
International  Journal  of

Environmental Research

and Public Health

Article

Geographical Variation in Oral and Oropharynx
Cancer Mortality in Brazil: A Bayesian Approach

Emílio Prado da Fonseca 1,* , Regiane Cristina do Amaral 2, Antonio Carlos Pereira 3 ,
Carla Martins Rocha 4 and Marc Tennant 4

1 Health Surveillance Department, Divinópolis, Minas Gerais 35500-007, Brazil
2 Dentistry Department, Federal University of Sergipe, Aracaju, Sergipe 49060-108, Brazil;

amaralre@yahoo.com.br
3 Department of Community Dentistry, Preventive Dentistry and Public Health area of Piracicaba Dental

School, FOP/UNICAMP, University of Campinas, Piracicaba, São Paulo 13414-903, Brazil;
apereira111@gmail.com

4 International Research Collaborative-Oral Health Equity Anatomy, Physiology and Human Biology,
University of Western Australia, Perth 6907, Australia; c.mrocha@hotmail.com (C.M.R.);
marc@ircohe.net (M.T.)

* Correspondence: emiliopraddo@ig.com.br; Tel.: +55-031-37-988210366

Received: 6 August 2018; Accepted: 7 September 2018; Published: 25 November 2018
����������
�������

Abstract: Recent studies have shown a high number of deaths from oral and oropharyngeal cancer
worldwide, Brazil included. For this study, the deaths data (ICD-10, chapter II, categories C00
to C14) was obtained from Mortality Information System (SIM) and standardized by gender and
population for each of the 554 Microregions of Brazil. The raw mortality rates were adopted as
the standard and compared to the application of smoothing by the Bayesian model. In order to
describe the geographical pattern of the occurrence of oral cancer, thematic maps were constructed,
based on the distributions of mortality rates for Microregions and gender. Results: There were 7882
deaths registered due to oral and oropharyngeal cancer in Brazil, of which 6291 (79.81%) were male
and 1591 (20.19%) female. The Empirical Bayesian Model presented greater scattering with mosaic
appearance throughout the country, depicting high rates in Southeast and South regions interpolated
with geographic voids of low rates in Midwest and North regions. For males, it was possible to
identify expressive clusters in the Southeast and South regions. Conclusion: The Empirical Bayesian
Model allowed an alternative interpretation of the oral and oropharynx cancer mortality mapping
in Brazil.
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1. Introduction

Each year the number of cancer deaths increase worldwide [1–3]. In 2012, 145,000 deaths
were registered due to oral cavity and oropharynx cancer, of which 77% were in the less developed
regions [2]. Oropharynx cancer etiology is multifactorial, with the main risk factors being tobacco,
alcohol, mechanical trauma, biological agents, genetic predisposition, individual’s systemic status,
and diet. Mortality rates for these neoplasms are associated with late diagnosis [4].

Historically, the incidence of oral cavity and pharyngeal cancers has been highest in South and
South-East Asia, Western and Central Europe, and South America [2]. However, a recent study
predicted that more than 10,000 deaths from oral cavity and pharynx cancer are expected for 2018
in the US [5]. The mortality rates in South American countries ranges from 0.72% to 6.04% per
100,000 population, and the proportion of ill-defined deaths in South America varied from 5.0% to
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22.0% [6]. Mortality trends for males decreased about 2.5% in most of the countries, excluding Brazil,
whereas among females, a significant decrease occurred only in Colombia, with an increase in Brazil
and Peru [6]. Between 2002 and 2013, 74,342 deaths from oral and pharyngeal cancer were registered
in Brazil, corresponding to 3.9% of the deaths from all neoplasms in the period studied [7].

Mapping is a widely used epidemiology tool, often employed as the first step to define an
epidemic, to visualize spatial distribution, and to indicate areas of high occurrence or predominance
of the event [8]. Consistent with the temporal heterogeneity in the prevalence worldwide,
oral and pharyngeal cancer mortality show wide variability by geographic region and era [1,2,5,8].
Most epidemiological studies of oral cancer use a crude and gender-age-weighted rate to analyze the
findings [2,5–7].

Bayesian estimation is a mathematical smoothing method used to improve the accuracy of rates
of events that would otherwise be equal to zero in regions with small populations, or areas presenting
with few or no events. This methodology has been previously applied to the study of other types of
cancer [9–12]. Bayesian inference could, therefore, be used to smooth mortality rates and enable better
visualization and interpretation of the distribution of deaths from oral and oropharynx cancer [13].
The aim of this study was to compare the results obtained between the estimate by the crude rate and
Bayesian estimation from oral and oropharynx cancer mortality in Brazil in 2016.

2. Materials and Methods

Data were obtained from the Mortality Information System (SIM) available in the website of the
Information System of the Brazilian Unified Health System (DATASUS) [14]. Specifically, the number of
deaths attributed to oral and oropharynx cancer (categories C00 to C14), according to the International
Classification of Diseases, Chapter II, Tenth Revision (ICD-10) were collected and standardized by
gender and population for each of the 554 Microregions of Brazil. Four (0.05%) deaths were excluded
from this study due to the lack of information regarding location and/or gender. Population estimates
for the year 2015 was provided by the Brazilian Institute of Geography and Statistics (IBGE) [15].

The spatial unit used to aggregate the data was the Brazilian ‘Microregions’, defined by the
IBGE as regions constituted by groups of adjacent municipalities to attend the basic needs of the
population, including a combination of private and public services providing education, health, jobs,
etc. The geographic limits of the Microregions are updated periodically (usually every decade) and
made available at the IBGE website: https://www.ibge.gov.br/apps/regioes_geograficas/. The Raw
Rates of Oral and Oropharynx Cancer Mortality (OOCM) were calculated by the number of deaths in
each Microregion (n = 554) divided by the population at risk and later multiplied by 100,000 inhabitants
and weighted by gender [13]. These raw rates were adopted as the standard for comparison with
the application of smoothing by the Bayesian model [11,13]. The Empirical Bayesian Rate (EBR) was
defined by the pondered sum between raw rate and the overall/global mean rate [13]. Empirical
Bayesian smoothing leaves estimates for areas with low margins of error alone, but nudges estimates in
regions with high margins of error closer to the overall average of the event rate [13]. Ponderation has
a factor inversely proportional to that of the population exposed [11,13]. The first step of data analysis
was composed of prevalence calculations and measures of central and dispersion measures [16].

Univariate exploratory analysis of EBR and weighted gender were performed for the correlation
of a variable with itself throughout the space [16]. The phenomenon, in which areas with similar
values are distributed in a non-random way, is called spatial autocorrelation [16]. Substantially,
this is consistent with the expectation that the regions will gather spatially (formation), and more
importantly, in such a way that oral and oropharynx cancer mortality has spatial dependence [16].
In this sense, spatial weights are a key component in any cross-sectional analysis of spatial dependence
and construction of spatial autocorrelation statistics [16]. The core input into the determination of
a neighbor relation for distance-based spatial weights is a formal measure of distance or a distance
metric [16]. Then, the neighborhood matrix was calculated using the Queen Contiguity criterion.

https://www.ibge.gov.br/apps/regioes_geograficas/
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Spatial autocorrelation analysis was used to demonstrate and explain the existing patterns
of spatial association (clustering) of deaths distribution of oral and oropharynx mortality among
Brazilian regions [16,17]. The investigation of EBR pattern was performed through the Global Moran
Index (I) [16,17]. The (I) indicates the degree of spatial association of a variable with respect to the data
set [16]. Moran’s I varies between −1.0 and +1.0 and is similar, but not equivalent, to a correlation
coefficient [17]. Positive spatial autocorrelation occurs when similar values occur near one another [17];
negative spatial autocorrelation occurs when dissimilar values occur near one another and when I
equals zero, there is no spatial autocorrelation [16,17]. For the validation of Moran’s I we used the
test of 999 random permutations [17]. In order to evaluate the significance (p ≤ 0.05) of the Moran’s I,
the following hypotheses are established: H0: I = 0 (there is no spatial self-relation between regions);
and H1: I > 0 (there is positive spatial self-relationship between regions) [17].

Once verified, the significance of spatial autocorrelation by Moran’s I, the patterns of distribution
was analyzed using the Local Indicator of Spatial Association (LISA) [16,17]. Positive LISA values
(0 to +1) indicate a direct correlation and negative values (0 to −1) inverse correlation [17]. Essentially,
the autocorrelation map distinguishes between the following types of groups (statistically significant
at a level of 0.05): (1) Maximum values (HH); (2) Minimum values (LL); (3) dissimilar values (crass
errors) in that a feature of high value is surrounded by low values (HL); and (4) Crass errors in which
a feature with low value is surrounded by high value features (LH) [17].

Bioestat® version 5.0 software was used to carry out the statistics [18]. In order to describe
the geographical pattern of the occurrence of oral cancer, thematic maps were constructed, based
on the distributions of mortality rates for Microregions and gender. The legends of the maps were
standardized into five extracts and equal intervals to facilitate visualization. A digital cartographic
database (available at the IBGE website) and the public domain software GeoDa [18] (available from
the Center for Spatial Data Sciences-University of Chicago) were used for map construction.

3. Results

In 2016, 7.882 deaths were registered due to oral and oropharyngeal cancer in Brazil, of which
6.291 (79.81%) were male and 1.591 (20.19%) female. Of the 554 Microregions surveyed, 34 (6.31%) did
not register any deaths from oral and oropharyngeal cancer in 2016. The mortality proportion was
3.95 higher for men than for women.

Considering the total number of events in the 554 Microregions studied, the raw rate of oral and
oropharynx cancer in Brazil was 3.60 deaths per 100,000 population. The weighted rates for males were
higher when compared to females and the total Brazilian rate. The rates smoothed by the Empirical
Bayesian model for Brazil and weighted by gender showed lower standard deviations and variance
when compared to the raw rates. The coefficients of variation (CV) for raw rates showed values higher
than 30%, indicating high dispersion and heterogeneity around the data mean. In this sense, the CV
of Female Bayesian Empirical rate was the lowest CV and it affirmed that the data related to the
women were more homogeneous when compared with the others. In the case of Moran’s I, the EBR
values were higher when compared to OOCM rates. However, the EBR for females was not significant
(p = 0.103). This indicated that there was spatial autocorrelation of OOCM rates (the chance of not
having spatial autocorrelation was less than 0.1%) (Table 1).

Table 1. Descriptive statistics and Global Moran Index of OOCM rates in Brazil, 2016.

Rate Mean Median SD 1 Variance CV (%) 2 Minimum Maximum I 3 p 4

Raw rate of Brazil 3.60 3.43 2.11 4.43 58 0.00 10.95 0.402 0.001
EBR of Brazil 3.79 3.72 0.81 0.66 21 1.82 6.43 0.446 0.001

Raw rate of Female 1.48 1.24 1.46 2.19 98 0.00 14.58 0.121 0.001
EBR of Female 1.54 1.53 0.04 0.00 3 1.38 1.78 0.057 0.103

Raw rate of Male 5.74 5.30 3.68 13.57 64 0.00 17.99 0.421 0.001
EBR of Male 6.11 5.90 1.42 2.01 23 2.57 10.57 0.465 0.001

1 Standard Deviation. 2 Coefficient of Variation. 3 Global Moran Index. 4 p-value.
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The identification of risk areas (spatial clusters with statistical significance), performed by LISA,
confirmed that there is a spatial correlation of OOCM rate in Brazil, which cannot be explained by
randomization. Figure 1 showed the degree of significance (p-value = 0.001 for 999 permutations) to
the Univariate Local Moran’s by LISA of EBR of OOCM rate occurred in Brazilian regions in 2016.
The analysis identified two large clusters, the first one involving areas from the North and Northeast
regions, and the second covering part of the Midwest, Southeast and South regions. However, in 372
(65.34%) of the regions studied, there was no significance or spatial correlation by LISA. presented
greater scattering with mosaic appearance. Deaths from oral cancer dispersed throughout the country
with high rates in Southeast and South regions, interpolated with geographic voids of low rates
represented by lighter colors in Midwest and North regions. Figure 1 depicts the redistribution of the
raw rates proposed by the Empirical Bayesian Model, with the predominance of values represented
by the intermediate layers in all the directions of the country. There was a reduction in the values
of the lower layer of death rates, and increase in the middle rates, mostly in the North, Midwest,
and Northeast (Figure 1).
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Figure 1. Univariate Local Moran’s by LISA of EBR from oral and oropharynx cancer, Brazil, 2016.

Figures 2 and 3 showed the degree of significance (p-value = 0.001 for 999 permutations) to
the LISA of EBR weighted by gender of OOCM rate distribution of mortality rates from oral and
oropharynx cancer that occurred in Brazilian regions in 2016.

Additionally, in Figures 1–3 it was possible to observe the occurrence of spatial autocorrelations
of the “High-High” cluster, highlighting the grouping of 67 (12.09%) Brazilian regions with higher
mortality rates and their respective neighboring areas with high mortality rate values was due to oral
cancer located in the following regions: Southeast, Midwest, and South. It was also observed the
occurrence of “Low-Low” spatial autocorrelations, consisting of a group of 27 (4.87%) microregions
with the lowest rates, located mainly in the North and Northeast regions. In fact, the strongly colored
regions (High-High and Low-Low) are therefore those that contribute significantly to a positive global
spatial autocorrelation outcome.

Figures 2 and 3 represent EBR for females and males. It is important to note how the maps capture
different death rate distributions for each gender. Typically, women have lower mortality rates when
compared to men. It is possible to observe, with clarity, the extension of the regions with higher
mortality in the South region, compared to the lower rates of the North.
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In the large patch of regions with high mortality rates for males, it is possible to identify expressive
clusters in Southeast and South regions (Figure 3).
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4. Discussion

This study highlighted the high incidences of male mortality due to oral cancer in Brazil, as well
as the spatial inequalities in its distribution, with clusters formation. The visualization of such
distribution is paramount to the formulation of new hypotheses in the study of risk factors. In addition,
the comparison of estimated oral cancer mortality crude rates to those generated by an empirical
Bayesian model was demonstrated, providing an alternative visualization and interpretation of
the data.

Local Cluster Analysis (LCA) can be used to detect hot spots of oral cancer mortality rates [16,19].
LISA statistics provides estimates disaggregated to the level of regions of the spatial analysis units,
allowing assessment of dependency relationships in different areas regarding the presence of clusters
and outliers [16,19]. This study applied spatial autocorrelation methods to determine the spatial
clustering associated with a single variable (rate of mortality of oral cancer), classified into high or
low mortality risk. Furthermore, spatial clustering techniques are essential for starting approach
identification of risk map; formulate new hypotheses and monitoring in oral health [19]. Other studies
have also successfully used LCA to identify clusters of low (LL) and high (HH) cancer mortality risk in
various areas [16], with the authors suggesting that geographical arrangement of area units on a map
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can identify the degree of spatial clustering of oral cancer deaths. In this sense, the hot spots of oral
cancer mortality obtained from this study analysis reveal significant indications to the risk factors of
oral cancer deaths.

When studying rare events, researchers need to be cautious because of problems of under or
overestimation of the rates may occur [20]. In regions in which no cases occurred, or which have very
small populations, the crude rate would be zero or close to zero, therefore the appearance of a single
case in these regions may significantly alter the crude rate [13,20]. According to Matangra et al. (2013),
observational epidemiological studies conducted with Bayesian inference can be a very attractive
alternative in case of “zero” cases compared to the classical approach [20].

In the present study, some Microregions with more than 11 million inhabitants, such as São Paulo
and Rio de Janeiro, with the number of deaths exceeding 500, presented raw mortality rates ranging
from 4.49 to 4.46. Meanwhile, in the Microregions of Jales and Seridó Paraibano, with population
below 160 thousand inhabitants and less than 20 deaths, the highest raw death rates were registered
(10.95 and 9.80, respectively). These facts compromised the estimation of the raw rate and showed the
influence of population size on the results obtained (Figures 1–3). Notably, there were no significant
differences between raw rate and Bayesian model in populous regions (e.g., São Paulo, Rio de Janeiro,
Belo Horizonte, Porto Alegre, and Salvador).

Traditionally, identification of clusters of high mortality rates from oral cancer has been made
by means of frequencies and pondered rates by age or gender [1–3], however, Bayesian models for
stabilizing or smoothing mortality rates from oral cancer and identification of clusters have also been
published [13,21,22]. Indeed, an unknown part of the variation of the Crude Mortality Ratio (CMR)
may occur due to geographically varying unobserved risk factors [22]. However, maps can be seriously
misleading because the CMRs tend to be extreme in less populated regions [22]. One of the major
goals of mortality maps is to identify unobserved risk factors through the geographical variation of the
deaths cases [19,22]. The results of the present study suggest that the application of Bayesian model
to mapping and the identification of death clusters of this type of cancer in Brazil is a useful tool.
Nevertheless, it is important to affirm that the Bayesian rates do not substitute the raw and pondered
rates, but produce a smoothing effect, facilitating and enhancing the visualization of clusters [21,22].

The analysis of geographic patterns of oral cancer mortality is complex concerning old and new
risk factors, so the interpretation of maps must be done cautiously [8]. With the use of Bayesian
Empirical Model (Male and Female), it was possible to identify clusters of deaths in regions known
for having both the best and worst socioeconomic conditions (Figures 2 and 3. Previous studies in
Brazil, and abroad, observed a statistically significant association of poor socioeconomic condition
and low Human Development Index (HDI) with spatial distribution of oral cancer mortality [23–26].
In addition, previous studies observed positive associations among the proportion of the population
with dental appointment within last year, percentage of consumption of oils and fats, percentage
of consumption of ready-to-eat foods and industrial mixtures and percentage of overweight adults
with this type of cancer [26]. Recently, it has been reported that environmental exposure to heavy
metals is an important risk factor for developing oral cancer, with studies on animals showing that
chronic intake of chromium (Cr) could induce oral cancer [27]. Another spatial association between soil
heavy metal content and oral cancer incidence and mortality has also been assessed in Taiwan [19,28].
Moreover, a study conducted in Brazil by Moi et al. (2018), showed the consumption of pesticides,
and HPV contamination, positively correlated with mortality rates from oral cancer in adults [26].

Early diagnosis and immediate treatment of oropharynx cancer can significantly reduce the
morbidity and consequently improves overall long-term survival rates [1,2]. Tobacco and alcohol
consumption have geographic impact on oral cavity and pharynx cancer and these factors may explain
the higher death rate from oral cancer in men, and great difference in deaths distribution between
male and female [1,2,8,19]. The findings of the present study were similar to a study in Taiwan that
identified significant differences between male and female spatial distributions of oral cancer [19].
This suggests that the in the spatial distribution of oral cancer deaths is due to spatial differences in the
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distribution of risk factors between males and females [19]. In Taiwan, the study showed an elevated
mortality rate from oral cavity cancer for females clustered in aboriginal communities [19]. Aboriginal
women in eastern Taiwan had a much higher prevalence of cigarette smoking, alcohol drinking, and
betel nut chewing when compared to women in other areas [19]. While studies have shown that cancer
mortality rates from the oral cavity are lower in women, there is evidence that oral cancer rates have
increased for females in Sao Paulo, which represents an inversion of previous trends among genders
in the city [29]. This finding warrants further investigation.

We acknowledge that the present study has a number of limitations. Firstly, being a cross-sectional
study, it could not establish causality. Secondly, the use of secondary data presents a risk of bias
information. Pourhoseingholi et al. (2012) stressed that cancer mortality analysis need reliable death
registry systems that reports death statistics annually [20]. Additionally, the analysis of death statistics
is subject to misclassification, a major problem in epidemiological analysis leading to biased estimates,
and possibly causing the underestimation of health risks [20]. It is important to point out that the
Mortality Information System, whilst being the most comprehensive set of data existent in Brazil,
is unfortunately likely to be subject to under-registration, particularly in small and remote regions,
or when the quality of the information is unknown. In this sense, epidemiological studies of spatial
distribution based on maps are sensitive to the quality of the data available for the areas to be studied
and healthcare policy makers should keep that in mind when planning actions and making decisions
based on this sort of data.

5. Conclusions

The smoothing of raw rates through Empirical Bayesian Smoothing Model allowed an alternative
interpretation of the oral and oropharynx cancer mortality mapping in Brazil. It highlighted the
clustering formation of oral cancer mortality rates, suggesting the need to redirect Brazilian policies
aimed at the combating potential etiological contributors to oral cancer cases and reduce deaths for
this cancer type.
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