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Abstract: Research on the environment, health, and well-being nexus (EHWB) is shifting from a
silo toward a systemic approach that includes the socio-economic context. To disentangle further
the complex interplay between the socio-exposome and internal chemical exposure, we performed
a meta-analysis of human biomonitoring (HBM) studies with internal exposure data on per-and
polyfluoroalkyl substances (PFASs) and detailed information on risk factors, including descriptors of
socio-economic status (SES) of the study population. PFASs are persistent in nature, and some have
endocrine-disrupting properties. Individual studies have shown that HBM biomarker concentrations
of PFASs generally increase with SES indicators, e.g., for income. Based on a meta-analysis
(five studies) of the associations between PFASs and SES indicators, the magnitude of the association
could be estimated. For the SES indicator income, changes in income were expressed by a factor
change, which was corrected by the Gini coefficient to take into account the differences in income
categories between studies, and the income range between countries. For the SES indicator education,
we had to conclude that descriptors (<college, x years of study, etc.) differed too widely between
studies to perform a meta-analysis. Therefore, the use of the uniform ISCED (International Standard
Classification of Education) is recommended in future studies. The meta-analysis showed that a higher
income is associated with a higher internal exposure to PFASs (PFOS or perfluorooctanesulfonic
acid, PFOA or perfluorooctanoic acid, PFNA or perfluorononanoic acid, PFHxS or perfluorohexane
sulfonate). This is opposite to the environmental justice hypothesis, referring to an inequitable
distribution of detrimental environmental effects toward poor and minority communities by a
practice or policy. With a doubling of the income, internal exposure increased on average by 10%–14%.
Possible explanations for this difference are given, e.g., underlying differences in diet. However, other
sources can also contribute, and the exact causes of SES-related differences in PFAS concentrations
remain unclear. Studies are needed that include social descriptors together with lifestyle and dietary
information as explanatory variables for internal chemical exposure levels. This will help clarify the
underlying factors that link SES with inequity to environmental exposures, and will raise awareness
and knowledge to strengthen the capacities of people and communities to advocate chemical exposure
reduction in order to reduce this health inequity.
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1. Introduction

Policymakers have already recognized for decades that human health and well-being are
intricately linked to environmental quality and most recently it appears as a cornerstone in the
European Union (EU)’s seventh Environment Action Plan [1]. The policy focus is now shifting
from studying single environmental pollution (silo approach) toward systemic challenges in
which persuasive health inequality and the association with social and economic factors are also
considered [2–5]. At the Sixth Ministerial Conference on Environment and Health in Ostrava in
2017, organized by the WHO (World Health Organization) European Region, it was stated that
“ . . . exposure to harmful chemicals and the destabilization of ecosystems threaten the right to health,
and disproportionately affect social disadvantaged and vulnerable populations groups, thereby
exacerbating inequalities”. Therefore, equity, social inclusion, and gender equality need to be
considered in policies [6]. Further, one of the ambitions of the EU2020 strategies for a healthier
population is the reduction of health inequality in an aging Europe [7]. Fragmented evidence shows
that deprived, minority, and low-income populations often live in areas with higher environmental
pollution and limited access to green space, and lack financial and educational capacities to avoid
relatively higher exposure to environmental stressors [8–10]. This evidence is often framed in term of
environmental (in)justice or environmental inequity, which focus on the unequal and unfair distribution
of environmental hazards and access to environmental decision-making processes [11]. Environmental
inequity is not a homogenous construct, but its manifestation can differ between subpopulations, local
areas, and countries that might be considered fairly similar [12]. Through participative processes
and trust building, groups of different socio-economic and ethnic backgrounds can be reached for
environmental health research [13] and environmental health promotion [14,15]. However, knowledge
gaps still exist on how social and economic determinants are exactly linked with the environment,
health, and well-being nexus [16,17].

In general, indicators of socio-economic status (SES) are meant to give information on the
individual’s access to social and economic resources. Common indicators for SES based on surveys
are education, income, and occupation. In relation to health effects, these indicators are not
interchangeable. Various SES indicators may capture different aspects of the overall health impact [18].
Socio-economic indicators have been shown to modify or confound exposure-response associations.
Many exposure-response associations are adjusted for socio-economic variables [19,20]. More recently,
studies show that socio-economic factors influence exposure and specific health outcomes, while the
underlying causal factors are largely unknown [21]. Social and environmental stressors can combine
additively (or synergistically) to produce health inequalities [22–24]. Together, these stressors may lead
to a cumulative impact. Concepts supporting the principle of a cumulative impact are: a) inequality
in exposure to environmental hazards, b) differences in biological and physiological susceptibility,
and c) amplification by social vulnerability factors (access to healthcare, education about prevention,
etc.). Also stress may have an additional influence on health outcomes [25]. A combination of all may
lead to health inequalities (Figure 1) or health inequities between socially defined groups, as these are
unfair, unjust and avoidable. Next to the evidence that SES is related to multiple risk factors, there
is evidence that SES influences multiple diseases, that the deployment of resources plays a critical
role in the association between SES and health status, and that the association is reproduced over
time [24]. Still, it’s not completely clear how environmental risk factors operate in the reality of the
social environment and vice versa. At the research level, a new conceptual framework for integrative
environmental health research is the socio-exposome proposed by Senier et al. [26]. With the term
exposome, researchers want to quantify internal and external exposure as precisely as gene expression
measurements. The term socio-exposome requires more comprehensive data on HBM, environmental
exposures, together with information on socio-economic conditions and inequalities.
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Figure 1. Interaction between health inequalities, environmental exposure inequality, different 
biological and physiological susceptibility and social vulnerability. Figure based on study of 
Morello-Frosch et al. [22] and Frumkin [23]. 

Tools exist to survey substantial differences in population exposure and health. One of these is 
HBM or human biomonitoring, by which individual differences in internal exposure (exposure 
biomarkers) and effect (effect biomarkers) can be assessed by chemical analysis of pollutants, their 
metabolites, or biological responses in human fluids or tissues. Most HBM studies collect also 
personal data on lifestyle and dietary habits, health, and some indicators for SES such as education, 
income, or occupation. HBM allows tracking flows of chemicals through society. Such integrated 
assessment can support the design of preventative environmental health policies to identify 
vulnerable communities, and reduce the health impact, health inequality, and related healthcare 
costs [27]. Data to quantify the environmental health inequality situation are not abundant. Recently, 
the HBM4EU project (human biomonitoring for Europe) started. It is a Horizon2020 Framework 
Project for the development of a sustainable European-wide HBM network (2017–2021) [28]. Under 
HBM4EU, all partners are requested to send their HBM data for substances and groups of 
substances to the European Environment Agency (EEA) for inclusion in IPCHEM: the Information 
Platform for Chemical Monitoring [29]. Initially, IPCHEM will include metadata and mostly 
aggregated data of past and ongoing HBM studies in Europe. Next to variables as e.g. age, sex, and 
location linked to the HBM data, also data on education as indicator of SES will be gathered. 
Integrating data from the health, environment, social, and economic domains is a major challenge 
that depends on the available datasets and underpinning data infrastructure. 

Individual studies show associations between the exposure to per- and polyfluoroalkyl 
substances (PFASs) through HBM and SES indicators such as income and education [30,31]. Our 
goal in this study was to investigate whether a meta-analysis could be done for the association 
between SES indicators income and education and HBM data, based on data of different countries, 
and if an estimate of the magnitude of the association could be given. Secondly, we wanted to 
elaborate on the main identified exposure determinants influencing the exposure biomarker SES 
relationship. Can differences in diet play a role? PFASs are synthetic chemicals that are widely used 
in the manufacturing of industrial and consumer products such as food packaging, and 
stain-resistant coatings, water and oil-repellent coatings for textiles and paper since their 
introduction in the 1950s. Some examples are PFOS (perfluorooctanesulfonic acid), PFOA 
(perfluorooctanoic acid), PFNA (perfluorononanoic acid) and PFHxS (perfluorohexane sulfonate). 
PFASs are persistent in the environment [32]. PFOS is included in the list of the Stockholm 
Convention (2009) on persistent organic chemicals; PFOA and PFHXS are recommended to be added 
to the list. PFOS was phased out by the major manufacturers between 2000–2002. The restricted use 
of PFOS was implemented in Europe from June 2008. Since 2000, there has been a clear decline in 
blood levels of PFOS and a minor decline for PFOA [33–36]. PFOS and PFOA are oleophobic, and 
accumulation in fat is therefore unlikely. They bind to serum albumin and build up in protein-rich 
compartments of the body as liver and kidney [37]. Mean human half-lives of serum elimination 

Figure 1. Interaction between health inequalities, environmental exposure inequality, different
biological and physiological susceptibility and social vulnerability. Figure based on study of
Morello-Frosch et al. [22] and Frumkin [23].

Tools exist to survey substantial differences in population exposure and health. One of these is HBM
or human biomonitoring, by which individual differences in internal exposure (exposure biomarkers)
and effect (effect biomarkers) can be assessed by chemical analysis of pollutants, their metabolites,
or biological responses in human fluids or tissues. Most HBM studies collect also personal data on
lifestyle and dietary habits, health, and some indicators for SES such as education, income, or occupation.
HBM allows tracking flows of chemicals through society. Such integrated assessment can support the
design of preventative environmental health policies to identify vulnerable communities, and reduce the
health impact, health inequality, and related healthcare costs [27]. Data to quantify the environmental
health inequality situation are not abundant. Recently, the HBM4EU project (human biomonitoring
for Europe) started. It is a Horizon2020 Framework Project for the development of a sustainable
European-wide HBM network (2017–2021) [28]. Under HBM4EU, all partners are requested to send
their HBM data for substances and groups of substances to the European Environment Agency (EEA)
for inclusion in IPCHEM: the Information Platform for Chemical Monitoring [29]. Initially, IPCHEM
will include metadata and mostly aggregated data of past and ongoing HBM studies in Europe. Next to
variables as e.g., age, sex, and location linked to the HBM data, also data on education as indicator of
SES will be gathered. Integrating data from the health, environment, social, and economic domains is a
major challenge that depends on the available datasets and underpinning data infrastructure.

Individual studies show associations between the exposure to per- and polyfluoroalkyl substances
(PFASs) through HBM and SES indicators such as income and education [30,31]. Our goal in this
study was to investigate whether a meta-analysis could be done for the association between SES
indicators income and education and HBM data, based on data of different countries, and if an
estimate of the magnitude of the association could be given. Secondly, we wanted to elaborate on
the main identified exposure determinants influencing the exposure biomarker SES relationship. Can
differences in diet play a role? PFASs are synthetic chemicals that are widely used in the manufacturing
of industrial and consumer products such as food packaging, and stain-resistant coatings, water and
oil-repellent coatings for textiles and paper since their introduction in the 1950s. Some examples
are PFOS (perfluorooctanesulfonic acid), PFOA (perfluorooctanoic acid), PFNA (perfluorononanoic
acid) and PFHxS (perfluorohexane sulfonate). PFASs are persistent in the environment [32]. PFOS is
included in the list of the Stockholm Convention (2009) on persistent organic chemicals; PFOA and
PFHXS are recommended to be added to the list. PFOS was phased out by the major manufacturers
between 2000–2002. The restricted use of PFOS was implemented in Europe from June 2008. Since
2000, there has been a clear decline in blood levels of PFOS and a minor decline for PFOA [33–36].
PFOS and PFOA are oleophobic, and accumulation in fat is therefore unlikely. They bind to serum
albumin and build up in protein-rich compartments of the body as liver and kidney [37]. Mean
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human half-lives of serum elimination were estimated in the study of Olsen et al. [38]: 5.4 years for
PFOS and 3.8 years for PFOA. PFAS are linked to endocrine disruption (ED), liver, developmental
and immune toxicity [39–41]. In the Flemish Environment and Health Studies (FLEHS), significant
associations were found between adult plasma concentrations of PFASs and SES (income, education)
(see further). General population exposure mainly takes place through ingestion and additionally
inhalation [42,43]. In some cases, the indoor environment (dust and air) may contribute significantly
to total body burden [42].

2. Methodology

2.1. Literature Search

Studies providing both data on PFAS concentrations in the serum or plasma of adolescents and
adults (no cord blood) and on socio-economic status were the primary target. A literature search was
done using PubMed as search engine. In Table 1, an outline of the search strategy is given. Based
on titles and abstract content, 11 studies were selected for more detailed analysis. A main requisite
was that based on the abstract, it should be obvious that HBM data are included in the selected study.
Also, references in the selected studies, which might be relevant for this analysis, were checked in
detail [35,44–47]. A restriction was set to studies from the United States (US), Canada, and Europe,
which have a long history in HBM and a comparable timeframe of historical industrial revolution.
This list also includes the study of Colles et al. [48] describing Flemish data on the levels of PFASs
and determinants of exposure. The number of studies reporting on the internal chemical exposure to
PFASs and socioeconomic factors is also limited when other search engines such as Web of Knowledge
were used.

Table 1. Results of literature search strategy in PubMed (performed January 2018; no restriction set on
the search time period). PFAS: per-and polyfluoroalkyl substances, SES: socio-economic status.

Search Term 1 in
All Fields

Search Term 2 in
All Fields

Number of
Studies Found

Number of Studies
Selected Based on Title
and Abstract Relevance

Selected Studies a,b

PFAS / 504 0 Too many results. Search term added.
SES 2 0 /

Socio-economic c 10 1 [31]
Education 35 3 [49–51]

Income 4 0 /
Predictor 7 1 [52]

Polyfluoroalkyl / 265 0 Too many results. Search term added.
SES 0 0 /

Socio-economic 3 2 [30,53]
Education 13 2 [54,55]

Income 1 0 /
Predictor 3 0 /

Perfluoroalkyl / 1453 0 Too many results. Search term added.
SES 2 1 [56]

Socio-economic 6 0 /
Education 66 0 /

Income 7 1 [57]
Predictor 5 0 /

Total selected 11
a: Search was performed according to this table, with search sequence according to the order in this table (from top to
bottom). A study was only selected once, although it could be found by different search combinations. For example:
The study of Nelson et al. [30] was not only found by the search terms “polyfluoroalkyl” and “socio-economic” but
also by the search terms “polyfluoroalkyl” and “income”, although it was only selected once. b: also references in
the selected studies were studied based on relevance of title and abstract. c: socio-economic as well as socioeconomic
were searched for.
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2.2. Meta-Analysis

In the international literature, HBM biomarkers of exposure are often associated with SES
indicators such as income or educational level. Generally, in regression models of HBM studies,
the percent change of HBM biomarker concentrations is given per income category and/or educational
level. For income, three to four categories that are more or less uniformly divided across the income
range are mostly used e.g., Kato et al. [57] reported serum PFAS concentrations for the quartile
income categories <$20,000, $20,000–40,000, $40,000–80,000, and >$80,000. To compare the percent
change in biomarker concentrations per change of income between studies, the income change was
expressed in terms of factors (ratios with lowest category as denominator). In this case, for the study of
Kato et al., the maximum factor by which income changes was set to four (= $80,000/$20,000). To go
further and make the comparison between countries, this factor was corrected for income inequality
between countries by dividing the change in income factor by the Gini coefficient for income inequality
(data retrieved from the OECD, or Organization for Economic Cooperation and Development; year
2013; scale 0–1; USA: 0.40, Belgium: 0.27, Norway: 0.25) [58]. Hereby, the assumption is made that for
HBM studies focusing on a metropolitan area, an identical Gini coefficient can be used as derived at
country level by the OECD.

The mean percentage changes (±95% confidence interval or CI) in PFAS concentrations as a
function of factor change in income, derived from (multiple) linear regression models, were combined
for a number of studies (oldest study dating back to 2012). In most studies, the highest income
category was chosen as a reference for comparing the change in biomarker concentration, while in
some this was the lowest income category. To be consistent, these were all corrected toward the highest
income category. A meta-analysis studying the relationship between factor change in income corrected
by the Gini coefficient and human PFAS concentrations was carried out. To take into account the
information embedded in the fault on the change in PFAS concentrations provided in the individual
studies (95% CI), a weighted least squares (WLS) (Excel 2010 (Microsoft Corporation, Redmond, WA,
USA) (add-in: Real-Statistics)) linear regression model was applied. The weights were set equal to the
inverse of the standard deviations on the percent change in PFAS concentrations. PFASs reported in
the studies were usually PFOS, PFOA, PFNA, and PFHxS.

For education, a combination of the individual results was not recommended here (see Results
and Discussion).

2.3. Determining Factors

Different factors may underlie the association between biomarker PFAS concentrations and SES
indicators. We made a short list of the possibilities that have been mentioned in the individual studies.
Further, we explored in an extra calculation for PFOS exposure in Belgium whether differences in diet
between groups of different SES may explain findings in HBM studies.

3. Results and Discussion

A detailed stratification of the data (different SES categories and associated biomarker
concentrations) is essential to compare results between studies. Some of the studies selected in
Table 1, and the references therein, reported on PFAS concentrations without focusing in detail on
SES data [44,52–55]. These studies are not considered further. Also, studies reporting on PFAS
concentrations in cord blood (not maternal serum or plasma) are not taken up in our review, although
placental transfer in humans has been confirmed [45]. Briefly, in the study of Apelberg et al. [53],
higher cord blood concentrations of PFASs (PFOS and PFOA) were observed with higher educational
levels of women in Baltimore, Maryland, although the association was not significant (p > 0.05).
In the study of Arbuckle et al. [46], umbilical cord blood levels of PFASs were measured in Canadian
mothers. In a univariate analysis, household income was significantly negatively associated with
PFOS concentrations (decreasing PFOS concentration with increasing income; 9.1 ng/mL to 5.5 ng/mL;
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p = 0.01), and maternal education was significantly positive associated with PFOA concentrations
(increasing PFOA concentration with increasing education; 0.1 to 1.3 ng/mL; p = 0.03). In the final
stepwise multiple regression model, both income and education were not retained as significant
variables (p > 0.05).

3.1. Income and HBM

In the Canadian MIREC (Maternal–Infant Research on Environmental Chemicals) study reported
in Table 1, a significantly positive association was found between maternal PFOS, PFOA concentrations,
and household income. The association with PFHxS was not significant [51,56]. Overall, this study was
in line with findings in the international literature. The study was not considered further, as the level
of detail of the data was not high enough for inclusion in our analysis (no detailed results of percent
change in PFAS concentrations or regression coefficient β from logistic regression model per income
category). The study of Jain [47] described findings of the National Health and Nutrition Examination
Survey, NHANES 2003–2008. Results of the association with socio-economic status were similar to the
study of Nelson et al. [30] (NHANES 2003–2006) focusing on social disparities in exposure. To avoid
double counting in our analysis, the results of the study of Jain were not included.

The results of five studies with regression analysis of income categories versus the corresponding
PFAS concentrations in blood could be combined (Table 2). For all of these studies, the percent change
per income category was available. Comparing absolute concentrations of PFASs between studies is
not straightforward, given the differences in analytical techniques, age, time period, etc. Only human
biomonitoring programs with harmonized procedures for recruiting participants, chemical analysis,
and data treatment allow the robust detection of variations in chemical body burden. The comparison
of relative units such as percentages, factor changes, etc. can be done across studies.

Income categories are more or less uniformly distributed across the income range, and in most
studies, PFAS concentrations are reported for three to four income categories. Factor changes in income
were calculated for the five remaining studies. The largest uncertainty in this calculation was for the
study of Brantsæter et al. [35]: both parents <300,000 Norwegian Krone (NOK), one ≥300,000 NOK,
and both ≥300,000 NOK. The factor change was set here to two for income changes between the lowest
and highest categories. Other studies reported more into detail on the income categories.

The studies of Nelson et al. [30], Kato et al. [57], and Sagiv et al. [31] found a significant
positive change in human concentrations of PFOS, PFOA, PFNA, and PFHxS with increasing
income. The Norwegian study of Brantsæter et al. [35] found a significant positive change in PFOA
concentrations with increasing income. In their study, income and education were not included in the
same regression model, and for PFOS, PFNA, and PFHxS, there was a significant positive association
with education. The study of Colles et al. [48] found a significant positive change in PFOS and PFNA
concentrations with increasing income. When all of the studies are combined (Figure 2), a significant
(p < 0.05) increase in PFAS concentrations was found with increasing income. The weighted least
squares analysis showed that the serum PFAS concentration increased on average 10%–14% for a
doubling of the income in a country with a Gini coefficient equal to 0.33. The value of 0.33 was
chosen as the middle between the range of 0.40 (Gini coefficient of the US) and 0.25 (Gini coefficient
of Norway).
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Table 2. Overview of studies with associations between household income and adult PFAS concentrations in serum or plasma.

Reference
(Sampling Time)

Country
Age Category

(Years) Size Household
Income

GM or Median Concentration
(ng/mL) % Change per Income Category from Regression Models

Remark

PFOS PFOA PFNA PFHxS PFOS PFOA PFNA PFHxS

Nelson et al. [30]
(sampling period
2003–2006)

US
Adolescents
and adults

(>12 y)

3953 $0–19,999 16.5 3.4 0.9 1.7 −19.3
(−24.6, −13.8)

−15.9
(−22.5, −8.7)

−17.8
(−26.5, −8.0)

−16.1
(−24.1, −7.3)

NHANES (2003–2006); Multivariable
linear regression model adjusted for
NHANES cycle, age, gender,
race/ethnicity, creatinine.

$20,000–44,999 17.9 3.7 0.9 1.8 −11.6
(−17.1, −5.8)

−10.1
(−15.2, −4.6)

−11.3
(−18.4, −3.5)

−11.0
(−19.4, −1.7)

$45,000–74,999 18.5 4 1 1.8 −5.4(−11.8, 2.4) −1.3(−6.5, 4.2) −6.6(−13.5, 0.8) −5.3(−15.1, 5.6)
≥$75,000 19.8 4.2 1.1 2 Ref Ref Ref Ref

Brantsæter et al.
[35] (sampling
period 2003–2004)

Norway
Pregnant
women

(<25 y to >35 y)

487 Both < 300,000
NOK 12.5 2.16 0.36 0.59 Ref Maternal education and household income

both reflect socio-economic status and
were not selected in the same multiple
linear regression model.

One ≥ 300,000
NOK 12.8 1.99 0.38 0.57 4.7(−2.6, 12.6)

Both ≥300,000
NOK 13.3 2.41 0.44 0.67 12.6(3.6, 22.3)

Kato et al. [57]
(sampling period
2003–2006)

US
(Cincinnati)

Pregnant
women
(≥18 y)

180 <$20,000 9.44 4.1 0.64 0.84 −37(−51, −19) −30(−46, −10) −23(−36, −7) −51(−65, −31)

Univariate linear regression model.$20,000–40,000 13.29 5.35 0.84 1.4 −11(−29, 13) −9(−28, 15) 2(−14, 21) −18(−41, 12)
$40,000–80,000 13.98 5.69 0.86 1.72 −6(−23, 15) −3(−21, 19) 4(−10, 21) 0(−24, 32)

>$80,000 14.87 5.89 0.83 1.71 Ref Ref Ref Ref

Sagiv et al. [31]
(sampling period
1999–2002)

US
(Boston)

Pregnant
women

(<20 y to >35 y)

1645 <$40,000 24.3 5.3 0.6 2.3 −9.8
(−18.9, 0.3)

−11.1
(−19.1, −2.4)

−18.5
(−26.5, −9.7)

−0.7
(−14.7, 15.7)

Fully adjusted multivariable linear
regression model; adjusted for year, age,
race/ethnicity, education, marital status,
smoking, parity, breastfeeding, BMI,
gestational age, albumin, GFR.

$40,000–70,000 26.9 5.7 0.6 2.4 3.2
(−3.8, 10.6)

−4.5
(−10.3, 1.5)

−10.4
(−16.3, −4.1)

−9.4
(−18.0, 0.1)

>$70,000 24.9 5.7 0.7 2.6 Ref Ref Ref Ref

Colles et al. [48]
(sampling period
2012–2015)

Belgium
(Flanders)

Adults
(50–65 y)

168 ≤€1250 6.348 0.729 Ref
Not included in

model a

Ref
Not included in

model

Income is equivalent income b: household
income corrected for the number of
persons in the household. Stepwise
multiple linear regression model with age,
BMI and gender forced into model.

€1250–1600 6.066 0.702 −6(−29, 23) −6(−27, 22)

€1600–2000 9.077 1.056 34(5, 70) 38(9, 74)

>€2000 8.792 0.975 29(2, 63) 21(−3, 51)

Significant (p < 0.05) percent change indicated in bold; BMI: body mass index; GFR: glomerular filtration rate; GM: geometric mean; NOK: Norwegian Krone; PFOS: perfluorooctanesulfonic
acid; PFOA: perfluorooctanoic acid; PFNA: perfluorononanoic acid; PFHxS: perfluorohexane sulfonate; Ref: reference; US: United States. In the column, % changes per income category
from regression models, the 95% CI is given between brackets. a: only variables for which the correlation was significant (p < 0.05) were included in the multiple linear regression model.
b: changes in PFAS concentration per equivalent household income are slightly stronger associated than for not corrected household income [30].
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Figure 2. Association between factor change in household income/Gini coefficient and percent 
change in adult PFAS concentrations in plasma or serum (a: PFOS, b: PFOA, c: PFNA and d: PFHxS). 
Factor change calculated from uniform distribution of household incomes over three to four income 
categories with lowest income category as denominator. Gini coefficient retrieved from the 
Organization for Economic Cooperation and Development (OECD) (scale 0–1; USA: 0.40, Belgium: 
0.27, Norway: 0.25). A change on the X-axis of 10 for the US study of Kato et al. [57] means an 
increase in income factor of 10 × 0.40 = 4, which corresponds with an increase in percentage in PFOS 
concentration of 37%. Error bars indicate 95% CI. The straight line is based on a weighted least 
squares (WLS) with weights equal to the inverse of the standard deviation on the percent changes in 
PFAS concentrations and intersection with the X-axis equal to (2.5,0). Slopes were 3.5 (p < 0.001) for 
PFOS, 2.7 for PFOA (p < 0.001), 3.0 for PFNA (0.01 > p > 0.001) and 4.1 for PFHxS (0.05 > p > 0.01). 
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Figure 2. Association between factor change in household income/Gini coefficient and percent change
in adult PFAS concentrations in plasma or serum (a: PFOS, b: PFOA, c: PFNA and d: PFHxS). Factor
change calculated from uniform distribution of household incomes over three to four income categories
with lowest income category as denominator. Gini coefficient retrieved from the Organization for
Economic Cooperation and Development (OECD) (scale 0–1; USA: 0.40, Belgium: 0.27, Norway: 0.25).
A change on the X-axis of 10 for the US study of Kato et al. [57] means an increase in income factor
of 10 × 0.40 = 4, which corresponds with an increase in percentage in PFOS concentration of 37%.
Error bars indicate 95% CI. The straight line is based on a weighted least squares (WLS) with weights
equal to the inverse of the standard deviation on the percent changes in PFAS concentrations and
intersection with the X-axis equal to (2.5,0). Slopes were 3.5 (p < 0.001) for PFOS, 2.7 for PFOA
(p < 0.001), 3.0 for PFNA (0.01 > p > 0.001) and 4.1 for PFHxS (0.05 > p > 0.01).

3.2. Education and HBM

Education may impact exposure via the ability to access and interpret health-related
information [59]. When studying the descriptor for education (x years of study, <college, etc.), this
differed too strongly between individual studies, making a meta-analysis impossible. The association
between educational level and PFAS biomarker concentrations found in the individual studies is
discussed shortly in the next paragraph.

In seven studies, the association between PFAS biomarker concentrations and education was
analyzed. The study of Lauritzen et al. [49], analyzing perfluoroalkyl substances in the maternal serum
of women in Norway and Sweden, reported on an increase of PFOS and PFOA concentrations with
educational level, but this was not significant. The study of Sochorová et al. [50] on the PFASs in Czech
adults reported an increase in concentrations of PFOA, PFNA, PFHxS, and PFOS with educational
level, which were not (except for PFOA) to borderline significant after correction for co-variables.
The Canadian MIREC study showed that for education, a significantly negative association was found
between lower maternal education and PFOS concentrations (p < 0.05), while for PFOA and PFHxS,
associations were not significant [51]. The study of Nelson et al. [30] found lower human PFOS, PFOA,
PFNA, and PFHxS concentrations with lower educational level; however, changes were insignificant.
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Colles et al. [48] reported on significantly higher PFOA concentrations with higher educational level in
(Flemish) Belgian adults (21% increase). The concentration of PFOS increased 23% with educational
level, but this was borderline insignificant. In the study of Brantsæter et al. [35], a significant increase
of PFOS, PFNA, and PFHxS biomarker concentrations in pregnant women was found with educational
level. In contrast, the study of Sagiv et al. [31] found higher concentrations of PFOS, PFOA, and PFHxS
at lower educational levels. The trend was opposite with the one for income in the study of Sagiv
et al. [31]. Thus, patterns were here not uniform across SES indicators. The authors were unable to
explain this inconsistency between education and income. The educational level in the study was
defined roughly: <college, college, >college, which may make it harder to capture SES differences.

As already mentioned, the descriptor for education differed strongly between studies reporting
on PFAS. In the DEMO(COPHES) (Demonstration Of A Study To Coordinate And Perform Human
Biomonitoring On A European Scale) project [60], in which a common approach for HBM surveys in the
European Union (EU) was developed and tested, the uniform International Standard Classification of
Education (ISCED) was used as a descriptor, and enabled making data on educational level comparable
over time and across EU countries [61]. The ISCED is the reference international classification for
organizing education programs and related qualifications by levels and fields. Its use is highly
recommended for further studies.

3.3. PIR (Poverty Income Ratio) and HBM

PIR is defined as the ratio of the family’s self-reported income to the family’s appropriate poverty
threshold [62]. In some studies, PIR was used as an indicator for SES; however, income and education
remain the indicators that are most often used. For example, the study of Tyrrell et al. [21] reported on
the association between adult PFAS concentrations and PIR for the NHANES campaigns covering the
years 2001–2010: PFOA and PFNA were significantly positive associated with PIR.

3.4. Determining Factors

Since income and education may be closely associated with exposure, detailed data stratification
could provide clues about the particular aspects of life that are most closely associated with the
magnitude of exposure and with the socio-economic status of the study subjects [63]. This means
that for aggregated data in a database, sufficient and quantitatively well-defined categories should be
available to capture differences in outcome or see gradients. This study did not identify in detail the
underlying determinants of the association between SES and adolescent and adult PFAS concentrations,
but it builds further on the reasons given in the studies included in the meta-analysis and the references
therein. A short list of possibilities (not exhaustive and sequence irrelevant) mentioned in the individual
studies is given in the next paragraphs.

Differences in diet between income groups exists. In Europe, individuals of higher SES tend to
consume more fish, marine food, vegetables, and fruit, which are potential sources of PFASs, compared
to individuals of lower SES [43,64,65]. When the effect of income, education, and occupation on diet
quality are examined, studies have often shown that income and education are important predictors
of diet quality [66]. Overall, there is no consensus if the choice in diet quality is mainly driven by
income or education. More and more studies have argued that SES is a complex concept with different
associations with exposure [67,68].

The continuous (linear) increase in adult PFAS concentrations by income, certainly in the US
studies [30,57] (see Figure 2), remains to be further investigated. For PFOS, diet is seen as the most
important contributor to the PFOS body burden [43]. Therefore, could the continuous increase in
PFOS biomarker concentration by income be related to the continuous change in consumption patterns
of major foodstuffs by different SES groups? Differences in food consumption patterns between
groups of different income and education levels are observed. For Belgian adults, for which we have
data available, there is a continuous increase in the consumption of fish, vegetables, and fruit with
increasing education (see Table 3). For potatoes and meat, an opposite trend is observed.
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A rough estimate on PFOS intake through diet in Belgian adults by SES shows further that fish
and fruit are major contributors to the total dietary PFOS intake (see Table 4; calculation based on food
PFOS concentrations and food consumption (Table 3)). In the calculation shown in Table 4, assumed
PFOS concentrations in foodstuffs were retrieved from the recent EU PERFOOD (PERFluorinated
Organics in Our Diet) project [69], and were set equal to 0.003 ng/g for vegetables [70], 0.043 ng/g for
meat [71], 0.061 ng/g for eggs [71], 0.098 ng/g for fruit [72] (mean of positive detects), 0.301 ng/g for
freshwater/marine fish [71], and 0.523 ng/g for seafood [71]. The consumption of fish versus seafood
was set at a ratio of 1.5. Concentrations of PFOS were below the limit of quantification for potatoes [70].
The study of Cornelis et al. [43] and the European Food Safety Authority (EFSA) report [73] on PFOS
& PFOA in the food chain showed a significantly higher contamination of food from animal origin
with PFASs. Also, in the study of Cornelis et al. [43], potatoes and fruit contained significant amounts
of PFOS. For fruit, the PFOS level was 0.350 ng/g. The total average PFOS intake in the example,
as worked out here, was around 370 pg/kg BW/day, which is in agreement with the estimate in the
study of Klenow et al. [74].

Table 3. Estimated Belgian median food consumption (g/day) in adults by education for major food
categories. Data from De Ridder et al. [75].

Nr. Educational
Level

Potatoes and
Potato Products

Fish, Fish
Preparations,

Shellfish

Meat & Meat
Preparations Vegetables Fruit Eggs

Group 1 ISCED0-2 44 25 131 152 71 8
Group 2 ISCED3-6 43 26 125 172 101 7
Group 3 ISCED7-8 36 29 107 205 115 8

ISCED: International Standard Classification of Education.

Table 4. Estimate on PFOS intake (ng/day) in Belgian adults through diet stratified by education.

Nr. Educational Level Unit

Potatoes
and Potato
Products

Fish and Seafood Meat & Meat
Preparations Vegetables Fruit Eggs TotalFish (Fresh

and Marine) Seafood

Group 1 ISCED0-2 ng
PFOS/day

4.4 5.1 5.6 0.5 6.9 0.5 23
Group 2 ISCED3-6 - 4.7 5.4 5.3 0.6 9.9 0.4 26
Group 3 ISCED7-8 5.2 6.0 4.6 0.7 11.3 0.5 28

Percent change
between group 1 and

group 3 a
% - +17 +17 −18 +34 +63 <1 +22

Average contribution
to total intake

in percent
% - 18 21 20 2 36 2

ISCED: International Standard Classification of Education. a: lowest education as reference.

Table 4 indicates that the total variation between the two groups with most pronounced difference
in education is equal to +22% for total PFOS intake with the lowest educational group as reference,
+17% for both fish and seafood intake, −18% for meat intake, and +63% for fruit intake. The intake
of fish, seafood, and fruit have an opposite effect on the increased intake of PFOS by education
compared to the intake of meat. People with higher education in Belgium tend to consume less
meat than people with a lower education. Surprisingly, the increase of +22% intake of PFOS by diet
for groups of higher educational level that was calculated here corresponds reasonably well with
findings in the Flemish HBM study (FLEHS 2012–2015: around 20%). In Belgium, the average gross
income/person of individuals in ISCED categories 0–2, 3–6, and 7–8 equals respectively €2756, €3617,
and €5236 (Euro 2015) [76]. Thus, income differences between the lowest and highest educated people
in Belgium is almost a factor 2. Although income and education are not completely interchangeable
for dietary behaviour, we see that on average, an increase in income by a factor of two can explain a
22% higher intake of PFOS in the high SES group. When we compare this value with data for income
found in the Flemish study of Colles et al. [48], it was found that the change of adult PFOS serum
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concentrations by different income groups is about 30% (see Table 2); this figure is larger than the
calculated 22% here, although income levels may differ. Based on this rough calculation, it is clear that
diet alone can explain a large part of the observed variation of PFOS serum concentrations by different
educational and income groups in Belgium. Based on Table 4, it is also clear that in Belgium, fish and
seafood are an important food category for the dietary exposure to PFOS for adults, but fruit is as well.
The contribution of vegetables (2%) and eggs (2%) to the total PFOS intake was minor. However, there
are several points of attention, and this calculation should be nuanced: e.g., PFOS food concentrations
differ across food studies; thus, the uncertainty is large. Different ways to handle samples below the
limit of quantification create variability. Differences in food quantity between groups of different SES
will play a role, but diet quality does as well. The individuals for which we have food data by SES
differ from the ones for which we have HBM data. The food consumption study was for the Belgium
population, while the HBM results here are Flemish. This ‘back of the envelope’ calculation was only
done for PFOS in Belgium, and more detailed data on income, education, and HBM biomarkers are
needed for a more precise estimate. The situation may also differ for other countries. The full picture
for the underlying causes of SES-linked differences in PFAS concentrations needs further elucidation.

As in Europe, fish and seafood consumption are major sources of PFOS intake in the US (United
States of America) and Canada; the consumption of meat was estimated as the greatest source of
perfluorocarboxylates and PFOS [77,78]. The concentration of PFOS in a Canadian food study was
equal to 2.7 ng/g (beef steak; [77]) and the intake of beef steak, roast beef, and grounded beef accounted
for 90% of the average daily dietary PFOS intake for Canadians >12 years old. However, the Canadian
food intake values that were used dated from 1972 [77]. In Canada and the US, there is a strong
positive relationship between the level of household income and beef demand. The income elasticity
of beef demand is estimated at 0.54 in Canada. This means that a 1% increase in income results in a
0.54% increase in demand for beef [79]. In the US, the estimated income elasticity varies in different
studies, with a positive range between 0.4 [80] and 0.9 [81]. When looking at the increase in income in
the studies of Nelson et al. (2012) and Kato et al. (2014), the income changes by a factor of four, which
means that beef demand can change drastically between different income groups. However, meat
consumption is likely not the only food source influencing income-related human PFAS concentrations
in the US and Canada. The study of Tyrell et al. [21], focusing on five NHANES waves (2001–2010),
found that the relationship between the poverty income ratio (PIR) and PFNA was mediated to some
extent by shellfish consumption. Fish consumption was not noted to be a mediator.

Exposure to PFAS through food can have an environmental source, but food contact materials
can also contribute. The PFASs used in these materials, such as paper plates, food wrappers,
etc., have been shown to migrate in food [82,83]. From 1970 onwards, phosphate esters based on
perfluorooctanesulfonamido ethanol (N-EtFOSE) were used in food contact materials. These esters
break down to N-EtFOSE, which can further break down to PFOS [84,85]. The association of PFASs in
food contact materials and SES is currently unclear.

A second source of PFASs exposure, next to diet, is exposure through contact with consumer
products. Households with higher income can purchase expensive textiles and sport equipment
containing PFASs. PFASs tend to be found in expensive fabrics that provide water proofing [86].
However, the PFAS content in consumer products and possible emissions and intake remain unclear.

Another route through which exposure may take place is inhalation. Fraser et al. [87] showed
that fluorotelomer alcohols (PFAS precursors) in the air of offices contribute substantially to the body
burden of PFOA and PFNA. These volatile alcohols may originate from carpets, furniture, and/or
paints. Individuals of higher SES are more likely to have offices jobs. It is not clear to what extent the
inhalation of PFAS precursors play a role in the total exposure picture. To conclude, some determinants
may suggest why an association between PFAS biomarker concentrations and SES is found; however,
the exact cause remains currently unknown.



Int. J. Environ. Res. Public Health 2018, 15, 2818 12 of 17

4. Conclusions

The unfair distribution of internal chemical pollution across social groups remains an important
social and policy issue. Different strategies try to tackle this problem (EU2020 strategy, seventh
EAP, WHO Parma and Ostrava Declaration). In this study, the association between PFAS biomarker
levels measured in blood samples of the general population and SES categories was studied by a
meta-analysis including five studies. Additionally, determinants of exposure in relation to income
and educational levels were checked as potentially underlying causes for the association between SES
constructs and PFAS blood levels. The meta-analysis confirmed that socio-economic status defined by
income is an important determinant of PFAS blood levels. For the SES indicator income, study-specific
applied income categories differ. On top, income ranges differ between countries. By applying for
each study a factor change in income between income categories and correcting this by the Gini
coefficient, studies could be combined, and the magnitude of the association between the change in
income and HBM PFAS concentrations could be studied. A requisite is that the level of detail given
in individual studies is sufficient. In cases of income as an SES indicator, the level of detail means
that PFAS concentrations (and/or modeled percentage changes) are necessary per income category,
and that sufficient and quantitatively well-defined categories are available to capture differences in
exposure. Databases that collect HBM data such as the IPCHEM should be structured to include
exposure levels per income categories and educational levels to follow trends in exposure inequality
that relate to social status. Besides this, harmonized protocols to define SES variables such as the
uniform International Standard Classification of Education (ISCED) should be used if reporting.
Currently, we could not perform a meta-analysis for the SES indicator education, given that applied
descriptors (<college, x number years, etc.) differed too widely between studies. The meta-analysis for
income showed consistently that a higher income is associated with higher PFAS concentrations, or
that a low SES is not always associated with an increased chemical burden. The environmental justice
hypothesis, in which persons of lower SES groups have a larger internal chemical exposure, does not
hold for all of the chemicals. When for a studied population, household income is approximately
distributed uniformly across three to four categories, a significant (p < 0.05) increase in adult PFAS
concentration is identified for PFOS, PFOA, PFNA, and PFHxS. The change was similar for the studied
PFASs, and the average increase in PFAS concentrations varied between 10%–14% for a doubling
of the income. However, underlying factors causing this increase probably differ between the US
and Europe, for which studies were included in the meta-analysis. For example, for PFOS, diet is
seen at the most important factor contributing to the human body burden in both continents, but as
in Europe, the consumption of fish is probably a main culprit, while in the US, beef consumption
probably plays a major role. An extra calculation made for Belgium showed that differences in diet
can explain a large part of the PFOS biomarker variability across SES. Either way, differences in
diet are not the only underlying cause explaining the differences in human PFAS concentrations
by SES category. The contribution of exposure through dermal contact with consumer products
and through the inhalation of contaminated air remains unclear. Studies on the underlying causes
resulting in observed SES differences of internal chemical exposure are definitely needed to unravel
the socio-economic–environment–health relationship and decrease human health inequality. With that
knowledge, awareness can be raised, and people can be stimulated in making smart choices reducing
their exposure to chemicals [88]. Regarding the use of SES indicators income and education, both have
their pros and cons, and often they capture different aspects of the health impact. Our study is not in
favour of one or the other, but more consistency should be applied to compare results (e.g., application
of ISCED). The variable income is sometimes seen as sensitive information to share, and is not always
reported in questionnaires.
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