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Abstract: As the world’s top carbon-emitting country, China has placed great emphasis on
understanding the driving factors of carbon emissions and developing appropriate emissions
reduction policies. Due to the obvious variations in carbon emissions among various industries
in China, corresponding policies need to be formulated for different industries. Through data
envelopment analysis, this study introduced the Shephard distance function into the logarithmic
mean Divisia index (LMDI) for decomposition analysis, built a carbon emissions decomposition model
of 23 industries in China during 2003–2015, and analyzed the impact of 10 factors driving carbon
emissions. The main results are as follows. (1) Potential gross domestic production (GDP) is a crucial
factor for increasing carbon emissions, whereas potential energy intensity and technological advances
of carbon emissions have a significant inhibitory effect on carbon emissions; (2) the technological
progress of energy usage and the technological advances of GDP output are manifested by inhibiting
carbon emissions at the early stage of development and increasing emissions at the later stage; (3) the
structure of coal-based energy consumption is difficult to change in the long term, resulting in a weak
effect of energy mix on carbon emissions and an increase in carbon emissions due to the potential
energy carbon intensity factor.

Keywords: carbon emissions; factor decomposition; LMDI; Shephard distance function; PDA;
Chinese industry

1. Introduction

Global warming has attracted increasing attention since the late 1980s. Environmental degradation
caused by excessive fossil energy consumption has become increasingly salient [1], especially as the
global economy has grown rapidly. Excessive emissions of greenhouse gases are responsible for
warming the climate, and carbon dioxide accounts for the majority of greenhouse gases. Therefore,
controlling the increase of carbon emissions has become a key measure to slow global warming. Since
the 1990s, energy-related carbon dioxide emissions in newly industrialized countries have increased
significantly compared with those in industrialized countries [2]. In 2007, China surpassed the United
States of America to become the largest carbon-emitting country in the world [3,4].

Under pressure to reduce carbon emissions, China must shoulder its share of responsibility as one
of the world’s leading economic and political powers and contribute to global energy conservation,
carbon emissions reduction, and low-carbon development. China pledged to reduce carbon intensity
by 60–65% compared with the level in 2005 [5–7], increase non-fossil energy to approximately 20%
of primary energy consumption [8], and achieve peak carbon emissions in 2030 [9–13]. However, as
industrialization and urbanization gather momentum and the economy develops vigorously, China
will inevitably continue to consume a large amount of fossil-based energy, and thus will continue
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to generate a large amount of carbon emissions. Under such a grim situation, how to achieve
win-win results for economic development and emissions reduction is one of the major tasks of
the Chinese government.

Considering the severity of the problem, China’s traditional extensive and high-energy
development mode should be changed in order to realize the low-carbon transformation of the
industrial structure. The structure of the industrial sector plays an important role in the development
of a low-carbon economy. The environmental pollution caused by economic development originates
from the resources consumed and the emitted waste gas. The production process of different industries
has different impacts on the ecological environment, and the CO2 emissions generated from production
are also very different. In order to analyze the irrationality of the existing industrial structure and the
emissions reduction path, this paper explored the specific differences of CO2 emissions in various
industries in the process of economic development, and adopted the factor decomposition analysis
method to understand the actual action mechanism of different factors on CO2 emissions in different
industries, which is also the purpose of this paper to select 23 industries for research. Because some
industries are a collection of similar industries, this paper divided the whole industry into 23 industries
in the process of research.

When exploring the driving factors of carbon emissions through production-theoretical
decomposition analysis (PDA), Chinese and other scholars have mostly concentrated on six economic
sectors in China as a whole (or in regions) to formulate corresponding policies. This research extends
previous studies by making the following contributions. (1) The PDA method was combined with
the logarithmic mean Divisia index (LMDI) method to examine drivers of China’s industrial carbon
emissions; (2) in-depth differences of carbon emissions and driving factors in many more different
economic sectors were explored, and the number of research objects was increased to 23 segmented
industries; (3) the PDA method was employed to create a 10-factor decomposition model of the carbon
emissions resulting from energy consumption in 23 industries, which include potential energy carbon
intensity, energy mix, and potential energy intensity; (4) by comparing the average changes of the
whole industry with those of various industries, its action mechanism can be deeply explored.

This paper is organized as follows. In Section 2, we introduce the methodology and relative data.
Results and discussion are presented in Section 3. Finally, we conclude this study.

2. Literature

At present, decomposition analysis is widely applied to examine various aspects of energy and
the environment. Decomposition analysis quantitatively measures the contribution of each factor
in a given process by decomposing the comprehensive or relative indicators into several driving
factors. Three types of decomposition analysis are used to examine carbon emissions in China and
internationally: index decomposition analysis (IDA), structural decomposition analysis (SDA), and
production-theoretical decomposition analysis (PDA, a method that combines nonparametric distance
functions and environmental production techniques) [14].

Due to its simple structure, easy-to-understand principles, and low data requirements [15], the
IDA method has been widely applied by Chinese and international scholars to analyze the driving
factors of energy consumption or carbon emissions from multiple dimensions and industries [12,
16]. For example, Zhu et al. [17] employed the logarithmic mean Divisia index (LMDI, a type of
IDA) and extended the Kaya [18] identity equation to examine the contribution of population size,
economic output scale, industrial structure, energy mix, and energy efficiency to carbon emissions
in China during 1980–2007. Li et al. [19] constructed a factor decomposition analysis model based
on the period 1980–2007, and discovered that the factors causing increased carbon emissions are
economic growth and industrial structure, while carbon emission intensity is an important factor in
suppressing carbon emissions. Dong et al. [20] adopted the LMDI decomposition model to decompose
the incremental changes in carbon emissions into four effects, two of which are economic scale and
industrial structure. However, when researchers decompose carbon emissions via the IDA method, the
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emissions are typically decomposed into energy mix, energy intensity, population size, and economic
output [21–23]. Although IDA has many advantages, such as low data requirements, variable form and
easy understanding, it only considers the carbon emissions generated by direct energy consumption,
and cannot explore the carbon emissions generated by indirect consumption. Meanwhile, this method
cannot explore the amount or rate of contribution by changes of production technology to carbon
emissions; hence, certain potential influencing factors are ignored.

Based on input-output tables, SDA was employed to explore the factors that influence carbon
emissions [24]. The SDA can explore the carbon emissions generated by direct and indirect energy
sources. For example, Dong et al. employed the SDA to explore the influencing factors of carbon
emission intensity in China from 1992 to 2012, and found that energy efficiency was an important
driver of carbon emission intensity reduction [25]. Su et al. studied the drivers of Singapore’s
carbon emissions using SDA, and found the expansions of export-oriented industries and export
volume caused emissions to increase, and fuel switching and energy efficiency helped reduce emission
growth [26]. Therefore, based on the SDA decomposition, the carbon emissions flow included in
import and export can be examined [27,28]. However, because SDA-based research has a high data
requirement, and moreover, input-output tables are not updated frequently, SDA is not conducive to
in-depth research. Compared with IDA and SDA, PDA embeds the Shephard distance function into
Kaya identity equation and introduces potential factors and technical efficiency into decomposition
identities [29]. Through constructing the optimal production frontier, PDA comprehensively considers
the influence of production efficiency and technology on energy use and carbon emissions [30].

Previous decomposition analyses have shown that energy intensity is a typical indicator of energy
efficiency; however, it is difficult to propose targeted policy recommendations by merely replacing
energy efficiency with energy intensity [31]. Because scholars have determined that production
technology is a factor that affects carbon intensity and energy intensity [32–35], technical effects
should be taken into consideration when studying the factors that drive carbon emissions. Some
researchers have explored the effect of technology by combining decomposition methods with data
envelopment analysis (DEA) methods [36–38]. Zhou and Ang [38] proposed PDA and applied them
to analyze the carbon emissions in countries comprising the Organization for Economic Cooperation
and Development.

Production-related factors play a very important role in regional carbon emissions. In production
activities, economic entities produce both desired and undesired outputs. Technical efficiency
influences the transformation of inputs into outputs, and thus directly influences production efficiency.
Using the PDA framework, Kim and Kim [34] replaced the Malmquist index with the LMDI index and
incorporated industrial structure and energy mix into the model, thus making up for the shortcomings
in previous research by Zhou and Ang [38]. Zhang et al. [39] adopted PDA to decompose carbon
emissions and used the generalized Fisher index for detailed decomposition. As a whole, PDA is a
significant method for studying the impact of production technologies within various sectors, regions
and countries on energy and carbon emissions, and more targeted policy recommendation can be
proposed based on it [40]. The LMDI is widely applied in IDA decomposition because the index
allows the zero value in decomposition [41] and data defect issues in decomposition are addressed
very easily [42–44]. Therefore, in this study, a decomposition model that combined LMDI with PDA
was employed.

Although existing research has played an important role in China’s energy conservation and
emission reduction policies, there are still some deficiencies. First, most of the literature on carbon
emissions focused on the national or regional level, which was incomplete. Since different industries
produce different carbon emissions due to different structures, it is necessary to carry out detailed
and specific exploration of various industries in China. Secondly, when studying the influencing
factors, most literature did not consider the influence of technology, which is unreasonable. Therefore,
factors such as technical efficiency and technological progress must be considered in the model, so as
to examine its mechanism more precisely. Thirdly, when investigating the driving factors of carbon
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emissions, the decomposition results of most literature is basically consistent, such as carbon emission
coefficient, energy intensity, energy mix, etc. Therefore, it is necessary to introduce new influencing
factors to conduct more in-depth research on them.

3. Methodology and Data

3.1. Shephard Distance Function

Based on the PDA decomposition of environmental production technology, the decomposition
model of the Shephard distance function is created by introducing energy input, economic output and
carbon emission output. If energy, labor, and capital are the input factors, output value is the desired
output, and carbon emissions are the undesired output, as described by the following equation:

Rt =
(
Et, Lt, Kt, Yt, Ct), (1)

indicating that (Et, Lt, Kt) can generate (Yt, Ct).
In the above equation, Et ∈ R+ indicates energy input, Lt ∈ R+ represents labor input, Kt ∈ R+

is capital investment, Yt ∈ R+ represents desired output (or gross domestic production (GDP)), and
Ct ∈ R+ denotes the undesired output, i.e., carbon emissions. The Shephard distance function is
introduced based on the production technology used in a given industry. The Shephard distance
function of the t-period is expressed as:

Dt
e
(
Et, Lt, Kt, Yt, Ct) = sup

{
α :
(
Et/α, Lt, Kt, Yt, Ct) ∈ St} (2)

Dt
y
(
Et, Lt, Kt, Yt, Ct) = inf

{
β :
(
Et, Lt, Kt, Yt/β, Ct) ∈ St} (3)

Dt
c
(
Et, Lt, Kt, Yt, Ct) = sup

{
δ :
(
Et, Lt, Kt, Yt, Ct/δ

)
∈ St}. (4)

In this equation, Dt
e(Et, Lt, Kt, Yt, Ct), Dt

y(Et, Lt, Kt, Yt, Ct), Dt
c(Et, Lt, Kt, Yt, Ct) represent the

optimal production front-edge distance, and St indicates the possible set of production technologies.
When Dt

e
(
Et, Lt, Kt, Yt, Ct) ≥ 1, the smaller the value is, the closer the decision unit is to the probability

boundary, and the higher the efficiency is. When 0 ≤ Dt
y
(
Et, Lt, Kt, Yt, Ct) ≤ 1, the larger the value

is, the closer the decision unit is to the probability boundary, and the higher is the output efficiency.
When Dt

c
(
Et, Lt, Kt, Yt, Ct) ≥ 1, the smaller the value is, the closer the decision unit is to the probability

boundary, and the higher is the efficiency. Once all the three distance functions reach a value of 1, the
decision unit is at the forefront of production.

The intertemporal distance function, based on the definition of the Shephard distance function,
was used in this study. Different periods are included in the same distance function, in which s
indicates the base period of production technology and t represents the period in which the decision
unit is located, as expressed in the following equations:

Ds
e
(
Et, Lt, Kt, Yt, Ct) = sup

{
α :
(
Et/α, Lt, Kt, Yt, Ct) ∈ St} (5)

Ds
y
(
Et, Lt, Kt, Yt, Ct) = inf

{
β :
(
Et, Lt, Kt, Yt/β, Ct) ∈ St} (6)

Ds
c
(
Et, Lt, Kt, Yt, Ct) = sup

{
δ :
(
Et, Lt, Kt, Yt, Ct/δ

)
∈ St}. (7)

To solve Equations (5)–(7), the scale returns are assumed to be constant and the following equations
were used to make the calculations:
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Ds
e(Et, Lt, Kt, Yt, Ct)

−1
= minα

s.t



λEs ≤ αEt

λLs ≤ Lt

λKs ≤ Kt

λYs ≥ Yt

λCs = Ct

λ ≥ 0, s, t ∈ {T, T + 1}

(8)

Ds
c(Et, Lt, Kt, Yt, Ct)

−1
= minδ

t



λEs ≤ Et

λLs ≤ Lt

λKs ≤ Kt

λYs ≥ Yt

λCs = δCt

λ ≥ 0, s, t ∈ {T, T + 1}

(9)

Ds
y(Et, Lt, Kt, Yt, Ct)

−1
= maxβ

t



λEs ≤ Et

λLs ≤ Lt

λKs ≤ Kt

λYs ≥ βYt

λCs = Ct

λ ≥ 0, s, t ∈ {T, T + 1}

.
(10)

3.2. PDA Production Decomposition Model

Kaya’s identity was first proposed by Kaya [18]. This study extended the Kaya identity, and
employed it to preliminarily decompose CO2 into:

C = ∑
j

Cj

Ej
×

Ej

E
× E

Y
×Y. (11)

In the above equation, C is the total amount of carbon emissions, Cj is CO2 produced from the j
energy source, Ej is the total consumption of the j energy, E is the total energy consumption, and Y is
the added value of industry. In this study, the above equation was expanded again according to the
decomposition method of Zhou and Ang [38]. To avoid subjective influence, the correlation efficiency
of the distance function was determined after geometrically averaging values of the t-period and t + 1
period. The specific decomposition model is as follows.

The decomposition model of carbon emissions in t period:

Ct = ∑
j

Ct
j

[Dt
C(K

t,Lt ,Et ,Yt ,Ct)×Dt+1
C (Kt,Lt ,Et ,Yt ,Ct)]

1
2
× 1

Et
j
×

Et
j

Et × Et

[Dt
E(K

t,Lt ,Et ,Yt ,Ct)×Dt+1
E (Kt,Lt ,Et ,Yt ,Ct)]

1
2
× 1

Yt

×Yt ×
[

Dt
Y(K

t, Lt, Et, Yt, Ct)× Dt+1
Y (Kt, Lt, Et, Yt, Ct)

] 1
2×

Dt
C(K

t, Lt, Et, Yt, Ct)×
[

Dt+1
C (Kt,Lt ,Et ,Yt ,Ct)

Dt
C(K

t,Lt ,Et ,Yt ,Ct)

] 1
2

×

Dt
E(K

t, Lt, Et, Yt, Ct)×
[

Dt+1
E (Kt,Lt ,Et ,Yt ,Ct)

Dt
E(K

t,Lt ,Et ,Yt ,Ct

] 1
2

× 1
Dt

Y(K
t,Lt ,Et ,Yt ,Ct)

×
[

Dt
Y(K

t,Lt ,Et ,Yt ,Ct)

Dt+1
Y (Kt,Lt ,Et ,Yt ,Ct)

] 1
2

. (12)
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The decomposition model of carbon emissions in t + 1 period:

Ct+1 = ∑
j

Ct+1
j

[Dt
C(K

t+1,Lt+1,Et+1,Yt+1,Ct+1)×Dt+1
C (Kt+1,Lt+1,Et+1,Yt+1,Ct+1)]

1
2
× 1

Et+1
j
×

Et+1
j

Et+1 × Et+1

[Dt
E(K

t+1,Lt+1,Et+1,Yt+1,Ct+1)×Dt+1
E (Kt+1,Lt+1,Et+1,Yt+1,Ct+1)]

1
2
× 1

Yt+1

×Yt+1 ×
[

Dt
Y(K

t+1, Lt+1, Et+1, Yt+1, Ct+1)× Dt+1
Y (Kt+1, Lt+1, Et+1, Yt+1, Ct+1)

] 1
2×

Dt+1
C (Kt+1, Lt+1, Et+1, Yt+1, Ct+1)×

[
Dt

C(K
t+1,Lt+1,Et+1,Yt+1,Ct+1)

Dt+1
C (Kt+1,Lt+1,Et+1,Yt+1,Ct+1)

] 1
2

×

Dt+1
E (Kt+1, Lt+1, Et+1, Yt+1, Ct+1)×

[
Dt

E(K
t+1,Lt+1,Et+1,Yt+1,Ct+1)

Dt+1
E (Kt+1,Lt+1,Et+1,Yt+1,Ct+1)

] 1
2

× 1
Dt+1

Y (Kt+1,Lt+1,Et+1,Yt+1,Ct+1)
×
[

Dt+1
Y (Kt+1,Lt+1,Et+1,Yt+1,Ct+1)

Dt
Y(K

t+1,Lt+1,Et+1,Yt+1,Ct+1)

] 1
2

. (13)

Equations (12) and (13) can be briefly expressed as:

CS = ∑
J

PCECHS
J × PEMCHS

J × PEICH × PGDPCH × CETECH × CETCH × EUTECH

×EUTCH × GDPTECH × GDPTCH S ∈ {0, T}
. (14)

Taking Equation (12) as an example, Part 1 indicates the potential energy carbon intensity of a
sub-sector, and is recorded as PCECH:

PCECHt
J =

Ct
j[

Dt
C(K

t, Lt, Et, Yt, Ct)× Dt+1
C (Kt, Lt, Et, Yt, Ct)

] 1
2
× 1

Et
j
. (15)

Part 2 is the energy mix of different industries that shows the proportion of a certain energy type
in the total energy consumption, and is represented as PEMCH:

PEMCHt
J = Et

j /Et. (16)

Part 3 is the potential energy intensity factor of the industrial sector, and is recorded as PEICH, i.e.,

PEICH =
Et[

Dt
E(K

t, Lt, Et, Yt, Ct)× Dt+1
E (Kt, Lt, Et, Yt, Ct)

] 1
2
× 1

Yt , (17)

which refers to the energy intensity adjusted by energy utilization efficiency.
Part 4 is the potential GDP factor in the industrial sector, and is denoted as PGDPCH, i.e.,

PGDPCH = Yt ×
[

Dt
Y(K

t, Lt, Et, Yt, Ct)× Dt+1
Y (Kt, Lt, Et, Yt, Ct)

] 1
2 , (18)

which refers to the actual output after adjustment of output efficiency.
Based on the definition of the Malmquist index, Parts 5 and 6 are, respectively, the technical

efficiency of carbon emissions and technological progress of carbon emissions, which are recorded as
CETECH and CETCH, respectively:

CETECH = Dt
C(K

t, Lt, Et, Yt, Ct) (19)
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CETCH =

[
Dt+1

C (Kt, Lt, Et, Yt, Ct)

Dt
C(K

t, Lt, Et, Yt, Ct)

] 1
2

. (20)

Parts 7 and 8 are changes of technological efficiency and progress of energy use, respectively,
which are represented as EUTECH and EUTCH, respectively:

EUTECH = Dt
E(K

t, Lt, Et, Yt, Ct) (21)

EUTCH =

[
Dt+1

E (Kt, Lt, Et, Yt, Ct)

Dt
E(K

t, Lt, Et, Yt, Ct

] 1
2

. (22)

Parts 9 and 10 are, respectively, changes of technological efficiency and progress of economic
output, which are recorded as GDPTECH and GDPTCH, respectively:

GDPTECH =
1

Dt
Y(K

t, Lt, Et, Yt, Ct)
(23)

GDPTCH =

[
Dt

Y(K
t, Lt, Et, Yt, Ct)

Dt+1
Y (Kt, Lt, Et, Yt, Ct

] 1
2

. (24)

Addition and multiplication are the two mathematical operations in the solution process for
LMDI. The additive form is reported in many literature. However, to better evaluate the industrial
carbon emissions problem, multiplication was used to solve the LMDI in this study and quantitatively
analyze the driving factors. The specific equation is as follows:

D = Ct+1/Ct = D(PCECH) × D(PEMCH) × D(PEICH) × D(PGDPCH) × D(CETECH) × D(CETCH)

×D(EUTECH) × D(EUTCH) × D(GDPTECH) × D(GDPTCH).
(25)

The equation for calculating the driving factors is as follows:

D(PCECH) = exp

∑
j

(
Ct+1

J − Ct
J

)
/
(

ln Ct+1
J − ln Ct

J

)
(Ct+1 − Ct)/(ln Ct+1 − ln Ct)

× ln

(
PCECHt+1

J

PCECHt
J

) (26)

D(PEMCH) = exp

∑
j

(
Ct+1

J − Ct
J

)
/
(

ln Ct+1
J − ln Ct

J

)
(Ct+1 − Ct)/(ln Ct+1 − ln Ct)

× ln

(
PEMCHt+1

J

PEMCHt
J

) (27)

D(PEICH) = exp

∑
j

(
Ct+1

J − Ct
J

)
/
(

ln Ct+1
J − ln Ct

J

)
(Ct+1 − Ct)/(ln Ct+1 − ln Ct)

× ln
(

PEICHt+1

PEICHt

) (28)

D(PGDPCH) = exp

∑
j

(
Ct+1

J − Ct
J

)
/
(

ln Ct+1
J − ln Ct

J

)
(Ct+1 − Ct)/(ln Ct+1 − ln Ct)

× ln
(

PGDPCHt+1

PGDPCHt

) (29)

D(CETECH) = exp

∑
j

(
Ct+1

J − Ct
J

)
/
(

ln Ct+1
J − ln Ct

J

)
(Ct+1 − Ct)/(ln Ct+1 − ln Ct)

× ln
(

CETECHt+1

CETECHt

) (30)

D(CETCH) = exp

∑
j

(
Ct+1

J − Ct
J

)
/
(

ln Ct+1
J − ln Ct

J

)
(Ct+1 − Ct)/(ln Ct+1 − ln Ct)

× ln
(

CETCHt+1

CETCHt

) (31)
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D(EUTECH) = exp

∑
j

(
Ct+1

J − Ct
J

)
/
(

ln Ct+1
J − ln Ct

J

)
(Ct+1 − Ct)/(ln Ct+1 − ln Ct)

× ln
(

EUTECHt+1

EUTECHt

) (32)

D(EUTCH) = exp

∑
j

(
Ct+1

J − Ct
J

)
/
(

ln Ct+1
J − ln Ct

J

)
(Ct+1 − Ct)/(ln Ct+1 − ln Ct)

× ln
(

EUTCHt+1

EUTCHt

) (33)

D(GDPTECH) = exp

∑
j

(
Ct+1

J − Ct
J

)
/
(

ln Ct+1
J − ln Ct

J

)
(Ct+1 − Ct)/(ln Ct+1 − ln Ct)

× ln
(

GDPTECHt+1

GDPTECHt

) (34)

D(GDPTCH) = exp

∑
j

(
Ct+1

J − Ct
J

)
/
(

ln Ct+1
J − ln Ct

J

)
(Ct+1 − Ct)/(ln Ct+1 − ln Ct)

× ln
(

GDPTCHt+1

GDPTCHt

). (35)

In the solution process of the decomposition model, the consumption amount might be zero for
certain types of energy within certain industries in certain years, which is not conducive to calculating
the contribution of the driving factors. Under such conditions, the method used by Ang et al. [42] to
address zero values was adopted. This approach replaces the zero value with a very small positive
number (such as 10–10 or 10–20) to eliminate the large errors.

3.3. Data

Except for carbon emissions, the data used in the study were sourced from the Chinese Statistical
Yearbook [45], China Energy Statistical Yearbook [46], China Industrial Statistical Yearbook [47], Statistical
Yearbook of the Chinese Investment in Fixed Assets [48], China Population and Employment Statistics
Yearbook [49], China Price Statistics Yearbook [50] and China Input-Output Table [51]. All data are for the
period 2003 to 2015. The data description is shown in Table 1.

Table 1. Definition of variables.

Variable Symbol Variable Name Description

C Carbon emissions Calculate using standard coals with different energy sources
and corresponding carbon emission factors

E Energy consumption Convert coal, oil, and natural gas into standard coal for totaling
Y Economic scale Actual industry added value in 1990 constant price

EM Energy mix Coal consumption/total energy consumption
EI Energy intensity Energy consumption/GDP
K Capital stock Cumulative capital of the industry
L labor force Average number of employees in the industry

Tian’s [52] partial calculation results and perpetual inventory method were employed in
calculating the data on capital stock and the depreciation rate was calculated based on the depreciation
data of fixed assets stated in the China Input-Output Table.

The emissions of CO2 from different industries were calculated by selecting the coal, aggregated
oil products, and natural gas given in the China Energy Statistical Yearbook, using the following equation:

C = ∑
j

Ej × αj × β j ×
44
12

, (36)

where Ej refers to the consumption of energy j; αj refers to the standard coal coefficient converted
from energy j; β j represents the carbon emission coefficient of energy j; the constant 44/12 is the mass
conversion coefficient of the CO2 molecule oxidized by carbon, and C indicates the CO2 emissions
from the terminal energy consumption of the industry.

Table 2 presents the division of industries. Some industries are an aggregate of similar industries.
Industry (4) represents the ferrous and non-ferrous metal mining, and industry (6) is a combination of
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four industries, i.e., agricultural and sideline products, food manufacturing, beverages, and tobacco
products. Industry (7) is a combination of three industries, i.e., textiles and apparels, footwear, and
leather and fur. Industry (8) includes wood processing and related product manufacturing, such as
furniture. Industry (9) is a combination of three industries, i.e., paper-making and related products,
printing, and cultural and educational supplies manufacturing. Industry (11) is a combination
of four industries, i.e., chemical raw materials and chemical products, medicine manufacturing,
rubber and plastic products, and chemical fiber manufacturing. Industry (13) includes ferrous
and non-ferrous metal smelting and rolling processing. Industry (15) refers to general and special
equipment manufacturing.

Table 2. Sample industry.

Number Industry Number Industry

(1) Farming, Forestry, Animal
Husbandry, Fishery Conservancy (13) Smelting and Pressing of Metals

(2) Mining and Washing of Coal (14) Manufacture of Metal Products

(3) Extraction of Petroleum and
Natural Gas (15)

Manufacture of Special Purpose
Machinery and Manufacture of

General Purpose Machinery

(4) Mining and Processing of
Metal Ores (16) Manufacture of Transportation

Equipment

(5) Mining and Processing of
Non-metal Ores and Others (17) Manufacture of Electrical

Machinery and Apparatus

(6) Manufacture of Foods and
Manufacture of tobacco (18)

Manufacture of Computers,
Communication and Other

Electronic Equipment

(7) Manufacture of Textile and
Manufacture of products (19) Manufacture of Measuring

Instruments and Machinery

(8) Processing of Timber and
Manufacture of Furniture (20) Production and Supply of

Electric Power and Heat Power

(9)
Manufacture of Articles for Culture,

Education, Arts and Crafts, Sport
and Entertainment Activities

(21) Construction

(10) Processing of Petroleum, Coking
and Processing of Nuclear Fuel (22) Transport, Storage and Post

(11) Manufacture of Chemistry (23) Wholesale, Retail Trade and
Hotel, Restaurants

(12) Manufacture of Non-metallic
Mineral Products

4. Results and Discussion

4.1. Analysis of Carbon Emissions from Different Industries

Data show that CO2 emissions of different industries in China during the study period are
significantly different. As is shown in Figure 1, CO2 emissions were especially high in the petroleum
processing industry (10), the chemical industry (11), the non-metallic mineral products industry (12),
and the transportation, warehousing and postal industries (22). Comparatively, the CO2 emissions are
relatively lower in the metal mining industry (4), the wood processing, wood products and furniture
manufacturing industry (8), the metal products manufacturing industry (14), the electrical machinery
and equipment manufacturing industry (17), the computer manufacturing industry (18), and the
instrumentation manufacturing industry (19). The CO2 emissions of the remaining industries are
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relatively small and remain constant at a moderate level. According to the above analysis, except
for the transportation industry (22), all industries with particularly high emissions are classified as
“secondary” industry. Notably, the six industries with relatively low CO2 emissions also belong to the
secondary industry, thus proving that not all of industries within the secondary industry discharge
high carbon emissions and cause high levels of pollution. Furthermore, there are certain low-carbon
industries in China as well as high-emission industries. Therefore, when measures are proposed or
enacted to reduce and curb carbon emissions, attention needs to be paid to the differences among
industries. Nevertheless, the data definitively specify that most carbon dioxide emissions are generated
from the secondary industry. Notably, the transportation industry (22) also has a particularly high
amount of CO2 emissions, illustrating that the current tertiary industry is not completely low-carbon.
Hence it is necessary to strictly reduce and control carbon emissions and develop suitable carbon
emission reduction measures for the tertiary industry as well as for the secondary industry.
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Figure 1. Energy-related CO2 emissions in each industry.

As shown in Figure 2, in view of the average annual growth rate of carbon emissions from 2003 to
2015, six industries register negative growth rates of carbon emissions. These industries are oil and
natural gas extraction (3), the textile industry and related products (7), general and special equipment
manufacturing (15), computer manufacturing (18), instrumentation manufacturing (19), and power
and heat production and supply (20). Carbon emissions in industry (3) do not show over-fluctuation
during the study period. Industries (7), (15), (18) and (19) initially present an upward trend in carbon
emission growth but the trend eventually turn downward. The carbon emission growth of industry (20)
initially decreases tremendously, but then quickly increases and then slowly decreases, exhibiting a
negative overall growth rate.

In 2003–2015, among the industries with positive annual growth rate of carbon emissions, the
construction industry (21) ranks first, followed by the chemical industry (11) and the transportation
industry (22). The growth of carbon emissions from these three industries continually increases over
the study period. Other industries that exhibit a continued increase of carbon emissions are the
wholesale and retail, accommodation and catering industry (23), the petroleum processing, coking
and nuclear fuel processing industry (10), and the agriculture, forestry, animal husbandry and fishery
industry (1). For the remaining 11 industries at specific stages of the study period, the growth rates
of carbon emissions tend to be sometimes positive or negative, but are not always increasing. The
11 industries are metal mining (4), metal smelting and rolling processing (13), non-metallic mineral
products manufacturing (12), food manufacturing and tobacco processing (6), metal products (14),
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wood processing and products, furniture manufacturing (8), coal mining and washing (2), electrical
machinery and equipment manufacturing (17), non-metal mining and other mining (5), transportation
equipment manufacturing (16) and paper-making, printing, culture and education (9). Overall, the
growth rate of carbon emissions in these 11 industries decreases during 2003–2015.
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Figure 2. Growth rate of energy-related CO2 emissions in each industry.

The average growth rates of carbon emissions in most industries during 2003–2015 increases,
which lead to the continuous increase of total CO2 emissions. However, the growth rate of carbon
emissions in most industries increases from 2003 to 2007, followed by slower growth from 2007 to 2011
and decreasing growth from 2011 to 2015. Statistical analysis of carbon emissions data from selected
industries suggest that the total amount of carbon emissions continues to increase throughout the
study period, yet the specific changes vary among different industries.

4.2. Driving Factors Analysis

Using the decomposition formula composed of the Shephard distance function, PDA production
decomposition analysis and LMDI decomposition, the influence of different driving factors on carbon
emissions from industry was examined. Results illustrated in Figures 3–5 show the average of the
annual decomposition of the factors of carbon emissions from 23 industries during 2003–2015. In these
figures, the values was >1 (<1 or =1) indicate that a factor increases (decreases or does not contribute
to) CO2 emissions.

(1) Potential Energy Carbon Intensity

Based on the factor decomposition results shown in Figures 3–5, 10 representative industries were
selected to illustrate the direction of change in potential energy carbon intensity factors in different
industries (see Figure 6). Figure 7 reflects the average value of potential carbon intensity changes
of all industries. Potential energy carbon intensity is a factor that considers the efficiency of carbon
emission technology, that is to say, the low efficiency of controlling CO2 emissions will lead to the
observed carbon emission factor being greater than that of the original carbon emission factor. The
average change in the value of potential energy carbon intensity factors for each of the 23 industries
from 2003 to 2015 is mostly >1, which indicates that the reduction of carbon emissions is hindered and
that China’s energy carbon intensity does not present much improvement. The reason for this result is
that among the three fossil energy sources, coal has a large emission coefficient, and coal still accounts
for as much as 65% of China’s total energy consumption. The large consumption of coal will continue
to increase carbon emissions through the influence of the potential energy carbon intensity factor. This
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conclusion is consistent with Sun et al., although the subject of the study is different [29]. However,
the potential energy carbon intensity factor of industries (21), (22), and (23) plays a role in reducing
carbon emissions.
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(2) Structural Factors of Energy Consumption

According to the average values for the energy consumption structure factors of various industries
from 2003 to 2015, most of them play a role in reducing carbon emissions (see Figures 8 and 9). However,
only the energy consumption structural changes in industries (1), (5), (7), (10), (11), (13), and (17)
obviously inhibit the reduction of carbon emissions. These results indicate that coal use is effectively
controlled during the development of most industries, thus helping to reduce CO2 emissions.
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Undoubtedly, the energy mix factor can reduce carbon emissions, but the decomposition results
specify that the emission reduction effect of this factor is not obvious. For all 23 sampled industries,
the energy consumption structure factors have values close to 1 without obvious differences among
industries. In studying the multi-regional carbon emission factors, Ma et al. also found that the energy
structure has a small reduction effect [53]. This result indicates that the energy consumption structure
of most industries in China has not improved significantly. Fundamentally, this is because the current
energy consumption is still dominated by coal. These results further demonstrate that China’s clean
energy initiative has not been fully popularized and coal still dominates the energy consumption in
Chinese industry. Thus, there is still a huge potential for reducing carbon emissions via adjusting and
optimizing the energy consumption structure.

(3) Potential Energy Intensity

In general, actual energy intensity reflects the actual energy use efficiency. However, the potential
energy intensity refers to energy intensity that would result from adjusting the energy input efficiency.
During the research period, the improvement of energy input efficiency increases the potential energy
intensity, thus increasing the influence of energy intensity on carbon emissions. The average value
of changes in the potential energy intensity factor for most of the 23 industries from 2003 to 2015 is
<1. Thus, this factor has a positive effect on carbon emission reduction (see Figures 10 and 11), and its
effect on emission reduction is consistent with that of energy intensity. Wang et al. explored China’s
carbon emissions and also found that potential energy carbon intensity factors have an inhibitory effect
on carbon emissions [54].

The energy intensity factor is indicated by the ratio of energy consumption to industrial GDP.
However, the potential energy intensity factor is adjusted via energy efficiency. Therefore, for industries
with a potential energy intensity factor of less than 1, the growth rate of industrial GDP exceeds that
of the industrial energy use, thus contributing to the reduction of carbon emissions. Conversely, for
industries in which the change in the value of the potential energy intensity factor exceeds 1, the
growth rate of industrial GPD is lower than that of energy consumption, which results in increased
CO2 emissions. In China, the contribution of the potential energy intensity factor to emission reduction
is tremendous. Hence, efforts should be made to enable potential energy intensity to play a positive
role in reducing carbon emissions, such as by formulating industry-specific measures for realizing
energy conservation and carbon emission reduction in a better and faster way.
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(4) Potential GDP Factor

The potential GDP factor shows the influence of adjusted actual output by using the GDP output
efficiency. If the output efficiency is increased, the changes in potential GDP are greater than those of
the actual GDP, resulting in an amplified influence on changes in CO2 emissions. The change in the
average value of the potential GDP factor for the 23 industries from 2003 to 2015 exceeds 1. Therefore,
this factor is a main influence that increases carbon emissions.

Whether considering the carbon emissions of individual industries or of China in general, the
potential GDP factor not only determines the direction of carbon emission changes, but also to a large
extent determines the scale of carbon emissions (see Figures 12 and 13). The effect is consistent with
the influence of GDP. This conclusion is consistent with Wang et al. They also found that potential
GDP has a positive effect on carbon emissions [54]. Because China now is at the stage of accelerated
development of industrialization and urbanization, the key task is to address the relationship between
economic development and carbon emission reduction, thus achieving sustainable development.
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(5) Technical Efficiency Factor of Carbon Emissions

Based on the Shephard distance function, the technical efficiency of carbon emissions indicates
the possibility of reducing carbon emissions while other conditions remain unchanged. The values of
technical efficiency factors of carbon emissions for most of the 23 industries (except industries (11),
(15) and (20)) exceed 1 (see Figure 14). Thus, technical efficiency does not reduce carbon emissions,
but on the contrary, increases the emissions. Seen from the overall perspective of the 23 industries,
the technical efficiency levels of carbon emissions in 2003–2015 increase (see Figure 15). Theoretically,
the improvement of efficiency is conducive to decreasing carbon emissions. However, the empirical
evidence in this study specifies that technical efficiency improvements do not exert corresponding
influences on carbon emissions in the sample period, which proves, to some extent, that China’s carbon
emission technical efficiency level has not improved dramatically.
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(6) Technological Advancement Factor of Carbon Emissions

Decomposed by the Malmquist index, the technological advancement factor of carbon emissions
is used to evaluate the technological progress of the decision-making unit. Figure 16 shows the results
of decomposition and the direction of change in the technological advances of carbon emissions from
10 representative industries. Figure 17 presents the average changes in technological progress of the
23 industries. By analyzing the average values for technological progress of the 23 industries from 2003
to 2015, the technological progress in carbon emissions is shown to remain relatively constant at a value
of 0.8212, indicating that the advancement of carbon emission technologies in the different industries is
the same. This is mainly due to the fact that the general and special equipment manufacturing industry
(15) shapes a frontier through the origin, which indicates the same proportion of technological progress
in all industries. The technological progress of carbon emissions is generally <1 for the 23 industries,
which means that technological progress plays a positive role in reducing carbon emissions, and there
is a technological progress effect on carbon emissions from the industries.
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(7) Energy Technology Efficiency Factor

Based on the Shephard distance function, energy technology efficiency indicates the possibility
of reducing energy consumption assuming other conditions remain unchanged. By analyzing the
average value for energy technology efficiency of the 23 industries from 2003 to 2015, seven industries
are identified as having reduced carbon emissions due to improved energy efficiency, and 10 industries
have increased carbon emissions due to efficiency changes. As can be seen from the Figure 18, the factor
of energy technology efficiency does not exert an obvious influence on carbon emissions because the
values for the 23 industries fluctuate between 0.98 and 1.01. Moreover, by analyzing the average values
for technological progress of the 23 industries from 2003 to 2015, the energy technology efficiency
actually suppresses the reduction of carbon emissions over a long period (Figure 19).
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Theoretically, the increase in energy efficiency is conducive to reducing carbon emissions.
However, the results show that it does not play this role during the study period. To a certain extent,
the absence of an obvious influence from this factor indicates that various industries do not attach
enough importance to improving energy efficiency, and do not recognize the role of energy efficiency in
energy conservation and emission reduction. This phenomenon is apparent in the secondary industry
as well as in the tertiary industry. Hence, in view of the urgent need for energy conservation and
emissions reduction, China should promote the improvement of energy efficiency as an important
emissions reduction strategy.

(8) Energy Technology Progress Factor

Decomposed by the Malmquist index, the energy technology factor measures the movement of
the production frontier of all assessed industries from the t period to the t + 1 period with reference
to energy consumption, and examines the progress of industries’ energy technology. Based on the
results of factor decomposition, 10 representative industries were selected to show the directions of
changes in the energy technology progress factor, meanwhile, the industrial average change value in
technological progress was calculated (see Figures 20 and 21). By analyzing the average value for the
energy technology progress factor in the 23 industries from 2003 to 2015, 10 industries are identified
that exhibit carbon emission reduction due to energy technology improvement, indicating that these
industries have innovation capabilities or advanced energy technologies to a certain extent. In addition,
13 industries are identified that have increased carbon emissions due to technological improvements.
Examining the 23 industries collectively shows that, during 2003–2011, energy technological progress
played a positive role in reducing carbon emissions but the effect was relatively weak, and that
carbon emissions increased after 2011. These results indicate that the innovative content of China’s
energy technology is far from sufficient, and efforts should be made to improve the level of innovative
technology and introduce advanced energy technologies.
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(9) Technical Efficiency Factors of GDP Output

Output technical efficiency was employed to measure the distance changes from an assessed
industry to the optimal production boundary from the t period to the t + 1 period. Figure 22 shows the
direction of change in the technical efficiency factors of GDP output in 10 representative industries, and
Figure 23 presents the average value of changes in technical efficiency of all 23 industries. By analyzing
the average values for technical efficiency of GDP output for the 23 industries from 2003 to 2015, eight
industries are identified that reduce carbon emissions due to the increased technical efficiency of GDP
output, among these, industry (4) and industry (13) show obvious effects. Likewise, nine industries
are identified that have increased carbon emissions due to changes in technological efficiency; among
these, industries (16), (22), and (23) present obvious effects. These results are consistent with the effects
on carbon emissions of energy technology efficiency in different industries. Judging from the average
value for the 23 industries, the effect of energy technology efficiency level on carbon emissions in
2003–2015 is not uniform because the output technical efficiency exhibits both negative and positive
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effects on increasing carbon emissions in different periods. The improvement of output technology
efficiency should play a positive role in reducing carbon emissions. However, the study results suggest
that the technical efficiency of almost half of the industries has not improved reasonably and there is
still much room for improvement.
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(10) Technological Progress of GDP Output Factor

Decomposed by the Malmquist index, the technological advancement factor of GDP output
measures the movement of the production frontier of the assessed industries from the t period to the
t + 1 period with reference to GDP output, and presents the progress of GDP output. By analyzing the
average value of the technological advancement factor of GDP output for the 23 industries from 2003
to 2015 (see Figures 24 and 25), 15 industries are identified with reduced carbon emissions due to GDP
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technological progress. This result indicates that the production frontier of the industries progresses
with reference to GDP output, and the technological advancement factor of GDP output plays a
positive role in carbon emission reduction. However, eight industries are identified that have increased
carbon emissions due to technological advances. Examining the 23 sampled industries collectively
shows that in the period 2003–2011 (excluding 2007 and 2009), technological progress in GDP output
plays a positive role in reducing carbon emissions and that the effect is obvious, while in other periods,
technological progress increases carbon emissions. For certain industries, technological progress is
accompanied by greater carbon emissions, which indicates that China’s economic development still
relies on a large input of resources. Therefore, it is imperative to promote the progress of production
technology in view of the current extensive economic development.
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5. Conclusions and Policy Implications

5.1. Conclusions

In this study, a factor decomposition model of carbon emissions for 23 groups of Chinese industries
was constructed and 10 factors influencing the emissions were analyzed for the period 2003–2015. The
factors are potential energy carbon intensity, energy mix, potential energy intensity, potential GDP,
technological progress and technical efficiency of carbon emissions, energy technological advances
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and technologies efficiency, technological progress and technological efficiency of GDP output. The
study results, reinforced by the fact that so many industries were examined over such a long period,
support the following conclusions about the influence of various factors on industrial carbon emissions
in China.

The potential GDP factor is important in causing the increase of carbon emissions and even
determines the direction of carbon emission changes. The potential carbon intensity factor also causes
increased carbon emissions due to the high carbon emissions from coal. The potential energy intensity
factor exerts an obvious inhibitory effect on carbon emissions, as does the energy mix factor (albeit
with a weaker effect). The effects of the technological advancement factor and the technical efficiency
factor are inconsistent among industries. The technological advancement factor of GDP output inhibits
carbon emissions to a certain extent.

The potential energy carbon intensity factor of most industries hinders the reduction of carbon
emissions, showing that China’s adjustment of energy carbon intensity has not improved much during
the 2003–2015 study period. Although the energy mix factor contributes to the reduction of carbon
emissions, the effect is not obvious. The potential energy intensity factor contributes significantly to
carbon emission reductions (the change values for this factor in most industries are <1). The potential
GDP of most industries contributes to carbon emissions and is the most important positive contributor
to carbon emissions. In most industries, the carbon emission technology efficiency factor increases
carbon emissions. Therefore, there is still much room for China to improve its carbon emission
efficiency level.

Judging from the industry average, the technological progress factor can inhibit carbon emissions,
however, energy technology efficiency does not play a corresponding role in carbon emission reduction.
To a certain extent, the latter result indicates that various industries in China have not paid enough
attention to improving energy efficiency and that energy efficiency has not been fully exerted to
achieve energy conservation and emission reduction. Energy technological advancement plays a
positive role in reducing carbon emissions yet with relatively weak effect. Technical efficiency of
GDP output generally contributes to increased carbon emissions but sometimes inhibits the emissions.
The technical efficiency of almost half of the industries does not ideally increase, leaving much room
for improvement. At the early stage of industrial development, the technological progress of GDP
output plays a positive role in reducing carbon emissions, while at the later stage, this factor increases
carbon emissions.

5.2. Policy Implications

5.2.1. Improving Economic Growth Quality and Balancing Economic Growth with
Environmental Protection

Among the primary, secondary and tertiary industries in China, the secondary industry still
occupies a large proportion. Hence, the proportion of domestic GDP contributed by secondary
industry should be gradually reduced, and measures are to be implemented to vigorously encourage
the rapid development of the tertiary industry, thereby rationalizing China’s industrial structure.
The focus of these measures should be placed initially on industries with high consumption and
high emissions to effectively integrate resources in these industries, phase out backward industries,
and step up the development of industries with sound economic benefits and high environmental
benefits. This strategy is also the main scope of China’s initiative in building a resource-conserving
and environment-friendly and environmentally friendly society.

5.2.2. Optimizing China’s Energy Mix and Vigorously Developing Clean Energy

Energy mix adjustment has a significant effect on reducing carbon emissions and is of great
significance to China’s strategy of sustainable development. China is now gradually adjusting its
energy development strategy and reducing its reliance on coal. However, as the effect of this adjustment
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is still not particularly obvious, it is necessary to increase the intensity of energy mix adjustment. There
are two specific ways that this objective can be achieved. First, the proportions of the three major
energy sources consumed in China should be adjusted by increasing the use of natural gas while
reducing coal consumption. Second, “clean-energy” sources should be vigorously developed and the
proportion of clean energy use should be increased. The carbon emissions from clean energies are
negligible compared with those from fossil energies. Because China is rich in clean-energy sources
such as water, solar energy and biomass energy, support and encouragement are to be given to the
development of these clean sources of energy.

5.2.3. Improving China’s Overall Innovation Capacity and Using Technology Changes to Reduce
Carbon Emissions

Except for some industries, technical efficiency has caused an increase of carbon emissions instead
of significantly reducing them. This fact indicates that the innovation capability of China needs to be
improved from both input and output perspectives. Starting from all aspects of energy use, effective
management of multiple aspects will promote energy efficiency. For most industries, technological
progress plays a positive role in reducing carbon emissions, yet the effect is not dramatic. Therefore,
improved energy technologies (such as clean utilization technology of coal) should be introduced and
developed so as to achieve efficient energy utilization and reduce carbon emissions. Furthermore,
to reduce China’s carbon emissions by promoting technological progress and improving technical
efficiency, the government must first strengthen the country’s ability to innovate. This objective can be
accomplished by intensifying cooperation between the government and enterprises, stimulating the
technological innovation capabilities of enterprises, encouraging collaborative university research, and
strengthening cooperation in advanced technology to promote technological progress. In addition,
China should also actively introduce internationally used advanced technologies to reduce the
indigenous research and development cost while improving domestic technologies.

5.2.4. Improving Carbon Trading Market and Allocating Carbon Emission Quotas Efficiently
and Fairly

In order to minimize pollution and maximize market benefits, the improvement of carbon
market trading mechanism itself is a multi-objective decision-making problem. It is vital to solve
this problem simply and effectively [55]. The allocation of carbon emission quotas should consider
both efficiency and fairness [10]. The market property of carbon emission quotas can be regarded
as a kind of scarce resource. To achieve the optimal allocation of scarce resources, not only financial
indicators are to be considered, but also social, environmental and cultural factors should be taken
into account [56]. Therefore, in the process of improving the carbon market, the government is to
advance the transparency of trading information in the carbon trading market, promote the liquidity
of the carbon trading market, and improve the level and ability of participants in the carbon trading
market. In addition, it is of great importance to give full play to the functions of the government and
pay attention to the influence of social, environmental and cultural factors in various regions.

Author Contributions: F.D. conceived the idea for this paper; F.D., X.G., J.L. and Y.L. developed the model and
wrote the paper; Y.Z. analyzed the data.

Funding: This work was funded by the “Double-First Class” Initiative Key Program of the China University of
Mining and Technology (No. 2018WHCC07).

Acknowledgments: The authors would also like to thank the anonymous reviewers for their helpful suggestions
on the earlier draft of this study, using which the paper has been improved.

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Environ. Res. Public Health 2018, 15, 2712 26 of 28

References

1. Dong, F.; Li, J.; Zhang, Y.J.; Wang, Y. Drivers analysis of CO2 emissions from the perspective of carbon
density: The case of Shandong Province, China. Int. J. Environ. Res. Public Health 2018, 15, 1762. [CrossRef]
[PubMed]

2. Magazzino, C. The relationship among economic growth, CO2 emissions, and energy use in the APEC
countries: A panel VAR approach. Environ. Syst. Decis. 2017, 37, 353–366. [CrossRef]

3. Dong, F.; Dai, Y.; Zhang, S.; Zhang, X.; Long, R. Can a carbon emission trading scheme generate the Porter
effect? Evidence from pilot areas in China. Sci. Total. Environ. 2019, 653, 565–577. [CrossRef] [PubMed]

4. Dong, F.; Long, R.; Li, Z.; Dai, Y. Analysis of carbon emission intensity, urbanization and energy mix:
Evidence from China. Nat. Hazards 2016, 82, 1375–1391. [CrossRef]

5. Chen, W.; Wu, F.; Geng, W.; Yu, G. Carbon emissions in China’s industrial sectors. Resour. Conserv. Recycl.
2017, 117, 264–273. [CrossRef]

6. Dong, F.; Bina, Z.; Yu, B.; Wang, Y.; Zhang, S.; Li, J.; Su, B. Can land urbanization help to achieve CO2

intensity reduction target or hinder it? Evidence from China. Resour. Conserv. Recycl. 2018, 134, 206–215.
[CrossRef]

7. Wu, C.B.; Huang, G.H.; Xin, B.G.; Chen, J.K. Scenario analysis of carbon emissions’ anti-driving effect on
qingdao’s energy structure adjustment with an optimization model, part I: Carbon emissions peak value
prediction. J. Clean. Prod. 2018, 172, 466–474. [CrossRef]

8. Den Elzen, M.; Fekete, H.; Höhne, N.; Admiraal, A.; Forsell, N.; Hof, A.F.; Olivier, G.J.; Roselfsema, M.;
Van Soest, H. Greenhouse gas emissions from current and enhanced policies of China until 2030: Can
emissions peak before 2030? Energy Policy 2016, 89, 224–236. [CrossRef]

9. Dong, F.; Long, R.; Bian, Z.; Xu, X.; Yu, B.; Wang, Y. Applying a Ruggiero three-stage super-efficiency DEA
model to gauge regional carbon emission efficiency: Evidence from China. Nat. Hazards 2017, 87, 1453–1468.
[CrossRef]

10. Dong, F.; Long, R.; Yu, B.; Wang, Y.; Li, J.; Wang, Y.; Dai, Y.; Yang, Q.; Chen, H. How can China allocate
CO2 reduction targets at the provincial level considering both equity and efficiency? Evidence from its
Copenhagen Accord pledge. Resour. Conserv. Recycl. 2018, 129, 31–43. [CrossRef]

11. Guo, R.; Zhao, Y.; Shi, Y.; Li, F.; Hu, J.; Yang, H. Low carbon development and local sustainability from a
carbon balance perspective. Resour. Conserv. Recycl. 2017, 122, 270–279. [CrossRef]

12. Dong, F.; Hua, Y.; Yu, B. Peak Carbon Emissions in China: Status, Key Factors and Countermeasures—A
Literature Review. Sustainability 2018, 10, 2895. [CrossRef]

13. Dong, F.; Wang, Y.; Su, B.; Hua, Y.; Zhang, Y. The process of peak CO2 emissions in developed economies: A
perspective of industrialization and urbanization. Resour. Conserv. Recycl. 2019, 141, 61–75. [CrossRef]

14. Wang, W.; Li, M.; Zhang, M. Study on the changes of the decoupling indicator between energy-related CO2

emission and GDP in China. Energy 2017, 128, 11–18. [CrossRef]
15. Dong, F.; Long, R.; Chen, H.; Li, X.; Yang, Q. Factors affecting regional per-capita carbon emissions in China

based on an LMDI factor decomposition model. PLoS ONE 2013, 8, e80888. [CrossRef] [PubMed]
16. Hoekstra, R.; Jeroen, C.J.M.; Van Den, B. Comparing structural decomposition analysis and index.

Energy Econ. 2003, 25, 39–64. [CrossRef]
17. Zhu, Q.; Peng, X.; Lu, Z.; Wu, K. Factor Decomposition and Empirical Analysis of Carbon Emission Changes

in China’s Energy Consumption. Resour. Sci. 2009, 31, 2072–2079. (In Chinese)
18. Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios; IPCC

Energy and Industry Subgroup, Response Strategies Working Group: Paris, France, 1989.
19. Li, Y.; Zhang, L.; Cheng, X. Analysis of Factors Decomposition of China’s Carbon Emission Changes and

Emission Reduction Paths Analysis. Resour. Sci. 2010, 32, 218–222. (In Chinese)
20. Dong, F.; Yang, Q.; Long, R.; Chen, S. Decomposition and Dynamic Simulation of Carbon Emissions in China.

China Popul. Resour. Environ. 2015, 25, 1–8. (In Chinese)
21. González, P.F.; Landajo, M.; Presno, M.J. Tracking European union CO2 emissions through LMDI

(logarithmic-mean Divisia index) decomposition. The activity revaluation approach. Energy 2014, 73,
741–750. [CrossRef]

22. Mahony, T.O. Decomposition of Ireland’s carbon emissions from 1990 to 2010: An extended Kaya identity.
Energy Policy 2013, 59, 573–581. [CrossRef]

http://dx.doi.org/10.3390/ijerph15081762
http://www.ncbi.nlm.nih.gov/pubmed/30115833
http://dx.doi.org/10.1007/s10669-017-9626-9
http://dx.doi.org/10.1016/j.scitotenv.2018.10.395
http://www.ncbi.nlm.nih.gov/pubmed/30414586
http://dx.doi.org/10.1007/s11069-016-2248-6
http://dx.doi.org/10.1016/j.resconrec.2016.10.008
http://dx.doi.org/10.1016/j.resconrec.2018.02.009
http://dx.doi.org/10.1016/j.jclepro.2017.10.216
http://dx.doi.org/10.1016/j.enpol.2015.11.030
http://dx.doi.org/10.1007/s11069-017-2826-2
http://dx.doi.org/10.1016/j.resconrec.2017.11.011
http://dx.doi.org/10.1016/j.resconrec.2017.02.019
http://dx.doi.org/10.3390/su10082895
http://dx.doi.org/10.1016/j.resconrec.2018.10.010
http://dx.doi.org/10.1016/j.energy.2017.04.004
http://dx.doi.org/10.1371/journal.pone.0080888
http://www.ncbi.nlm.nih.gov/pubmed/24353753
http://dx.doi.org/10.1016/S0140-9883(02)00059-2
http://dx.doi.org/10.1016/j.energy.2014.06.078
http://dx.doi.org/10.1016/j.enpol.2013.04.013


Int. J. Environ. Res. Public Health 2018, 15, 2712 27 of 28

23. Jiang, J.; Ye, B.; Xie, D.; Tang, J. Provincial-level carbon emission drivers and emission reduction strategies in
China: Combining multi-layer LMDI decomposition with hierarchical clustering. J. Clean. Prod. 2017, 169,
178–190. [CrossRef]

24. Su, B.; Ang, B.W. Structural decomposition analysis applied to energy and emissions: Aggregation issues.
Econ. Syst. Res. 2012, 24, 299–317. [CrossRef]

25. Dong, F.; Yu, B.; Hadachin, T.; Dai, Y.; Wang, Y.; Zhang, S.; Long, R. Drivers of carbon emission intensity
change in China. Resour. Conserv. Recycl. 2018, 129, 187–201. [CrossRef]

26. Su, B.; Ang, B.W.; Li, Y. Input-output and structural decomposition analysis of Singapore’s carbon emissions.
Energy Policy 2017, 105, 484–492. [CrossRef]

27. Su, B.; Thomson, E. China’s carbon emissions embodied in (normal and processing) exports and their driving
forces, 2006–2012. Energy Econ. 2016, 59, 414–422. [CrossRef]

28. Xia, Y.; Fan, Y.; Yang, C. Assessing the impact of foreign content in China’s exports on the carbon outsourcing
hypothesis. Appl. Energy 2015, 150, 296–307. [CrossRef]

29. Sun, Z.R.; Zhou, D.Q.; Zhou, P. Driving forces of industrial CO2 emissions: A new production-based
decomposition analysis method. J. Quant. Tech. Econ. 2012, 5, 63–74. (In Chinese)

30. Wang, H.; Zhou, P. Multi-country comparisons of CO2 emission intensity: The production-theoretical
decomposition analysis approach. Energy Econ. 2018, 74, 310–320. [CrossRef]

31. Filippini, M.; Hunt, L.C. Measurement of energy efficiency based on economic foundations. Energy Econ.
2015, 52 (Suppl. 1), S5–S16. [CrossRef]

32. Greening, L.A.; Davis, W.B.; Schipper, L. Decomposition of aggregate carbon intensity for the manufacturing
sector: Comparison of declining trends from 10 OECD countries for the period 1971–1991. Energy Econ. 1998,
20, 43–65. [CrossRef]

33. Hamilton, C.; Turton, H. Determinants of emissions growth in OECD countries. Energy Policy 2002, 30, 63–71.
[CrossRef]

34. Kim, K.; Kim, Y. International comparison of industrial CO2 emission trends and the energy efficiency
paradox utilizing production-based decomposition. Energy Econ. 2012, 34, 1724–1741. [CrossRef]

35. Kim, Y.; Worrell, E. International comparison of CO2 emission trends in the iron and steel industry.
Energy Policy 2002, 30, 827–838. [CrossRef]

36. Pasurka, C.A., Jr. Decomposing electric power plant emissions within a joint production framework.
Energy Econ. 2006, 28, 26–43. [CrossRef]

37. Fan, D. Driving factors of carbon emissions from energy consumption in China-Based on LMDI-PDA method.
China Environ. Sci. 2013, 33, 1705–1713. (In Chinese)

38. Zhou, P.; Ang, B.W. Decomposition of aggregate CO2 emissions: A productiontheoretical approach.
Energy Econ. 2008, 30, 1054–1067. [CrossRef]

39. Zhang, X.P.; Zhang, J.; Tan, Q.L. Decomposing the change of CO2 emissions: A joint production theoretical
approach. Energy Policy 2013, 58, 329–336. [CrossRef]

40. Wang, H.; Ang, B.W.; Zhou, P. Decomposing aggregate CO2 emission changes with heterogeneity: An
extended production-theoretical approach. Energy J. 2018, 39, 59–79. [CrossRef]

41. Ang, B.W.; Liu, N. Handling zero values in the logarithmic mean Divisia index decomposition approach.
Energy Policy 2017, 35, 238–246. [CrossRef]

42. Ang, B.W.; Liu, F.L.; Chew, E.P. Perfect decomposition techniques in energy and environmental analysis.
Energy Policy 2003, 31, 1561–1566. [CrossRef]

43. Ang, B.W. Decomposition analysis for policymaking in energy: Which is the preferred method? Energy
Policy 2004, 32, 1131–1139. [CrossRef]

44. Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871.
[CrossRef]

45. China’s National Bureau of Statistics (CNBS). China Statistic Yearbook 2004–2016; China Statistical Press:
Beijing, China, 2004–2016.

46. China’s National Bureau of Statistics (CNBS). China Energy Statistic Yearbook 2004–2016; China Statistical
Press: Beijing, China, 2004–2016.

47. China’s National Bureau of Statistics (CNBS). China Industrial Statistical Yearbook 2004–2016; China Statistical
Press: Beijing, China, 2004–2016.

http://dx.doi.org/10.1016/j.jclepro.2017.03.189
http://dx.doi.org/10.1080/09535314.2012.677997
http://dx.doi.org/10.1016/j.resconrec.2017.10.035
http://dx.doi.org/10.1016/j.enpol.2017.03.027
http://dx.doi.org/10.1016/j.eneco.2016.09.006
http://dx.doi.org/10.1016/j.apenergy.2015.04.028
http://dx.doi.org/10.1016/j.eneco.2018.05.038
http://dx.doi.org/10.1016/j.eneco.2015.08.023
http://dx.doi.org/10.1016/S0140-9883(97)00020-0
http://dx.doi.org/10.1016/S0301-4215(01)00060-X
http://dx.doi.org/10.1016/j.eneco.2012.02.009
http://dx.doi.org/10.1016/S0301-4215(01)00130-6
http://dx.doi.org/10.1016/j.eneco.2005.08.002
http://dx.doi.org/10.1016/j.eneco.2007.10.005
http://dx.doi.org/10.1016/j.enpol.2013.03.034
http://dx.doi.org/10.1016/j.energy.2018.01.112
http://dx.doi.org/10.1016/j.enpol.2005.11.001
http://dx.doi.org/10.1016/S0301-4215(02)00206-9
http://dx.doi.org/10.1016/S0301-4215(03)00076-4
http://dx.doi.org/10.1016/j.enpol.2003.10.010


Int. J. Environ. Res. Public Health 2018, 15, 2712 28 of 28

48. China’s National Bureau of Statistics (CNBS). Statistical Yearbook of the Chinese Investment in Fixed Assets
2004–2016; China Statistical Press: Beijing, China, 2004–2016.

49. China’s National Bureau of Statistics (CNBS). China Population and Employment Statistics Yearbook 2004–2016;
China Statistical Press: Beijing, China, 2004–2016.

50. China’s National Bureau of Statistics (CNBS). China Price Statistics Yearbook 2004–2016; China Statistical Press:
Beijing, China, 2004–2016.

51. China’s National Bureau of Statistics (CNBS). China Input Output Table 2012; China Statistical Press: Beijing,
China, 2015.

52. Tian, Y. Estimation of China’s Sub-industry Capital Stock: 1990–2014. J. Quant. Tech. Econ. 2016, 390, 3–21.
(In Chinese)

53. Ma, X.M.; Bao, J.M.; Xiong, S.Q. Analysis of driving factors of China’s multi-region carbon emission based
on LMDI decomposition. Mod. Manag. Sci. 2017, 212, 63–65. (In Chinese)

54. Wang, Q.; Chiu, Y.H.; Chiu, C.R.; Tol, R.S.J.; Weyant, J.P. Driving factors behind carbon dioxide emissions in
China: A modified production-theoretical decomposition analysis. Energy Econ. 2015, 51, 252–260. [CrossRef]

55. Korhonen, P.; Moskowitz, H.; Wallenius, J. Multiple criteria decision support. A review. Eur. J. Oper. Res.
1992, 63, 361–375. [CrossRef]

56. Nesticò, A.; Sica, F. The sustainability of urban renewal projects: A model for economic multi-criteria analysis.
J. Prop. Invest. Financ. 2017, 35, 397–409. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eneco.2015.07.009
http://dx.doi.org/10.1016/0377-2217(92)90155-3
http://dx.doi.org/10.1108/JPIF-01-2017-0003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature 
	Methodology and Data 
	Shephard Distance Function 
	PDA Production Decomposition Model 
	Data 

	Results and Discussion 
	Analysis of Carbon Emissions from Different Industries 
	Driving Factors Analysis 

	Conclusions and Policy Implications 
	Conclusions 
	Policy Implications 
	Improving Economic Growth Quality and Balancing Economic Growth with Environmental Protection 
	Optimizing China’s Energy Mix and Vigorously Developing Clean Energy 
	Improving China’s Overall Innovation Capacity and Using Technology Changes to Reduce Carbon Emissions 
	Improving Carbon Trading Market and Allocating Carbon Emission Quotas Efficiently and Fairly 


	References

