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Abstract: Although it has been a half-century since dioxin-contaminated herbicides were used to
defoliate the landscape during the Vietnam War, dioxin contamination “hotspots” still remain in
Vietnam. Environmental and health impacts of these hotspots need to be evaluated. Intellectual
disability (ID) is one of the diseases found in the children of people exposed to the herbicides.
This study aims to identify genetic alterations of a patient whose family lived in a dioxin
hotspot. The patient’s father had a highly elevated dioxin concentration. He was affected with
undiagnosed moderate ID. To analyze de novo mutations and genetic variations, and to identify
causal gene(s) for ID, we performed whole genome sequencing (WGS) of the proband and his parents.
Two de novo missense mutations were detected, each one in ETS2 and ZNF408 genes, respectively.
Compound heterozygosity was identified in CENPF and TTN genes. Existing knowledge on the
genes and bioinformatics analyses suggest that EST2, ZNF408, and CENPF might be promising
candidates for ID causative genes.

Keywords: dioxin; intellectual disability; ETS2; CENPF; ZNF480

1. Introduction

From 1962 to 1971, about 19 million gallons of Agent Orange (AO) and other toxic chemicals
contaminated with very high concentrations of dioxin were sprayed in South Vietnam [1]. Main dioxin
compounds include seven polychlorinated dibenzo dioxins (TCDDs) and 10 polychlorinated
dibenzo furans (PCDFs). Among them, TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and PeCDD
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(1,2,3,7,8-pentachlorodibenzo-p-dioxin) were identified as the most toxic chemicals in laboratory
animal species. Dioxin is very persistent in soil and in animal tissues (including human) [2].

Although it has been a half-century since the end of the Vietnam War, very high dioxin
concentrations still exist in the areas of former military airbases, such as Bien Hoa, Da Nang,
and Phu Cat, where the toxic chemicals were stored and used for sprays [3,4]. These hotspots of
dioxin contamination have been reported in terms of soil pollutions, blood and milk concentrations, as
well as health problems [5–9].

Dioxin is one of the most toxic compounds that can cause reproductive and developmental
problems as well as cancers. In Vietnam and the United States, birth defects were observed in children
of persons exposed to dioxins [10], suggesting that dioxin exposure might induce mutations of the
human genome. Recently, we reported WGS of nine trios with paternal exposure to dioxin who
had elevated dioxin concentrations in their sera but did not live in the hotspot areas. We found
that the rates of de novo point mutations and dioxin concentrations were positively correlated [11].
However, no case in the study had been found with intellectual disability (ID). This is a neurocognitive
disorder, caused by genetic and/or multiple environmental factors, usually characterized by an overall
intelligence quotient (IQ) lower than 70 [12,13].

De novo mutations (DNM) occur as single nucleotide variants (SNVs), short insertions/deletions
(indel), copy number variations (CNVs), or structural variations (SVs), and are shown to contribute
significantly to sporadic genetic disorders, such as ID [13] and autism spectrum disorder [14],
sporadic developmental diseases [15], and degenerative diseases [16].

Over the last few years, many genetic investigations of ID have been carried out using
next-generation sequencing approaches [17,18]. WGS and whole exome sequencing have enabled us to
identify de novo mutations in the entire genome or in the coding regions. About 1000 different genes
have been reported to be associated with ID, however, the genetic etiology of up to 50% of ID cases
remains unknown due to the extreme clinical and genetic heterogeneity [19].

We performed WGS of a Vietnamese family living in a dioxin contamination hotspot, where the
father had a highly elevated dioxin concentration and the son was affected with an undiagnosed
moderate ID, in order to identify variants which might be contributing factors in the development of
the ID.

2. Materials and Methods

2.1. Subjects

A family from Bien Hoa city, Dong Nai province, Vietnam, one of dioxin contamination hotspots,
was recruited through Vietnam Military Medical University and the Institute of Genome Research
after obtaining informed consent. The couple lived in this location since 1975. The father was detected
to have a highly elevated dioxin concentration, but the family was generally healthy, although their
son, born in 1989, was affected with moderate ID. They had no other relatives with cognitive defects.
The patient’s symptoms of cognitive impairment were recognized at 11 months of age. He went to
school for a few years but never learned to read and write. His level of ID was in the moderate (IQ < 50)
range. He was independent in self-care, such as eating, drinking, and toileting, but was unsociable.
He had to be supervised when he went out. He had other signs and symptoms of health problems,
such as an asymmetric body, hypotonia, and moderate twitching.

Neurological and medical assessment of the affected member was performed by clinicians of
Vietnam Military Medical University. All biological samples in this study were approved by the
Institutional Review Board (IRB) of Hanoi Medical University, Hanoi, Vietnam (no. 123/HMU IRB),
and RIKEN, Japan.
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2.2. Methods

The blood samples, ~30 mL from the father and ~1–2 mL from the mother and son, were collected,
frozen, and stored at −80 ◦C until used. For the dioxin content analysis of the father’s blood serum,
potassium dichromate was added to a ~15 mL blood sample, just before delivery to the ERGO
Laboratory, Hamburg, Germany, to perform high resolution mass spectrometry (HR-MS) analyses.
The sample was tested for seven PCDDs and ten PCDFs according to the protocol of Schecter et al. [20].

Five hundred base pair (bp) insert libraries were prepared according to the protocol provided by
Illumina and sequenced on the HiSeq2000 platform (Illumina, San Diego, CA, USA) with paired reads
of 101 bp.

BWA.v0.59 [21] was used to map sequence reads to hg19/GRCh37 human reference genome.
Mutation calling was performed as described previously [22]. We identified point mutations, indels,
CNVs, and SVs. In addition to the previous study [22], we removed short indels that were supported
by only edges of reads (10 bp from the start and end of the read) to exclude false-positive indels.
We compared the mother and the proband, and the father and the proband separately. Variants found
by both comparisons were considered as de novo mutation candidates. Using the depth of coverage,
we detected CNVs by DNAcopy [23]; de novo CNVs were selected manually. False positive and false
negative rates of de novo mutation detection were described in our recent study [11].

In addition to de novo mutations, we also searched for mutations consistent with autosomal
recessive model by focusing on non-synonymous SNVs, coding indels, and variants in splice sites.
Prediction of the possible impact of the amino acid substitution on the structure and function was
performed using PolyPhen-2 [24], Provean [25], and SIFT [26] tools.

3. Results

3.1. Clinical Assessment and Dioxin Level in the Father’s Serum

In this study, the total toxic equivalency value (TEQ) of dioxin and dioxin-like compounds in the
serum of the father was measured as ~115 ppt while the TCDD and PeCDD were ~87 and ~12 ppt,
respectively. These two very toxic congeners consisted of ~86% of the total TEQ. All of the other
15 remaining congeners constituted only ~16 ppt, or ~14% of TEQ (Table 1).

Table 1. The levels of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), PeCDD (1,2,3,7,8-pentachlorodibenzo-
p-dioxin), and other dioxin congeners in the father’s blood serum.

Congener TEQ (ppt)

Sample amount (g) 15.236
lipid content (%) 0.177
Sample weight (lipid) (g) 0.027
Values in pg/g (ppt), lipid based
2.3.7.8-Tetra-CDD (TCDD) 87
1.2.3.7.8-Penta-CDD (PeCDD) 12
1.2.3.4.7.8-Hexa-CDD 9.0
1.2.3.6.7.8-Hexa-CDD 33
1.2.3.7.8.9-Hexa-CDD 8.2
1.2.3.4.6.7.8-Hepta-CDD 35
OCDD 385
2.3.7.8-Tetra-CDF 3.2
1.2.3.7.8-Penta-CDF 2.8
2.3.4.7.8-Penta-CDF 9.6
1.2.3.4.7.8-Hexa-CDF 27
1.2.3.6.7.8-Hexa-CDF 15
1.2.3.7.8.9-Hexa-CDF n.d. (3)
2.3.4.6.7.8-Hexa-CDF 8.4
1.2.3.4.6.7.8-Hepta-CDF 18
1.2.3.4.7.8.9-Hepta-CDF n.d. (4)
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Table 1. Cont.

Congener TEQ (ppt)

OCDF n.d. (13)
3,3’,4,4’-TCB (77) n.d. (690)
3,4,4’,5-TCB (81) n.d. (29)
3,3’,4,4’,5-PeCB (126) 123
3,3’,4,4’,5,5’-HxCB (169) 61
2,3,3’,4,4’-PeCB (105) 5005
2,3,4,4’,5-PeCB (114) 742
2,3’,4,4’,5-PeCB (118) 22,592
2’,3,4,4’,5-PeCB (123) 244
2,3,3’,4,4’,5-HxCB (156) 5873
2,3,3’,4,4’,5’-HxCB (157) 1579
2,3’,4,4’,5,5’-HxCB (167) 2883
2,3,3’,4,4’,5,5’-HpCB (189) 938
Total PCDDs/PCDFs 654
TEQ (World Health Organization, WHO) based on PCDD/F 115

3.2. Whole Genome Sequencing and Identification of Variants

The whole genomes of the three individuals (father, mother, and son) were sequenced with
average ≥ 30× coverage. The total number of SNVs identified in the father, the mother, and the son
were 3,436,963, 3,698,813, and 3,569,445, respectively (Table 2). Meanwhile, the total number of indels
found in the father, the mother, and the son were 370,460, 403,610, and 536,126, respectively (Table 2).

Table 2. Summary of genetic variations.

Type Father Mother Proband

WGS deep coverage (x) 32.2 31.8 31.5
SNV 1,461,494 1,419,542 1,388,686
Shared with dbSNP v138 1,438,017 1,396,439 1,366,410
Shared with 1000G 6619 6963 6526
Novel variants 16,858 16,140 15,750

Intronic 13,555 13,068 12,751
Exonic 243 239 204
5’UTR 54 46 38
3’UTR 309 289 259
ncRNA_intronic 2551 2355 2379
ncRNA_exonic 145 140 117
Splicing site 1 3 2

Indel 185,588 180,389 174,440
Shared with dbSNP v138 91,552 89,948 87,532
Shared with 1000G 5048 4942 4560
Novel variants 88,988 85,499 82,348

Intronic 73,626 70,493 67,997
Exonic 63 56 45
5’UTR 129 114 109
3’UTR 1850 1807 1690
ncRNA_intronic 12,750 12,495 12,000
ncRNA_exonic 502 479 448
Splicing site 68 55 59

Total (SNV + Indel) 1,647,082 1,599,931 1,563,126
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After filtering for SNVs present in the dbSNP version 138 and the 1000 Genomes database [27],
the remaining SNVs, most of which should be population- or individual-specific, were considered as
novel SNVs. In each of the three individuals, we identified more than 15,000 novel SNVs (Table 2).
These novel SNVs are mainly located in intronic regions. In the coding region, we only identified 243,
239, and 204 SNVs in the father, the mother, and the proband, respectively. We found 63 novel indels
in the father, 56 in the mother, and 45 in the proband.

3.3. De Novo Variants

Ninety-three de novo heterozygous variants were identified in the proband (Table S1). Of these,
76 were in non-CpG regions. The numbers of transition and transversion were 62 and 32, respectively
(transition/transversion rate = 1.93). Three of the 93 de novo variants were in exonic regions, and of these,
two were missense variants in ETS2 and ZNF480 genes (ETS2: NM_001256295.1:c.485C>T (p.T22I) and
ZNF480: NM_144684.2:c.1504C>T (p.R502W)) (Figure 1, Table 3). Both variants were successfully validated
using the Sanger sequencing method. One de novo deletion (NC_000008.10:g.35961275delTGGAC) in the
noncoding region was identified and also validated with the Sanger sequencing method (not shown).
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Figure 1. De novo heterozygous variant in ETS2 and ZNF480 genes. (a) Pedigree diagram. (b) De novo
heterozygous variant in ZNF480 gene. The upper part shows the structure of ZNF480 gene, and the
lower part shows the image of de novo variant NM_144684.2:c.1504C>T generated from Integrative
Genomics Viewer (IGV), and the result of validation by the Sanger sequencing, respectively. (c) De
novo heterozygous variant in ETS2 gene. The upper part shows the structure of EST2 gene diagram,
and the lower part shows the image of de novo variant NM_001256295:c.485C>T generated from IGV
viewer, and the result of validation by the Sanger sequencing, respectively.
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Table 3. Genes with candidate variants in the proband.

Type of
Variant Chromosomal Position Transcript Level

Position
Gene Ref Variant

AA
Change

Provean Prediction SIFT Prediction Polyphen-2 Prediction

Prediction Score Prediction Score Prediction Score

de novo NC_000021.8:g.
40182013 NM_001256295.1:c.47 ETS2 CC CT T22I Not

detected
Not
detected

Not
detected

Not
detected benign 0.055

de novo NC_000019.9:g.
52826007 NM_144684.2:c.1504 ZNF480 CC CT R502W Deleterious −2.74 Tolerated 0.237 probably

damaging 0.999

compound
heterozygosity

NC_000001.10:g.
214814052 NM_016343.3:c.2371 CENPF CC CG P791A Neutral −0.24 Tolerated 0.597 benign 0.001

compound
heterozygosity

NC_000001.10:g.
214815601 NM_016343.3:c.3920 CENPF GG GA C1307Y Deleterious −4.22 Tolerated 0.087 probably

damaging 1

compound
heterozygosity

NC_000002.11:g.
179514619 XM_005246830.1:c.907 TTN GG AG P13274S Deleterious −3.53 Tolerated 0.354 benign 0.006

compound
heterozygosity

NC_000002.11:g.
179578790 NM_005246830.1:c.25647 TTN CC CG K8865N Deleterious −3.35 Tolerated 0.091 probably

damaging 0.978

homozygous
deletion

NC_000001.10:g.
149040000_149195000del NBPF25P

NC_000001.10:g.
149040000_149195000del
(150 kb deletion)

homozygous
deletion

NC_000012.11:g.
10580000_10590000del

KLRC1,
KLRC2

NC_000012.11:g.
10580000_10590000del
(10 kb deletion)



Int. J. Environ. Res. Public Health 2018, 15, 2629 7 of 11

3.4. Analysis of Germline Variations under Recessive Model

Variations were filtered under the assumption of the recessive model. Compound heterozygous
variations were found in CENPF (p.P791A and p.C1307Y) (Figure 2) and TTN (p.P13274S and p.K8548N)
genes (Table 3). In addition, we verified the two variants in the CENPF gene and were not able to find
them in a total of 192 Vietnamese healthy individuals. Analysis of CNVs identified two homozygous
large deletions (Table 3).
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NM_016343.3:c.3920A>G generated by IGV.

4. Discussion

TCDD and PeCDD are two of the most toxic chemicals of PCDDs. TCDD is widely known to
come from 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) herbicide, while PeCDD is believed to derive
from 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide, produced in the middle of 20th century [28].
From 1999 to 2001, Schecter et al. showed the TCDD blood level of people living in Bien Hoa dioxin
contamination hotspot was as high as 68–413 ppt and contributed to more than 90% of the total TEQ,
while the typical blood TCDD levels in the general population of Vietnam have been found to contain
about 2 ppt in the South and 1 ppt in the North [5].

The TCDD level of the father’s blood in this study was 87 ppt and contributed to 75% of the total
TEQ, which was in the range of these estimations and much higher than those of reported normal
blood TCDD levels in the South Vietnam [5]. The blood sampling of the mother and son was limited,
and the amounts were not suitable for dioxin measurements.

Our analysis detected 93 de novo heterozygous variants in the proband. The number of variants
corresponds to a rate of 1.42 × 10−8 variants per nucleotide per generation which is consistent with
previous reports, ranging from 1.1 × 10−8 to 3.8 × 10−8 variant per nucleotide per generation [29–33].
The proportion of variants in the CpG site (18/94 = 0.19) and the transition/transversion rate
(62/32 = 1.9) were similar to a previous study [28].
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In an attempt to identify possible causal gene(s) for ID, we analyzed genes with de novo variants,
CNVs, and germline variations. De novo non-synonymous variants were found in ETS2 and ZNF480
genes. Compound heterozygous variants were detected in CENPF and TTN genes. The homozygous
CNVs, which were hemizygous in the parents, contained NBPF25P, KLRC1, and KLRC2 genes. Variants
in the TTN gene were found with low frequency in East Asian population (0.0015 and 5.8 × 10−5)
reported in ExAC database, while NBPF25P is a pseudogene. The KLRC1 and KLRC2 genes encode
killer cell lectin-like receptor C1/2. Therefore, we considered that they are unlikely to be causal gene(s)
of ID, and focused on ETS2, ZNF480, and CENPF genes.

The ETS2 gene encodes a transcription factor that regulates numerous genes and is overexpressed
in the brain and fibroblasts of Down syndrome (DS) individuals. ETS2 can trans-activate the APP gene
via specific Ets-binding sites in the APP promoter, resulting in the increase of beta-amyloid production
in patients with DS [34]. Mutation in the ETS2 transactivation domain located in the N-terminal
part of the protein has been shown to affect its activity [35]. Our study identified a missense variant
(NM_001256295.1:c.475C>T) in ETS2, resulting in p.T22I at the N-terminus of the protein, which might
alter protein translocation.

The ZNF480 gene belongs to a large family of transcription factors [36], which are expressed in
different parts of the human brain [37]. We identified a missense variant, NM_144684.2:c.1504C>T
(p.R502W), located in the zinger finger C2H2 domain. The SIFT and Polyphen-2 software also estimated
this variant to be pathogenic. A previous study found two de novo nonsense variants of ZNF480 in
schizophrenia patients, and variants in other C2H2-type zinc finger proteins have been reported to be
associated with ID [18,38]. Although existing knowledge of ZNF480 is very limited, the results suggest
that ZNF480 can be a candidate for a causal gene for ID in the patient.

Applying a recessive model, we identified a compound heterozygous variant in CENPF,
which encodes the kinetochore protein expressed during the cell cycle [39] and in different
parts of brain, as another candidate gene. A previous study identified compound heterozygous
variants in CENPF, leading to truncated proteins, in patients with ciliopathy and microcephaly
phenotypes [39]. In our study, p.P791A and p.C1307Y were found in the CENPF gene (Figure 2).
The NM_016343.3:c.2371C>G (p.P791A) was detected with a frequency of 8.32 × 10−6 in the Exome
Aggregation Consortium database. The variation p.C1307Y is predicted to have an effect on protein
function by Polyphen-2 (score = 1.00) and Provean (score = −4.22) programs. The very low frequencies
in the general populations and the predicted functional effect of the variants suggest that the CENPF
gene is a promising candidate gene for ID.

5. Conclusions

In this study, we presented our comprehensive analysis of genetic variations and de novo variants
in a family whose father had up to 115 TEQ ppt in his serum as a result of living in a dioxin hotspot.
We identified de novo variants in ETS2 and ZNF480 genes and the compound heterozygous variations
in CENPF in the son with an undiagnosed ID. Considering the functional roles of these genes and
previous studies on mental diseases, they might be promising candidates for further studies performing
functional analyses.
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