(4)

STEIi =
δi

STDi
(5)

where STDi refers to the mean of cumulative space-time density on Gridi within the observed period
T, and STDit refers to the space-time density for Cubei on day t. STEIi refers to the variation of
activity intensity on Gridi, whereas the small value of STEI indicated an even temporal distribution
of day-to-day activities, and a large value of STEI appeared when there existed only explosive visits
in a short period of time. Therefore, the indicator could be employed to approximately detect the
significant places from a long-time perspective. As the output of STEI was raster-based, which may
give rise to the inaccuracy in detecting the significant place candidates, the hotspot areas were first
extracted from the STEI surface and DBSCAN was further used to incorporate the evidence from space,
as well as refining the spatial precision. Finally, the activity clusters intersected with or bounded by the
hotspot areas in the space-time evenness surface were considered as the candidates of significant places.
Figure 5 shows an example of the identification of significant places by combining the space-time
evenness grid with the clustering result.
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3.1.3. Step 3: Labeling of Significant Places

To label the significant place candidates with semantic tags (e.g., residence and workplace), we
first ranked the candidates of significant places by the frequency of reoccurrence and stay duration,
then the use of places across the day were compared. The place where the individual spent the night
(8:00 p.m.–6:00 a.m.) in most cases was marked as the residence and the workplace was identified
when activities in a particular region demonstrated a dense distribution in working/school hours
(8:00 a.m.–12:00 a.m. and 2:00 p.m.–6:00 p.m.) [46–48]. In short-period GPS studies, this method may
introduce theoretically possible issues of people who work nightshift or those who had strong social
ties to stay overnight with other families or friends [49]. To resolve the former issue, we compared
the candidate of residences and workplaces with related POIs. For the latter issue, our method was
based on the evidence from long-period observations and could filter out places that the participant
had visited sparsely. Theoretically, some participants may spend most of their nighttime at others for a
long period. In that case, these places played the role of home and were regarded as the residences.
The candidate places except for the residences and workplaces were matched to the POIs dataset to
determine their attributes, and these places were collectively termed as other major places.

3.2. Extraction of Non-Motorized Routes

GPS trajectories across the significant places were split into segments to extract the non-motorized
commuting routes. Typically, a new segment was created if the time difference between two consecutive
points was greater than five minutes [50]. To detect the transportation modes, the support vector
machine (SVM) classification, which is a common approach to infer transportation modes from raw
GPS trajectories, was adopted [51]. In this study, a linear kernel was chosen as the basis for the
hyperplanes due to its short training time and feature transformation computation simplicity [52,53].
The SGD classifier, an efficient implementation based on a linear SVM, was then used to extract the
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non-motorized segments [35]. For each segment, four kinds of features, namely, speed, bearing change,
distance, and duration were employed to construct the classifier [54]. The feature extraction of speed
and bearing change was based on the cumulative statistics of the constituent GPS points rather than
the features of the segment as the mean, minimum and maximum of these variables fail to reflect
the actual distribution in many cases [49]. For instance, to obtain the speed features, a cumulative
histogram was created to record the speed distributions (cumulative speed and the amount of time
spent at them) and the speed where the cumulative value surpassed 10% to 90% of time were extracted.

To train the classifier, the user-annotated transportation modes were aggregated into four
categories: airplane, train, motorized mode and non-motorized mode based on the similarity of
the movement features. The train label included data marked as the train and subway. The motorized
mode was a combination of taxi, bus, and car. The non-motorized mode was composed of walk,
run and bike. To validate the accuracy of the classification, one half of the annotated segments were
randomly selected as the training samples and the others were used as the validation data. The results
showed that the classification precision of non-motorized trips was up to 93%, which was a quite
high value when compared with similar studies and could meet the study requirements [55]. Once
the classifier was validated, we used it to classify the remaining dataset. Some post-processing steps
were further employed to adjust the isolated segments surrounded by tracks labeled with different
transportation modes and merge adjacent segments with the same transportation mode. Moreover,
the motorized and non-motorized commuting paths across the significant places were matched to the
road network using Graphhopper, respectively.

3.3. Construction of Exposure Area

Before describing the construction method of the exposure area, we have to define the localized
activity spaces and the non-motorized path areas that are mentioned in this paper. In light of the overall
activity space, the localized activity spaces (residential space, workspace and other major spaces)
were defined as “the subset of locations visited by an individual over a given period, corresponding
to her/his exhaustive spatial footprint around the anchor points (residence, workplace and other
major places)”. This definition has been implicitly proposed by Chaix et al. (2012) to assess individual
mobility patterns [24]. The non-motorized path areas were defined as “the subset of locations with
which individuals have direct contact as the result of day-to-day non-motorized commuting behaviors”
with reference to the daily (potential) path area [20,56].

To model the localized activity spaces, three kinds of geometry were created based on the notion
of activity space and home range, such as network-based street buffer (NSB), SDE, and MCP [57].
NSB were created using the three most widely-used radii (200 m, 500 m and 1000 m) around the
anchor points [58]. SDE and MCP were generated entirely based on the distribution of the activity
location clusters marked as the residences, workplaces, and other major places. To determine a proper
geographic representation for localized activity spaces, we evaluated the representativeness of these
definitions in terms of the ability to capture clustered activities, the ability to filter out unclustered
activities and the geometric area. Results indicated that MCP was superior to NSB and SDE in
characterizing individual activities in the local scale (see Table S1 and Figure S1 in Supplementary
Materials) and was used in later analysis. Furthermore, a 50 m buffer was further employed for the
non-motorized trips to represent the participants’ exposure area along their commuting routes, as it
could capture the food outlets that were accessible along the street [32]. The exposure area is composed
of the residential space, workspace, other major spaces, and the non-motorized commuting path areas.
Each part of the exposure area (e.g., residential space) has its spatio-temporal characteristics, such as
the spatial extent, duration, and timing of individual activities.

3.4. Food Environmental Exposure Evaluation

To evaluate the foodscape exposure, the count of food outlets, the Physical Food Environment
Indicator (PFEI) [59] and the diversity of average densities index (DADI) [60] were adopted to evaluate
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individual exposure to the food environment. PFEI is defined as the proportion of fast-food restaurants,
convenience stores and small food stores (merged into convenience stores in this study) to all outlets
in a certain region [59]. As fast-food restaurants and convenience stores are commonly classified as
unhealthy (less healthy) outlets, PFEI reflects the healthiness of local food environment [61]. The value
of the PFEI ranges from 0 to 1 and the higher the PFEI, the less healthy the food environment. The
DADI is defined in the entropy form and is often used to calculate the diversity of local food services:

DADI = −
n

∑
i=1

pi ×
ln(pi)

ln(n)
(6)

where n is the number of the food store categories in the area. pi refers to the ratio of the i-th category
food outlets. The value of DADI ranges from 0 to 1, where a higher level of the DADI indicated a more
diverse foodscape.

To incorporate the temporal dimension into the food exposure assessment, a time-weighted
contextual measure was introduced based on the stay duration an individual spent in multiple contexts
(residential spaces, workspaces, other major spaces and the commuting path areas) [62]. The following
formula was used to derive the time-weighted exposure measures:

TWEi =
n

∑
j=1

Dij × Wj (7)

where TWEi is the aggregated exposure to food services of the i-th category in multiple contexts. Dij
refers to the count of food outlets of the i-th category in the j-th place. Wj refers to the time weight for
the j-th place, which is calculated as the ratio of the stay duration in the j-th place to the average stay
duration in multiple contexts. Note that the time weight was determined strictly based on evidence
from the entire observation, rather than a fragmentary period or empirical assumptions. The temporal
constraints of food acquisition were further taken into account by matching the timing of individual
activities and the opening hours of the food outlets. Only food outlets in their operating time when the
individual activities took place were included in the assessment of food exposure.

4. Results

4.1. Description of the Study Sample

As shown in Table 1, the study samples (n = 107) were composed of full-time employees,
government staff, college students and research fellows [36,41]. Young people were the main GPS data
contributors and the average age of the participants was 24. The majority were between 22 and 30 years
old, accounting for 75% of study samples, and people younger than 22 and older than 30 contributed
16% and 9% of the data, respectively. The participants were gender balanced and their education
background ranged from undergraduate students to PhD holders.

As shown in Figure 6, most of the participants’ localized activity spaces were distributed in the
northern part of Beijing, especially in the area that is encompassed by the North 2nd Ring Road and
North 5th Ring Road. Moreover, there were evident separations between the spatial distributions
of different types of localized activity spaces. The residential spaces distributed dispersedly and the
majority were situated in the outer zones (outside the 3rd Ring Road). A considerable number of
participants had their residential spaces located in the new districts of urban development. In contrast,
the workspaces were mainly aggregated in the industrial parks and office zones such as Zhongguancun
and Yizhuang. Furthermore, the places where the individual regularly visited besides working and
living were either close to their residences or workplaces, and a small part of isolated places arose at
the commercial centers, like the Beijing Central Business District (Guomao), Wangjing and Sanlitun.
These findings were consistent with related studies [41].
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Table 1. Descriptive statistics of sample characteristics (n = 107).

Characteristic Percentage n

Age
≥30 9% 10
26–29 30% 32
22–25 45% 48
≤22 16% 17

Gender
Male 54% 58
Female 46% 49

Career
MSRA employees 18% 19
Employees of other companies 14% 15
Government staff 10% 11
College students and Researchers 58% 62
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4.2. Analysis of Foodscape Exposure in Multiple Context

Table 2 shows the characteristics of the food outlet numbers among each part the exposure areas.
In general, there were significant differences among the magnitude of food exposure in the residential
spaces, workspaces, other major spaces, and the commuting path areas. The number of all the food
outlets along the commuting routes (147.5) was 93% higher than that of the residence spaces (76.3),
and the food outlet numbers in workspaces (54.0) and other major spaces (41.5) were lower than that
of the residence spaces at percentages of 29% and 46%, respectively. This tendency was also tenable
when taking the categories of food outlets into consideration. However, the gap of foodscape exposure
among the localized activity spaces varied by food outlet types. For example, the greatest variations
of food outlets numbers that the participants were exposed to around their homes and workplaces
were found in restaurants and fast food outlets. As for the commuting routes and residential space,
convenience stores, and vegetable and fruit stores dominated the differences.



Int. J. Environ. Res. Public Health 2018, 15, 405 11 of 20

Table 2. Descriptive statistics of food outlets counts in residential space, workspaces, other major spaces, and commuting path areas (n = 107).

Category RS WS Difference at WS OMS Difference at OMS DPA a Difference at DPA a

All outlets Mean (SD) 76.3 (139.2) 54.0 (53.1) −29% *
41.5 (47.3) −46% *

147.5 (372.9)
+93%Range 292 282 245 379

Convenience stores Mean (SD) 6.5 (10.7) 5.2 (5.3) −21% *
3.8 (3.9) −42% *

15.3 (43.8)
+136% *Range 74 24 20 159

Fast food outlets Mean (SD) 14.9 (29.9) 10.4 (11.5) −30%
7.5 (9.9) −50%

25.2 (62.4)
+69%Range 116 65 67 114

Supermarket Mean (SD) 2.9 (5.0) 2.6 (2.4) −19%
2.3 (2.6) −30% *

5.2 (13.1)
+80% *Range 29 9 12 73

Restaurants Mean (SD) 43.0 (75.6) 29.5 (28.6) −32%
22.9 (26.3) −47%

82.9 (208.0)
+93%Range 198 139 131 427

Vegetable and fruit stores Mean (SD) 9.0 (20.9) 6.7 (8.2) −25% *
5.0 (7.0) −44% *

18.9 (48.6)
+110% *Range 41 45 32 104

Note: * Significant difference (ANOVA, p < 0.05) between the food outlets numbers in residential space and other localized activity spaces. a Food exposure of DPA were defined as
the sum of food outlets counted along the non-motorized commuting path areas. Abbreviations: RS-residential space, WS-workspace, OMS-other major space, DPA-non-motorized
commuting path area.
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Figure 7 shows the variations of PFEI, DADI, and the percentage of food outlet numbers in
different spaces. On average, the lowest level of PFEI was found in the residential spaces and the
commuting path areas (0.14), indicating that the participants encountered the healthiest foodscape
around home and along the commuting paths, except the few participants who lived near the 2nd Ring
Road. When compared with the residential spaces and the commuting path areas, the workspaces had
a greater level of PFEI (0.16) and the largest PFEI was observed in other major spaces (0.21).
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In addition, the diversity of the food environment in different spaces demonstrated similar
patterns with PFEI: the largest DADI was found in other major spaces (0.82), followed by the
workspaces (0.77), commuting path areas (0.75), and residential spaces (0.74). Furthermore, the
percentage of food outlets in different parts of the exposure area demonstrated a broad range of
variations (0.2–0.7), suggesting that there were great variations in the contribution of food exposure in
different spaces. However, on the whole, the commuting path areas, residential spaces and workplaces
made up the largest part of the foodscape in the participants’ daily life, and the ratio of food outlets in
other major spaces was quite small.

Table 3 shows the correlation coefficients of food outlet numbers in the residential spaces related
with the workspaces, other major spaces and commuting areas, using the Spearman-Rank analysis
method. No significant correlations of food exposure between these places were observed, except for
the convenience stores in the residential spaces and workspaces, where the relationship was weak
(0.33). This result indicated that the foodscape in the residential spaces could hardly characterize the
overall environment.
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Table 3. Correlation of food outlet counts in residential space (RS), workspace (WS), other major space
(OMS), and the non-motorized commuting path area (DPA) (n = 107).

Food Outlet Type RS × WS RS × OMS RS × DPA

Convenience stores –0.02 0.33 ** 0.10
Fast food outlets 0.10 0.09 0.01

Supermarket –0.10 0.21 0.08
Restaurants 0.11 0.04 –0.04

Vegetable & fruit stores –0.10 –0.05 –0.05
All food outlets 0.06 0.07 –0.02

Note: ** p < 0.01.

4.3. Analysis of Overall Foodscape Exposure

Figure 8 shows the time distribution of individual daily activities in different spaces. There were
three activity peaks in the residential spaces during the day, namely, 7:00 a.m.–9:00 a.m.,
12:00 p.m.–1:00 p.m., and 5:00 p.m.–8:00 p.m. Additionally, a less activity peak was found near
midnight (10:00 p.m.–1:00 a.m.), which implied that the participants were more likely to interact
with the food outlets around the residences during these periods. The workspace shared similar
activity patterns with the residential space, but its magnitude was relatively smaller, except during
rush hours (8:00 a.m.–10:00 a.m.). The leisure activities were flourishing during the valley period of
home and work-related activities (10:00 a.m.–11:00 a.m. and 4:00 p.m.–5:00 p.m.).
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Figure 9 shows the average food outlets numbers of the overall foodscape exposure. The classic
exposure, or Classic-E, was the average of the food outlets numbers in the residential spaces,
workspaces, other major spaces and non-motorized commuting path areas for each of the participants.
The time-weighted exposure, or TW-E, was calculated as the cumulative sum of the product of the
food outlets numbers in each space and the proportion of stay duration. The time-weighted exposure
with temporal constraint, or TWE-TC, was the extension of TW-E by incorporating the timing of the
activities and the opening hours of nearby food outlets.

On average, the participants were exposed to 6.19 convenience stores, 11.75 fast food outlets,
2.49 supermarkets, 35.98 restaurants, and 7.99 vegetable and fruit stores in the spatial dimension.
Taking the stay duration and temporal constraints into consideration, the number of food outlets
changed disproportionately. A typical case was the supermarkets and restaurants based on the criteria
of TW-E and TWE-TC, the number of restaurants declined from 56.60 to 44.17 when we matched the
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timing of individual activities and the opening status of restaurants the participants went by, whereas
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Figure 9. Average food outlet counts of the overall foodscape using Classic-E, TW-E, and TWE-TC,
stratified by food outlet types.

Figure 10 shows the density curves of the food outlets numbers in the overall environment by type,
based on TWE-TC. The majority of the participants were exposed to a small number of supermarkets,
convenience stores, vegetable and fruit stores, and the overall exposure to over 16 outlets of these types
was rare. When compared with other kinds of food outlets, the restaurant distribution was broader and
shifted to the right, indicating that there were great variations in the number of accessible restaurants
among the participants. On the other hand, although numerous participants held wide-range exposure
areas that contained a considerable number of food outlets that seemed to be accessible, the majority
only witnessed a few food outlets when taking the stay duration and temporal constraints into
consideration (Figure 6).
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5. Discussion

5.1. Main Findings

As the pilot study showed, there were considerable variations in the magnitude of food
outlets between the residential environment (residential space) and the non-residential environment
(workspace, other major spaces and the commuting path areas) from the perspective of space (Table 2).
When compared with non-residential context, the residential environment only contributed a small part
to the overall foodscape exposure, more specifically, the food outlets numbers in the residential space
were even smaller than that along the non-motorized commuting routes. In addition, the composition
of the food outlets varied by spaces (Figure 7). In general, the percentage of fast food restaurants and
convenience stores was the lowest in the residential space and the non-motorized commuting path
areas. Other major spaces encountered the highest ratio of these two kind food outlets, followed by
the workspace. Similar patterns were also found in the diversity of food outlets. Nevertheless, the
quantity of food outlets in the residential space and other non-residential areas were poorly correlated.
These findings indicated that the foodscape exposure was heterogeneous in different spaces and the
foodscape exposure in the residential environment could hardly represent the overall foodscape that
people encountered while engaged in their routine activities [7,11]. Perhaps this could explain why
neighborhood effects based on the residences were often weak and even insignificant [63]. A different
finding from prior neighborhood-based literature was the difference of the quantity of food outlets
between the residence and workplace, where the number of food outlets in the workspace was greater
than that in the residential space [64,65]. This was partly because the participants’ localized activity
spaces were individual-specific and the size of workspaces was smaller than that of the residential
spaces in many cases (see Table S2 in Supplementary Materials), while in the literature, the same sized
neighborhoods were assigned to the home and workplace [8].

The variations of foodscape exposure in different spaces may be related to the jobs-housing
separations in the area [66]. The demographic census in 2013 showed that 51.1% of the resident
population in Beijing were gathered outside the 5th Ring Road, whereas 70% of the residents were
employed inside the 4th Ring Road [67]. Similar patterns were found here: as shown in Figure 6,
numerous participants lived in the outer areas and worked in core areas. Additionally, the structure
of foodscape in these places varied greatly. For example, other major spaces where the participants
conducted their leisure activities were mainly distributed in the major business centers of the city
and the commercial streets, so that the variety of the food outlets and the proportion of fast food
restaurants were comparatively higher. In contrast, the residential spaces were mainly located near
the residential communities and the proportion of fast food restaurants was smaller. Moreover, the
jobs-housing separations gave rise to the long-distance commuting journeys and indirectly provided
the opportunity for individuals to interact with the foodscape outside their residences and workplaces.

Taking stay duration and temporal constraints into consideration, most of the participants were
exposed to only a small number of food outlets during their routine activities. Restaurants were the
main difference in the overall foodscape exposure in the study sample. Although the participants
encountered a larger number of food outlets along the commuting routes, the commuting time was
shorter when compared with their stay durations in the residential spaces and workspaces, so that their
contribution decreased correspondingly (see Table S2 in Supplementary Materials). These findings
suggested that relying solely on the spatial dimension would likely lead to the mischaracterization of
the overall foodscape exposure and therefore attenuated the associations between exposures and health
outcomes [22]. In addition, when incorporating the timing of individual activities and the operating
hours of the food services, the number of food outlets that were accessible changed disproportionately
by type. On average, the number of restaurants and vegetable and fruit stores decreased by 22% and
8%, respectively, while the number of supermarkets only declined by 4%. This phenomenon was
probably related to the way of the individual life and the regularity of the business. For example, if
a full-time worker started off early in the morning and returned home late in the evening, he/she
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might need to purchase food on the way to work or home. In this period, many restaurants did not
operate (especially for those that did not provide breakfast or closed early in the evening), whilst most
supermarkets were open, thereby shaping the foodscape dynamically.

5.2. Strengths and Limitations

One major highlight of the proposed framework was that the proposed exposure area could
capture the non-residential environment experienced by the individuals during their daily movement.
The size of the exposure area was individual-specific and was determined by the distribution of
individual daily activities. This differs from conventional place-based methods where the exposure area
was mostly defined as a static neighborhood [7]. In this study, the proposed framework constructed
the exposure area by integrating the local activity spaces (e.g., residential spaces and workspaces) and
the commuting path areas. Furthermore, the commuting path areas were created entirely based on
non-motorized commuting routes rather than the entire trips that involved a mix of transportation
modes. This is a step toward the refinement of measuring the foodscape exposure and may potentially
reduce the uncertainty of modeling the interaction between the individual and the food environment
along the commuting paths [28].

Another strength of the proposed framework was that it enabled us to incorporate the space-time
heterogeneity (spatial extent, stay duration, and timing) of individual behaviors in different spaces and
the dynamics of the surrounding food environment. This is particularly important as the contextual
exposure varies by places and time, whilst individual activities around different daily life centers (e.g.,
home and workplace) had various space-time patterns (Figure 8). Moreover, the adoption of long-term
GPS data was superior to the short-period data in understanding the persistence of human activity
patterns over time, and helped to differentiate the significant places visited at a high frequency and
journeys from those that were rarely visited. This is a further exploration on addressing the uncertain
geographic context problem (UGCoP) caused by the overall activity space, where the frequency,
duration and temporality of individual daily activities were overlooked [27,68].

There were, however, several limitations in this study that can be attributed to the data quality
and study design. First of all, the proposed method was procedure-oriented, and in some phases,
parameters were needed (e.g., the space-time thresholds to define a human activity, the parameter to
define activity clusters and the distance to define the commuting path areas). Although there have
been numerous approaches specializing in the parameter selections that can be inferred to, simple
combinations of these methods designed for different purposes may not always find the appropriate
parameters, which would more or less bring about uncertainty in the construction of the exposure area.

Secondly, the adoption of stay duration in measuring multiple contexts of food exposure also
needs reconsideration. Although the use of time-weighted exposure measure was commonsense
in environmental studies, using the cumulative sum of food outlets numbers multiplied by the
time-weight to measure the overall exposure remains to be verified [62]. More studies to further our
understanding of the relationship between cumulative foodscape exposure and the stay duration
are expected.

Another limitation to this study was related to the data quality of the dataset. The small samples
limited the power to reveal the differences of foodscape among different spaces, and the restricted
demographic scopes of the sample limited the generalizability of the findings. For example, due to the
clustering of the participants in space, overlaps of the residential spaces and workspaces were found
in the study sample, and therefore raised concerns about the spatial autocorrelations. The introduction
of geographically weighted regression and spatial econometric approaches may resolve this issue.
Nevertheless, as the POI dataset in 2012 was the only data accessible, information about the food
outlets (e.g., operating status and opening hours) were not in step with individual activities timely. All
of these issues should be considered in the next step.
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6. Conclusions

This study explored the use of long-term GPS data in investigating individual foodscape exposure.
To derive the exposure area, a novel framework based on the space-time proximity of individual
physical activities was proposed to extract the localized activity spaces around daily life centers
and the non-motorized commuting routes. When compared with conventional methods, the newly
proposed exposure areas were individual-specific and could incorporate the internal heterogeneity
of individual activities (spatial extent, stay duration, and timing) and the dynamic of the context.
The pilot study in Beijing suggested that there were significant variations in the magnitude as well
as the composition of food outlets in the exposure area, and the cumulative foodscape exposure
far outweighed the food exposure that experienced by the individual in the residential space alone.
Furthermore, restaurants were the main differences of the overall foodscape exposure among the
participants. In the future, we will improve the robustness of the proposed method and implement our
framework into a dynamic model for more researchers to use. Spatio-temporal clustering and other
classification methods will be involved in processing the long-term GPS datasets. In addition, if data
are available, much deeper research will be conducted to reveal the relationship between public health
and the foodscape exposure accounting for the internal heterogeneity of individual movements and
the temporal dynamics of the food environment.

Supplementary Materials: The following are available in the http://www.mdpi.com/1660-4601/15/3/405/s1.
Figure S1: Results of different representation methods of localized activity spaces. Table S1: A summary evaluation
of representativeness of the localized activity spaces. Table S2: Spatial extent, average stay duration, and frequency
of stay activities around the anchor places and along the commuting routes (n = 107).
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