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Abstract: The recent decades have witnessed refrigeration systems playing an important role in
the life of human beings, with wide applications in various fields, including building comfort,
food storage, food transportation and the medical special care units. However, if the temperature
is not controlled well, it will lead to many harmful public health effects, such as the human being
catching colds, food spoilage and harm to the recovering patients. Besides, refrigeration systems
consume a significant portion of the whole society’s electricity usage, which consequently contributes
a considerable amount of carbon emissions into the public environment. In order to protect human
health and improve the energy efficiency, an optimal control strategy is designed in this paper with
the following steps: (1) identifying the refrigeration system model based on a least squares method;
(2) tuning an initial group of parameters of the proportional-integral-derivative (PID) controller via
the pidTuner Toolbox of Matlab; (3) using an intelligent algorithm, namely fruit fly optimization
(FOA), to further optimize the parameters of the PID controller. By comparing the optimal PID
controller and the controller provided in the reference, the simulation results demonstrate that the
proposed optimal PID controller can produce a more controllable temperature, with less tacking
overshoot, less settling time, and more stable performance under a constant set-point.

Keywords: environmental health; energy saving; refrigeration system; fruit fly optimization
algorithm (FOA)

1. Introduction

Nowadays, refrigeration systems play an essential part in the daily life of human beings.
Controlling the temperature by refrigeration techniques is involved in various areas such as human
comfort, food storage, food transportation and the environment [1]. However, the systems have to
work in the manner of moving the heat from a cold reservoir to a hot reservoir [2], requiring high
energy consumption. With the development of the society and the urbanization process, refrigeration
techniques are applied everywhere, which causes an acceleration of the growth of the carbon emissions
around the world [3]. According to the surveys, almost 30% of the energy consumed all over the world
is utilized for Heating, Ventilating, and Air Conditioning (HVAC) [4], while refrigerators account for
about 28% of all the energy consumption of a typical US family [5].

Owing to the fact that refrigeration systems are closed cycles, their elements are connected with
diverse valves and pipes, which leads to a strong nonlinearity [2], which adds to the dynamic modeling
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difficulties. Plus, the coupling characteristics increase the difficulty of the design of a controller for the
system. All these characteristics of refrigeration systems make their temperature control challenging,
and inefficient control strategies may even cause the problem of temperature fluctuation. When the
temperature of the environment where people live varies from time to time, it’s very likely for those
people to get ill, and this is bad for public health.

To solve the problem of saving energy and improving the refrigeration effect, efficient control
strategies are of great importance [6]. Several methods have been used for the control of refrigeration
systems. In Ma’s and Bayram’s studies [7,8], fuzzy logic control was applied to control the temperature
of a refrigeration system, while in Pedersen’s study [9], a neural network is combined with a gain
scheduling-based PI controller to control the overheating of a refrigeration system. In addition,
in Yin’s and Schalbart’s studies [10,11], MPC controllers are utilized to control refrigeration systems,
and a L-Band SBQP-Based MPC control scheme has also been applied to control two different
devices in a supermarket refrigeration system [12]. Although all these control strategies achieve a
satisfactory control performance, they have the same disadvantage, which is complexity. For example,
to implement a MPC scheme, a great amount of calculation is required, which needs to be performed
by a high-performance computer, and this makes the application of MPC schemes hard to realize [13].

Proportional-Integral-Derivative (PID) controllers have been widely used in industrial applications
for a long time for their simple structures, accuracy and degree of stability performance [14], thus they
can also be used for the control of refrigeration systems. Generally speaking, there are two ways to
tune a PID controller, which are analytically and numerically [15]. However, due to the coupling of the
refrigeration system, the controller consists of two PID controllers and this constitutes a MIMO process.
As a result, there will be six parameters that need to be determined, which makes the controller hard
to tune.

The fruit fly optimization algorithm (FOA), proposed by Pan in 2011 [16], is a kind of stochastic
optimization algorithm that selects a result with certain rules. With the merits of fast convergence
and easy programmability, it is widely used to solve optimization problems [17–19]. To this end,
a fruit fly optimization algorithm is applied to tune and optimize the parameters of a refrigeration
controller in this paper. The position of each fruit fly stands for a set of parameters of the controller,
and with iteration, the fly swarm will finally arrive at a location with the best smell concentration [20],
which represents the set of parameters possessing the best control performance.

To summarize, this paper: (1) identified the transfer function the refrigeration system model;
(2) uses FOA to optimize the parameters of the PID controller based on the identified model; (3) uses
the optimal PID controller to control the refrigeration system model. This paper is organized as follows:
in Section 2, the model of the refrigeration system is described and the control problems are analyzed,
while in Section 3, the transfer function of the refrigeration system is identified, the RGA paring is done
to analyze the relationship between the system variables, and the parameters of the PID controller for
the identified model are optimized. In Section 4, the optimal PID controller is put into use to control
the refrigeration system, and conclusions are drawn in Section 5.

2. System Description

2.1. Model Description

The refrigeration system model in this paper, based on vapor compression, is proposed in
Bejarano’s study [2]. The system consists of a compressor, a condenser, an expansion valve, and an
evaporator, and the composition of the system is shown in Figure 1 [2]. The goal of this system is
to remove the heat in the secondary flux of the evaporator and then deliver it to the secondary flux
of the condenser. The system is based on an inverse Rankine cycle, and it works as follows: firstly,
the refrigerant flows through the evaporator under low temperature and low pressure conditions.
In this way, the heat in the evaporator secondary flux is removed. Then, the temperature and
the pressure of the refrigerant are increased with the help of the compressor, and then it enters
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the condenser. The temperature of the refrigerant decreases after it flows through the condenser,
and during this process, it may become a sub-cooled liquid. Finally the pressure and the temperature
of the refrigerant decrease again after flowing through the expansion valve, and the next round of the
cycle will start once it enters the evaporator.
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Figure 1. The composition of the refrigeration system.

As illustrated in Figure 1, this system is a MIMO system, where by manipulating the two variables
Av (the opening percentage of the expansion valve) and N (the speed of the compressor), another two
variables Te,sec,out (the outlet temperature of the evaporator secondary flux) and TSH (the degree of
superheating) are controlled. All the other variables are the disturbances of the system. The range and
the initial values of the variables in the system are displayed in Table 1, according to [2].

Table 1. Variables in the refrigeration system.

Variable Description Range Initial Value Units

Av The valve opening [10~100] 50 %
N The compressor speed [30~50] 40 Hz

Tc,sec,in Inlet temperature of the condenser secondary flux [27~33] 30 ◦C
.

mc,sec Mass flow of the condenser secondary flux [125~175] 150 g·s−1

Pc,sec,in Inlet pressure of the condenser secondary flux – 1 bar
Te,sec,in Inlet temperature of the evaporator secondary flux [−22~−18] −20 ◦C

.
me,sec Mass flow of the evaporator secondary flux [0.0075~0.055] 64.503 g·s−1

Pe,sec,in Inlet pressure of the evaporator secondary flux – 1 bar
Tsurr Compressor surroundings temperature [20~30] 25 ◦C

Te,sec,out
The outlet temperature of the evaporator

secondary flux [−22.1~−22.6] −22.1 ◦C

Tsh The degree of superheating [7.2~22.2] 14.65 ◦C

The model of the system is established by the switched moving boundary (SMB) method,
which was first proposed by McKinley and Alleyne in 2008 [21]. With different conditions of the fluid in
the heat exchanger, the model can be classified into different modes. As for the evaporator, the modes
are classified by the amount of superheated steam as is shown in Figure 2, and the conditions of the
condenser are categorized into five modes as illustrated in Figure 3 [22].
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2.2. Control Problems

The goal of the control design is to maintain the outlet temperature of the evaporator secondary
flux Te,sec,out and the degree of superheating TSH following their reference as accurately as possible.
The problems to designing the control strategy are listed below:

• Strong nonlinearity: Owing to the fact that the refrigeration system is a closed cycle, its elements
are connected with diverse valves and pipes, this leads to the result of strong nonlinearity,
which adds to the difficulty of dynamic modeling.

• High coupling: This makes the design of controller for this system complicated and challenging.
• Frequent disturbance: This requires the controller to have high robustness and be able to control

the system efficiently and accurately to restrain the effect of the disturbance.
• Constrained control variables: The control variables in this paper is the condenser speed and

the valve opening, and they are constrained between 30 Hz~50 Hz and 10~100%, respectively,
and this may cause the problem of controller saturation.
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3. Control Design

Owing to the fact that the refrigeration system is a nonlinear system, it’s hard to tune the
parameters of the controller with the original model. Thus, in this section, the refrigeration system is
identified as a linear model, and two PID controllers will be designed based on the identified model.
Fruit fly optimization algorithm (FOA) is used to optimize the parameters of the controller.

3.1. Transfer Function Identification

As illustrated in Figure 1, this system is a 2 × 2 MIMO system, where by manipulating the two
variables Av (the opening percentage of the expansion valve) and N (the speed of the compressor),
another two variables Te,sec,out (the outlet temperature of the evaporator secondary flux) and TSH (the
degree of superheating) are controlled. As a result, it can be described as a model with two inputs,
two outputs, and four transfer functions. The structure of the identified model is shown in Figure 4.
G11 presents the transfer function from Av to Te,sec,out, G21 represents the transfer function from Av to
TSH, G12 presents the transfer function from N to Te,sec,out, G22 represents the transfer function from N
to TSH. The process of system identification is as follows:

Firstly, a step signal is set on Av, while N is kept as a constant, and the step response of Te,sec,out

and TSH are obtained. Then, a step signal is set on N, while keeping Av as a constant to obtain the
system response of Te,sec,out and TSH. Finally, the step response curves are analyzed by the System
Identification Toolbox of Matlab to identify the system. The comparison of the step response curves is
drawn in Figure 5, and we get the transfer functions as follows:

G11 = −2.501s−0.4769
s2+67.23s+25.15

G12 = −0.003443s−0.0003653
s2+6.699s+0.2273

G21 = −2.713s−0.07687
s2+6.828s+0.2601

G22 = 1.145s+0.0249
s2+7.046s+0.1668

(1)
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For all the identified transfer function, the fitness values are all more than 99%. As a result,
the identified model can be an ideal linearized model for the refrigeration system.

3.2. RGA Paring

The relative gain array (RGA) which is recommended in [23], is a helpful tool for analyzing the
interaction of the variables in a system. Setting s to 0, we get the steady state matrix of G11, G21, G12 and
G22 in (2):



Int. J. Environ. Res. Public Health 2018, 15, 2865 6 of 15

A =

[
G11|s→0 G12|s→0

G21|s→0 G22|s→0

]
=

[
−0.0190 −0.0016
−0.2955 0.1493

]
(2)

and the RGA matrix is calculated by (3):

RGA = A·
(

A−1
)T

(3)

For the identified system, the RGA matrix is given as (4):

RGA =

[
λ11 λ12

λ21 λ22

]
=

[
0.8563 0.1437
0.1437 0.8563

]
(4)
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According to [23,24], the bigger the RGA matrix element is, the stronger the relationship between
the system input and output. As is shown in (4), the RGA elements λ11 and λ22 are much larger than
λ12 and λ21, this indicates that there is a stronger relationship between Av and Te,sec,out and between N
and TSH. As a result, Te,sec,out can be controlled by Av easily, and TSH can be controlled by N easily.

3.3. Controller Design

With the merits of simplicity and reliability, PID controllers are still widely used for industrial
process control [25–27]. The control equation of a PID controller is shown in (5):

u(t) = Kpe(t) + Ki

∫
e(t) + Kd

de(t)
dt

(5)

where u(t) is the control action, Kp, Ki, Kd are the proportional, integral and derivative gain respectively,
and e(t) is the tracking error.

For the high coupling of the refrigeration system, two PID controllers are applied to control the
evaporator secondary flux Te,sec,out and the degree of superheating TSH, respectively, and the structure
of the controller is shown in Figure 6.
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Av,ini and Nini are two constants, and they are set at 50 and 40 respectively, which are at the
middle of the range of Av and N. Among the controller, there are six parameters we need to decide:
the proportional, integral and derivative gain Kp1, Ki1, Kd1 for PID1, and the proportional, integral and
derivative gain Kp2, Ki2, Kd2 for PID2.

We use pidTuner Toolbox of Matlab to tune the controller initially, and the initial values of the
parameters of the controllers are shown as follows:

Kp1 = −20.03
Ki1 = −15.21
Kd1 = −0.05

,


Kp2 = 5.14
Ki2 = 0.21
Kd2 = 0.13

(6)

3.4. Controller Optimization

3.4.1. Introduction of Fruit Fly Optimization Algorithm (FOA)

Fruit fly optimization algorithm (FOA) is a new method for solving optimization problems which
was proposed by Pan [16]. This algorithm is based on the behavior of fruit fly foraging, and the
parameters we aim to optimize are set as the position of the fruit fly swarm. The algorithm is executed
as follows:

Firstly, the position of the fruit fly swarm is initialized randomly. After that, the direction and
distance of the movement of each fly is assigned, and the position of the fly swarm is updated. Then,
with the calculation result of the judgment function, the fly with the best position is determined, and all
the other flies will gather together in this place. Afterwards, we assign the direction and distance of
the movement of each fly again, and repeat the process, and the fly swarm will finally reach to the
place nearest to the food, in other words, the parameters are optimized.

3.4.2. Tuning of PID Controllers Based on FOA

In this paper, Kp1, Ki1, Kd1, Kp2, Ki2 and Kd2 are set as the parameters of the position of an
individual fly, and the block diagram of FOA applied in this paper is drawn in Figure 7. We set swarm
size P = 20, and the number of iterations N = 100, respectively. To achieve this scheme, a P × 6 matrix
X in (7) is applied to represent the position of the fly swarm, and each position of the flies represents a
candidate solution of the PID controller parameters.
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X =



Kp11 Ki11 Kd11 Kp21 Ki21 Kd21
Kp12 Ki12 Kd12 Kp22 Ki22 Kd22

...
...

...
...

...
...

Kp1j Ki1j Kd1j Kp2j Ki2j Kd2j
...

...
...

...
...

...
Kp1P Ki1P Kd1P Kp2P Ki2P Kd2P


(7)

The initial position of the fly swarm is set as Kp1 = −20.03, Ki1 = −15.21, Kd1 = −0.05, Kp2 = 5.14,
Ki2 = 0.21, Kd2 = 0.13. In each round, the position of each fly will change in a random direction and
distance. The process can be achieved by the calculation of matrix in (8):

Xi =

 Kp11 · · · Kd21
...

. . .
...

Kp1P · · · Kd2P

+ R×

 2× rand()− 1 · · · 2× rand()− 1
...

. . .
...

2× rand()− 1 · · · 2× rand()− 1

 (8)

where R is a P× 6 matrix indicating the radius of the range each parameter is able to change, and rand()
is a random number between 0 and 1. In order to make the movable range larger at the beginning
to enable the flies to get to the best position earlier, and smaller in the end to guarantee the accuracy,
we make R vary with the iteration time. The calculation of R is shown in (9):

R = τi × R0 = τi ×

 2 1.5 0.005 0.5 0.02 0.01
...

...
...

...
...

...
2 1.5 0.005 0.5 0.02 0.01

 (9)

where R0 is a P × 6 matrix of the initial number of the radius, τ is the radios adjustment factor which
is between 0 and 1, and i is the iteration time. Here we set τ = 0.97, and the value of R0 is shown in (9).

With the position of each fly as the parameters of the controller, we are able to get the dynamic
performance of the controller, and calculate the judgment function. We take the control accuracy,
the overshoot, and the saturation time into consideration to value the control performance, and we
define the judgment function as follows:

J =
∫ ∞

0

(
ω1t|e1(t)|+ ω2u1

2(t)
)
dt + α

∫ ∞
0

(
ω3t|e2(t)|+ ω4u2

2(t)
)
dt

e(t) < 0, u1(t) = 10or100, u2(t) = 30or50
J =

∫ ∞
0

(
ω1t|e1(t)|+ ω2u1

2(t) + ω5|e1(t)|
)
dt + α

∫ ∞
0

(
ω3t|e2(t)|+ ω4u2

2(t) + ω6|e1(t)|
)
dt

e(t) ≥ 0, u1(t) = 10or100, u2(t) = 30or50
J =

∫ ∞
0 (ω1t|e1(t)|)dt + α

∫ ∞
0 (ω3t|e2(t)|)dt

e(t) < 0, u1(t) ∈ (10, 100), u2(t) ∈ (30, 50)
J =

∫ ∞
0 (ω1t|e1(t)|+ ω5|e1(t)|)dt + α

∫ ∞
0 (ω3t|e2(t)|+ ω6|e1(t)|)dt

e(t) ≥ 0, u1(t) ∈ (10, 100), u2(t) ∈ (30, 50)

(10)

where e1(t) and e2(t) are the input of PID1 and PID2, respectively, and u1(t) and u2(t) are the output
of PID1 and PID2, respectively. ω1, ω2, ω3, ω4, ω5 and ω6 are the combined weights, and α is the
adjustment factor. We set ω1 = 0.7, ω2 = 0.01, ω3 = 300, ω4 = 1.4, ω5 = 0.01 and ω6 = 600, respectively,
and α = 0.02.

Among all the results, we pick out the position vector with the lowest judgment value, and the
assignment of the positions in the next round will be based on this. After hundreds of iteration, the fly
swarm will reach to the best position, and the parameters will be tuned.
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3.4.3. Optimization Result

We applied the identified model in 3.1 to execute FOA, and we put step signals to make Te,sec,out

change from −22.15 ◦C to −22.65 ◦C at 120 s, and make Tsh change from 14.65 ◦C to 7.2 ◦C at 120 s,
respectively. After 100 times of iteration, we finally get the optimized parameters in (11):

Kp1 = −28.5713
Ki1 = −45.5881
Kd1 = −0.0628

,


Kp2 = 6.2512
Ki2 = 1.3759
Kd2 = 0.0669

(11)

The comparison of the step response curves is shown in Figure 8, and the trend curves of the
change of judgment value and each parameter are shown in Figures 9 and 10, respectively.



Int. J. Environ. Res. Public Health 2018, 15, 2865 10 of 15Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  10 of 15 

 

 

Figure 8. The comparison of the control performance of the controller before & after optimization. 

 

Figure 9. The trend line of the judgment value. 

(a) 

 

Figure 8. The comparison of the control performance of the controller before & after optimization.

Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  10 of 15 

 

 

Figure 8. The comparison of the control performance of the controller before & after optimization. 

 

Figure 9. The trend line of the judgment value. 

(a) 

 

Figure 9. The trend line of the judgment value.

Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  10 of 15 

 

 

Figure 8. The comparison of the control performance of the controller before & after optimization. 

 

Figure 9. The trend line of the judgment value. 

(a) 

 
Figure 10. Cont.



Int. J. Environ. Res. Public Health 2018, 15, 2865 11 of 15

Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  11 of 15 

 

 
(b) 

(c) 

Figure 10. The trend curves of the parameters of the controller: (a) the trend curves of Kp1 and Kp2; (b) 

the trend curves of Ki1 and Ki2; (c) the trend curves of Kd1 and Kd2. 

As we can tell from the result, the optimization accelerates the control action of the controller, 

and reduces the settling time. The judgment value decreases from 765 to 220, and converges at about 

220 after 85 iterations, Kp1 swings lower and settles at about −28.5 after 80 iterations, and Kp2 swings 

higher and settles at about 6.25 in the end. Ki1 keeps decreasing and finally reaches about −45.5, while 

Ki2 keeps increasing to reach about 1.37 at the end. Kd1 decreases from about 0.05 to 0.063, while Kd2 

decreases from about 0.1 to 0.067. 

4. Nonlinear Simulation 

In this section, to show the robustness of the proposed controller, simulation of step response 

based on the proposed controller and the original controller in [2] is implemented, and the result is 

compared and analyzed. 

4.1. Simulation Result 

During the step response process, Te,sec,out changes from −22.15 °C to −22.65 °C at 2 min, while 

Te,sec,out changes from 14.65 °C to 7.2 °C at 2 min, from 7.2 °C to 22.2 °C at 9 min, and from 22.2 °C to 

11.65 °C at 16 min, respectively. Controller 1 represents the original controller, while controller 2 

represents the optimal PID controller in Section 3.3. The simulation result is shown in Figure 11. 

Figure 10. The trend curves of the parameters of the controller: (a) the trend curves of Kp1 and Kp2; (b)
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As we can tell from the result, the optimization accelerates the control action of the controller,
and reduces the settling time. The judgment value decreases from 765 to 220, and converges at about
220 after 85 iterations, Kp1 swings lower and settles at about −28.5 after 80 iterations, and Kp2 swings
higher and settles at about 6.25 in the end. Ki1 keeps decreasing and finally reaches about −45.5,
while Ki2 keeps increasing to reach about 1.37 at the end. Kd1 decreases from about 0.05 to 0.063,
while Kd2 decreases from about 0.1 to 0.067.

4. Nonlinear Simulation

In this section, to show the robustness of the proposed controller, simulation of step response
based on the proposed controller and the original controller in [2] is implemented, and the result is
compared and analyzed.

4.1. Simulation Result

During the step response process, Te,sec,out changes from −22.15 ◦C to −22.65 ◦C at 2 min,
while Te,sec,out changes from 14.65 ◦C to 7.2 ◦C at 2 min, from 7.2 ◦C to 22.2 ◦C at 9 min, and from 22.2 ◦C
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to 11.65 ◦C at 16 min, respectively. Controller 1 represents the original controller, while controller 2
represents the optimal PID controller in Section 3.3. The simulation result is shown in Figure 11.

Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  12 of 15 

 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Simulation result of step response: (a) step response curves of Te,sec,out and Tsh; (b) trend 

curves of Av and N; (c) trend curves of the compressor efficiency and COP. 

Table 2 displays the detailed data of the simulation: 

Figure 11. Simulation result of step response: (a) step response curves of Te,sec,out and Tsh; (b) trend
curves of Av and N; (c) trend curves of the compressor efficiency and COP.

Table 2 displays the detailed data of the simulation:



Int. J. Environ. Res. Public Health 2018, 15, 2865 13 of 15

Table 2. (a) Detailed data of the simulation result of Te,sec,out; (b) Detailed data of the simulation result of Tsh.

(a)

Controller 1 Controller 2

Number Overshoot (%) Settling Time (s) Overshoot (%) Settling Time (s)

1 0 49.02 0 19.02
2 −0.26 169.20 0 19.98
3 0.44 91.21 0 4.20

(b)

Controller 1 Controller 2

Number Overshoot (%) Settling Time (s) Overshoot (%) Settling Time (s)

1 −3.14 112.23 0 22.98
2 3.11 150.04 0.68 120.18
3 −11.24 139.20 0 43.01

4.2. Discussion

From the simulation result, we can tell that the optimal PID controller has a better control
performance. The absolute value of the overshoot of the original controller varies from 0 to 11.24,
while the overshoot of the optimal PID controller keeps at 0 for most of the conditions. Plus, the settling
time of the optimal PID controller (4.20 s~120.18 s) is much shorter than the original controller
(49.02 s~169.20 s). In Figure 11b, we can tell that the saturation time of the optimal PID controller is
also much shorter than the original controller. In addition, in Figure 11c, the compressor efficiency
and the coefficient of performance (COP) of the two controllers are about the same in the steady state,
and the optimal PID controller obtains a faster dynamic response.

In conclusion, the proposed controller has the merits of less overshoot, less settling time,
less saturation time, and faster dynamic response. As a result, the optimized controller is better
than the original controller.

5. Conclusions

Refrigeration systems are critical for public health and carbon emissions. To deal with the
characteristics of nonlinearity and high coupling, this paper solves this problem by applying an
intelligent FOA algorithm to optimize the parameters of PID controllers to improve the control
performance. This method not only is easy to code and realize, but also retains simplicity and
reliability advantages of PID controllers. In this paper, a linear 2 × 2 MIMO system is identified
based on the refrigeration system model, and FOA is employed to optimize the parameters of the
PID controller for this system. The optimal PID control is finally put into use to control the nonlinear
refrigeration system, and the simulation results illustrate that the optimal PID controller is able to
regulate the overshoot, reduce the settling time, and restrain the controller saturation phenomenon.
As a result, the optimal PID controller has a more accurate control performance and can help the
refrigeration system emit less carbon dioxide during the process of dynamic regulation. With these
advantages, the optimal PID controller based on FOA is both good for the environment, and public
health. Therefore, it can be an ideal controller for refrigeration systems
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