
International  Journal  of

Environmental Research

and Public Health

Article

Interrelationships between Multiple Climatic Factors
and Incidence of Foodborne Diseases

Myoung Su Park 1, Ki Hwan Park 2,* and Gyung Jin Bahk 1,*
1 Department of Food and Nutrition, Kunsan National University, Gunsan 54150, Jeonbuk, Korea;

ijea1418@nate.com
2 Department of Food Science and Technology, Chung-Ang University, Ansung 17546, Gyeonggi, Korea
* Correspondence: khpark@cau.ac.kr (K.H.P.); bahk@kunsan.ac.kr (G.J.B.); Tel.: +82-316-703-031 (K.H.P.);

+82-634-694-640 (G.J.B.); Fax: +82-316-751-381 (K.H.P.); +82-634-662-085 (G.J.B.)

Received: 2 October 2018; Accepted: 4 November 2018; Published: 7 November 2018
����������
�������

Abstract: Climatic factors can affect the incidence of foodborne diseases (FBDs). Moreover,
microbial network inference is useful for predicting the interrelationships between the incidence
of FBDs and climatic factors. However, the interrelationships between FBD pathogens and
most climatic factors are unknown. Using principal component analysis (PCA) and partial
correlation coefficient matrices (PCCMs), we determined the intra-ecosystem interrelationship
network of the multiple combined effects of 5 climatic factors (temperature, relative humidity,
rainfall, insolation, and cloudiness) and the monthly incidences of 12 bacterial FBDs. Many FBD
pathogens are interrelated with multiple combined factors. Salmonellosis has strong positive
interrelationships with Vibrio parahaemolyticus and enterohemorrhagic Escherichia coli, and the
interrelationships between Staphylococcus aureus/enteropathogenic E. coli/enterotoxigenic E. coli
exhibits a typical triangular pattern with the combined effects of all 5 climatic factors. Meanwhile,
campylobacteriosis and Clostridium perfringens infections are negatively interrelated with insolation
and cloudiness. Enteroinvasive E. coli, Bacillus cereus, Listeria spp., and Yersinia enterocolitica are
significantly interrelated with any climatic factor combination. The interrelationships or higher-order
interrelationships among these climatic factors play an important role in the incidence of FBDs,
although the underlying mechanisms remain unclear. Our results will serve as a foundation for more
sophisticated models of future FBD patterns with regard to climate change.
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1. Introduction

Climatic factors such as ambient temperature, rainfall, and humidity can affect the incidence of
several foodborne diseases (FBDs) [1,2]. FBD incidences are therefore likely to be affected by climate
change [3]. However, most studies focused on specific climatic factors for specific bacterial FBD
pathogens [4–11]. In nature, these bacterial FBD pathogens and climatic factors do not exist alone,
but rather form complex ecological interrelationship webs. Therefore, there may be many distinct
ecological interrelationships among these FBD-causing microbial pathogens and related climatic
factors [2]. In addition, examining the associations between regional climate linked to FBDs will
develop our understanding of climatic triggers for enteric infections as well as improve disease
forecasts [12].

While locally specific effects of climate change on disease risk will depend on a number of
interacting climatic and non-climatic factors, larger-scale, regional disease patterns are more likely to
be dominated by extrinsic climate factors [13]. Such climatic variations are likely to affect FBD
incidence either directly, through effects on pathogen competence, or indirectly, by influencing
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transmission pathways and host behavior [14,15]. In particular, interrelationships between FBDs
and foodborne pathogens are striking features of the climate system which appear as statistically
correlated climate-related patterns between geographical regions [16]. However, the interrelationships
between FBD cases caused by foodborne pathogens and the majority of climatic factors remain
poorly understood.

Recently, regarding ecological interrelationships in microbial communities, co-occurrence and
correlation patterns are increasingly being used to predict species interrelationships in environments
ranging from the nature to the human microbiome [17]. However, to date, there are no published
studies taking a comparative approach to assessing the interrelationship of such large-scale multiple
climatic factors across FBDs over an entire region. Especially, understanding the interrelationship
network of the combined influence of climate variability on FBDs may improve our ability to predict
the effects of climate change on these diseases [11]. Therefore, this study could allow better evaluation
of the effects of climate variability and change on FBD risk, and an assessment of the effect of climate
factors on human health is very important to establish national environmental health policies.

The aim of this study is to predict the ecological interrelationships among FBD pathogens
and climatic factors on the basis of the incidence of FBDs; hence, we investigated intra-ecosystem
interrelationships including the multiple combined effects of 5 climatic factors (temperature, relative
humidity, rainfall, insolation, and cloudiness) and the monthly incidence (hospitalization) of 12
bacterial FBD pathogens in South Korea from 2011 to 2015 using principal component analysis (PCA)
and partial correlation coefficient matrix (PCCM) technique.

2. Methods

2.1. Climate Data

The 5 climatic factors analyzed were temperature (mean minimum), relative humidity, rainfall,
insolation, and cloudiness. Ten climatic factors (mean minimum, mean, and mean maximum
temperature; relative humidity; rainfall; snowfall; wind speed; sunshine duration; insolation;
and cloudiness) were considered in the preliminary analysis, but only the 5 factors listed above
were strongly correlated with FBD incidences. The data that applies to all of South Korea, as a region,
were published by the Korea Meteorological Administration [18] as described by Kim et al. [19].
Because the bacterial FBD incidence data were in a monthly format, we calculated the mean monthly
values of the climatic factors from January 2011 to December 2015.

2.2. Bacterial FBD Incidence Data

Data of bacterial FBD cases from 2011 to 2015 were obtained from the Health Insurance Review
and Assessment Service (HIRA) [20] using the method of Park et al. [21], which considers diagnostic
accuracy and diagnoses matched with the International Classification of Diseases, 10th Revision
(ICD-10) codes for the following 12 foodborne pathogens: salmonellosis (SAL); enteropathogenic
E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), and enterohemorrhagic
E. coli (EHEC); Vibrio parahaemolyticus (VBR); Staphylococcus aureus (STA); campylobacteriosis (CAM);
Clostridium perfringens (CLP); Bacillus cereus (BAC); Listeria spp. (LIS); and Yersinia enterocolitica (YER)
infection. These data are also applicable locally to all of South Korea. The estimated numbers of
bacterial FBD cases were subsequently grouped according to inpatient stays (i.e., hospitalizations) and
outpatient visits by month. However, the pre-analyses showed stronger correlations between climatic
variables and inpatient data than with outpatient data, or total outpatient and inpatient data; therefore,
we used only inpatient data for the analysis, as in a previous study [3].

2.3. Microbial Interrelationship Network

PCA was used to reduce the effect of higher-order multicollinearity, investigate the combined
effects of the above mentioned 5 climatic variables in South Korea, and investigate the structure
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that identifies the similarities and differences within the climatic data. As a result, the manifest
variables and components set were reduced to subcomponents termed PC1, PC2, PC3, etc., which are
independent and decrease the amount of variance from the original dataset: PC1 captures most of
the variance, PC2 captures the next highest variance, and so on until all of the variance is accounted
for [22].

Then, the PCCM technique was used to identify direct relationships between bacterial FBD cases
and climatic variables. The PCCM technique has been successfully applied for various network
inference problems, making it appropriate for this study [23]. Partial correlation coefficients can
distinguish between direct and indirect correlations when used with suitable cutoffs. To determine the
unique variance between 2 variables while eliminating the variance from other variables, the partial
correlation coefficients between bacterial FBD pathogens and non-eliminated climatic variables,
while controlling for PC1, PC2, or PC1+PC2 as a third variable, were calculated (Table 1).

2.4. Calculation of Correlation Thresholds and Statistical Analysis

To test the significance of partial correlations (i.e., cutoff calculations), the correlation coefficients
were transformed into Z-terms. For a selected significance level (p < 0.01 or p < 0.05), the corresponding
Z-score threshold (Zα/2, i.e., cutoff) was calculated [24,25]. In order to test the significance of
the associations among variables, the correlation coefficients were transformed to Z-terms using
Equation (1).

Zij = 0.5 ∗ ln

(
1 + rij

1 − rij

)
, (1)

where rij is the magnitude of a partial correlation coefficient between 2 variables: i and j (Table 1).
These transformed values were subsequently used to calculate the Z-score as in Equation (2),
which were then used for Z-statistics hypothesis testing.

Z =
Zij√

1/n − 3 − p
, (2)

where n is the number of observations used to evaluate the correlations (n = 60 (5 years × 12 months) in
this study) and p is the conditioning order of the correlation coefficient (n = 1 (first-order conditioning)
in this study). We used 2 different α levels, 0.05 and 0.01, which have corresponding threshold values
of Zα/2 = 1.96 and 2.575, respectively. The corresponding values for the minimal absolute correlation
coefficients were used as cutoffs in the network determination (Table 2). All analyses were performed
using SPSS version 12.0 (Data Solution Inc., Seoul, Korea). The level of significance was set at p < 0.05.
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Table 1. Partial correlation coefficients (rij) of 12 bacterial FBD pathogens with respect to 3 climatic variable groups.

Variables SAL EPEC ETEC EIEC EHEC CAM STA CLP VBR LIS BAC YER

PC1+PC2
(5 climatic factors)

SAL 1.000
EPEC −0.065 1.000
ETEC 0.078 0.330 1.000
EIEC −0.016 0.056 −0.139 1.000
EHEC 0.116 0.055 0.147 0.129 1.000
CAM −0.102 −0.126 −0.179 0.079 −0.135 1.000
STA 0.133 0.360 0.346 −0.029 −0.063 −0.099 1.000
CLP −0.030 −0.052 −0.150 0.017 0.002 0.038 −0.140 1.000
VBR 0.285 0.017 0.018 0.210 0.084 −0.147 0.275 −0.289 1.000
LIS −0.066 0.180 0.073 0.023 −0.001 −0.221 0.252 −0.005 0.170 1.000

BAC −0.009 −0.021 0.050 0.035 0.037 0.077 −0.093 −0.024 0.141 −0.046 1.000
YER −0.093 −0.040 0.038 −0.080 −0.070 −0.040 −0.069 −0.047 −0.125 −0.073 −0.141 1.000

PC1

SAL 1.000
EPEC −0.120 1.000
ETEC 0.237 0.294 1.000
EIEC 0.044 0.048 −0.118 1.000
EHEC 0.390 0.009 0.227 0.145 1.000
CAM 0.473 −0.161 0.022 0.104 0.169 1.000
STA 0.136 0.350 0.352 −0.024 −0.029 −0.030 1.000
CLP 0.084 −0.064 −0.114 0.025 0.054 0.112 −0.130 1.000
VBR 0.542 −0.035 0.132 0.216 0.267 0.220 0.273 −0.187 1.000
LIS −0.065 0.182 0.063 0.021 −0.014 −0.189 0.249 −0.009 0.132 1.000

BAC −0.132 −0.005 0.010 0.024 −0.031 −0.045 −0.103 −0.044 0.043 −0.040 1.000
YER −0.159 −0.027 0.006 −0.087 −0.116 −0.115 −0.078 −0.063 −0.172 −0.068 −0.118 1.000

PC2

SAL 1.000
EPEC −0.023 1.000
ETEC 0.195 0.329 1.000
EIEC −0.038 0.055 −0.143 1.000
EHEC 0.492 0.061 0.230 0.083 1.000
CAM −0.394 −0.125 −0.245 0.087 −0.362 1.000
STA 0.202 0.360 0.366 −0.035 0.039 −0.157 1.000
CLP −0.285 −0.059 −0.208 0.029 −0.210 0.196 −0.185 1.000
VBR 0.383 0.024 0.069 0.192 0.222 −0.248 0.303 −0.356 1.000
LIS −0.029 0.180 0.075 0.022 0.012 −0.207 0.253 −0.013 0.170 1.000

BAC 0.051 −0.019 0.064 0.032 0.075 0.033 −0.080 −0.051 0.156 −0.044 1.000
YER 0.030 −0.036 0.062 −0.084 0.018 −0.093 −0.048 −0.089 −0.086 −0.069 −0.130 1.000

rij: magnitude of a partial correlation coefficient between 2 variables: i and j. PC1: temperature, relative humidity, and rainfall, PC2: insolation and cloudiness. BAC: B. cereus;
CAM: campylobacteriosis; CLP: C. perfringens; LIS: Listeria spp.; SAL: salmonellosis; EPEC, ETEC, EIEC, EHEC: pathogenic E. coli infection by enteropathogenic, enterotoxigenic,
enteroinvasive, enterohemorrhagic E. coli, respectively; STA: S. aureus; VBR: V. parahaemolyticus; YER: Y. enterocolitica infection.
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Table 2. Partial correlation coefficients matrix transformed to Z-terms (Zα/2) of 12 bacterial FBD pathogens with respect to 3 climatic variable groups.

Variables SAL EPEC ETEC EIEC EHEC CAM STA CLP VBR LIS BAC YER

PC1+PC2
(5 climatic factors)

SAL
EPEC −0.56
ETEC 1.61 2.37 *
EIEC 0.00 0.38 −0.99
EHEC 3.58 ** 0.29 1.80 0.85
CAM 0.32 −1.06 −0.91 0.72 −0.78
STA 1.29 2.76 ** 2.85 ** −0.22 −0.01 −0.69
CLP −0.57 −0.45 −1.20 0.20 −0.53 1.10 −1.17
VBR 4.10 ** −0.04 0.77 1.55 1.89 −0.14 2.24 * −2.12 *
LIS −0.41 1.37 0.52 0.16 0.00 −1.57 1.92 −0.08 1.12

BAC −0.28 −0.09 0.27 0.21 0.20 0.03 −0.69 −0.34 0.72 −0.32
YER −0.60 −0.24 0.25 −0.64 −0.37 −0.68 −0.47 −0.55 −0.98 −0.52 −0.95

PC1

SAL
EPEC −0.90
ETEC 1.81 2.27 *
EIEC 0.33 0.36 −0.89
EHEC 3.08 ** 0.07 1.73 1.09
CAM 3.84 ** −1.22 0.17 0.78 1.28
STA 1.02 2.74 ** 2.75 ** −0.18 −0.22 −0.22
CLP 0.63 −0.48 −0.86 0.19 0.40 0.84 −0.98
VBR 4.54 ** −0.26 0.99 1.64 2.05 * 1.67 2.10 * −1.42
LIS −0.49 1.38 0.47 0.16 −0.10 −1.43 1.91 −0.07 1.00

BAC −1.00 −0.04 0.07 0.18 −0.23 −0.33 −0.77 −0.33 0.32 −0.30
YER −1.20 −0.20 0.04 −0.66 −0.87 −0.86 −0.58 −0.47 −1.30 −0.51 −0.88

PC2

SAL
EPEC −0.17
ETEC 1.48 2.55 *
EIEC −0.29 0.41 −1.08
EHEC 4.03 ** 0.46 1.76 0.62
CAM −3.12 ** −0.94 −1.87 0.65 −2.83 **
STA 1.54 2.82 ** 2.87 ** −0.26 0.29 −1.18
CLP −2.19 * −0.44 −1.58 0.22 −1.60 1.49 −1.40
VBR 3.02 ** 0.18 0.52 1.46 1.69 −1.89 2.34 * −2.79 **
LIS −0.22 1.36 0.56 0.17 0.09 −1.57 1.93 −0.09 1.28

BAC 0.38 −0.14 0.48 0.24 0.57 0.25 −0.60 −0.38 1.18 −0.33
YER 0.23 −0.27 0.46 −0.63 0.13 −0.70 −0.36 −0.67 −0.65 −0.52 −0.98

PC1: temperature, relative humidity, and rainfall; PC2: insolation and cloudiness. BAC: B. cereus; CAM: campylobacteriosis; CLP: C. perfringens; LIS: Listeria spp.; SAL: salmonellosis;
EPEC, ETEC, EIEC, EHEC: pathogenic E. coli infection by enteropathogenic, enterotoxigenic, enteroinvasive, enterohemorrhagic E. coli, respectively; STA: S. aureus; VBR: V. parahaemolyticus;
YER: Y. enterocolitica infection. * p < 0.05; ** p < 0.01. Bold italics: coefficients altered by 3 conditional climatic variable groups (PC1 + PC2 to PC1 to PC2). Colored cells indicate significant
interrelationships. Orange: 7 interrelationships under PC1 + PC2; purple: 2 added (SAL-CAM and EHEC-VBR) interrelationships under PC1; blue: 4 (3 added (SAL-CLP, EHEC-CAM,
and CLP-VBR) and 1 changed (SAL-CAM)) interrelationships under PC2.
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3. Results

3.1. PCA and PCCM

PCA can be used to identify patterns, highlighting similarities and differences in a dataset,
and to explore the structure of weather data in South Korea. The present PCA can be divided into
2 new independent components termed PC1 (temperature, relative humidity, and rainfall) and PC2
(insolation and cloudiness) to decrease the variance of the original dataset; these components are
considered single climatic factors. PC1 captured most of the variance (65.2%), followed by PC2 (21.2%)
(Figure 1). Consequently, the interrelationship network of bacterial FBD pathogens with respect to
multiple climatic factors was created with 3 distinct conditional climatic variables: PC1 + PC2, PC1,
and PC2.
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Figure 1. Boxplot of principal component analysis (PCA) of 5 climatic variables in South Korea from
January 2011 to December 2015. PC1 (temperature, relative humidity, and rainfall) and PC2 (insolation
and cloudiness) accounted for 65.2% and 21.2% of the total variance, respectively.

The PCCM showing the interrelationship among 12 bacterial FBD pathogens and 3 conditional
climatic variables (i.e., PC1 + PC2, PC1, and PC2) with α levels of 0.01 and 0.05 is shown in Table 2.
The absolute values of the partial correlation coefficients ranged from 0.0015 to 4.54. Of 198 coefficients,
only 25 (12.6%) were statistically significant from zero order; thus, 173 edges were removed from the
networking graph.

3.2. Interrelationships between FBD Pathogens and Climatic Factors

The main interrelationships of bacterial FBD pathogens with multiple climatic factors are shown
in Figure 2. The SAL and VBR nodes had the most edges with 5; followed by the EHEC, STA, CAM,
and CLP nodes with 3; and the EPEC and ETEC nodes with 2.

With the most patients (i.e., largest circle (i.e., node) in Figure 2), SAL strongly positively
interacted with VBR and EHEC, and CAM under the PC1 + PC2 and PC1 conditions, respectively;
meanwhile, it negatively interacted with CAM and CLP only under the PC2 condition. Under the PC1
+ PC2 condition, STA-EPEC-ETEC interrelationships exhibited a typical triangular pattern, STA-VBR
interacted positively, and VBR-CLP interacted negatively. EHEC interacted positively with VBR only
under PC1 and strongly negatively interacted with CAM under PC2. VBR-CLP also interacted strongly
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negatively under PC2. Meanwhile, EIEC, BAC, LIS, and YER did not significantly interact with any
combination of climatic factors.Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  8 of 13 
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Figure 2. Microbial interrelationship network inferred from the monthly incidence of 12 bacterial FBDs
according to climatic variables. Nodes represent the incidence of a bacterial FBD; the size indicates the
number of cases per year. Lines represent significant pairwise associations between pathogens; thick
and thin lines: p < 0.01 and <0.05, respectively. Red, purple, and blue lines show the interrelationship
under the 3 conditional climatic variables: PC1 + PC2, PC1, and PC2, respectively. BAC: B. cereus;
CAM: campylobacteriosis; CLP: C. perfringens; LIS: Listeria spp.; SAL: salmonellosis; EPEC, ETEC, EIEC,
EHEC: pathogenic infection by enteropathogenic, enterotoxigenic, enteroinvasive, enterohemorrhagic
E. coli, respectively; STA: S. aureus; VBR: V. parahaemolyticus; YER: Y. enterocolitica infection.

4. Discussion

4.1. Application of PCA and PCCM

The present study used PCA and PCCM technique to demonstrate the interrelationship network
among FBD pathogens and climatic factors, in which one pathogen depends on multiple other
pathogens. The PCA results show that some climatic variables in South Korea are closely associated;
thus, in order to avoid too many correlations, the 5 variables were divided into 2 components: PC1 and
PC2. PCA reduces and extracts the dimensionality of data and rates the variation present in the original
dataset as much as possible [23]. The results of PCA in the present study indicate a combined effect
between climatic variables and the incidences of 12 bacterial FBDs in South Korea.

Furthermore, for the first time, this study applied the PCCM technique to a climate ecosystem as a
preliminary approach to represent bacterial FBD pathogen interrelationships. This approach has been
successfully developed and applied to interrelationship network [26]. Partial correlation networks are
represented by partial correlation coefficients calculated for pairs of variables when all other variables
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are taken into account. In addition, partial correlation analyses may enable the identification of the
direction of a partial correlation, which enables us to distinguish between the response variables and
covariates [27]. Faust and Raes (2012) [17] state that one of the pitfalls of network construction is the
faulty prediction of a relationship between 2 species, because both are inevitably affected by a third
one. To overcome this issue, tests for conditional independence (e.g., partial correlation) are commonly
applied to exclude these indirect links [28,29]. This more complex approach, i.e., not determining
simple pairwise relationships, enabled the identification of the positive and negative interrelationships
between the climatic factors and bacterial FBD pathogens in the present study.

4.2. Interrelationships between FBD Pathogens and Influences of Climatic Factors

There is a complex interrelationship between natural environment factors and foodborne bacterial
growth. Our study found that the incidence of FBD infections is strongly associated with climatic
factors, such as temperature, relative humidity, and rainfall. In this study, the interrelationship network
showed that salmonellosis, vibriosis, EHEC, EPEC, ETEC, and STA infections were influenced by
insolation and cloudiness in addition to temperature, relative humidity, and rainfall (i.e., PC1 + PC2).
Furthermore, the present study is the first to demonstrate that the triangular interrelationship of EPEC,
ETEC, and STA with 5 climatic factors indicates an important interrelationship for these bacterial
FBDs in the future as a result of climate change (Figure 2, red lines). Moreover, SAL–CAM and
VBR–EHEC infections, respectively, were positively influenced by temperature, relative humidity,
and rainfall (i.e., PC1) (Figure 2, purple lines). The positive interrelationship between FBD infectious
cases and temperature, humidity, and rainfall in the present study is broadly consistent with previous
studies on salmonellosis [1,5], campylobacteriosis [9], vibriosis [4], EHEC O157:H7 [8], and STA
infection [30]. Relative humidity and rainfall also affect water and sanitation infrastructure and the
number of pathogens and might affect the replication rate of certain foodborne pathogens [31].Notably,
the positive relationship between temperature and Salmonella infections, observed in this study, using
PCA and the PCCM technique, was similar to recent findings from Australia, Europe, North America,
and Asia with similar trends [32]. Therefore, our results suggest that previous findings based on this
assumption can be improved by assuming a non-stationary association and more accurately evaluating
the possible non-linear association between climatic factors and FBD infectious transmission.

Meanwhile, CAM and CLP infections were negatively influenced by insolation and cloudiness
(i.e., PC2) (Figure 2, blue lines). In other words, increased insolation and sunny weather mean that
CAM and CLP infections could increase. Notably, Figure 2 shows that the risk of CAM is positively
associated with temperature, relative humidity, and rainfall in our present study, which is broadly
similar with previous studies [6,9,10]. For example, in Australia, an inverse relationship between
weekly temperature and campylobacteriosis cases in Adelaide was shown, while a positive relationship
was reported in Brisbane [33]. In addition, Lake (2017) [16] reported that the presented evidence that
diseases caused by Campylobacter is associated with weather; FBD incidence is greater in the summer
and during periods of warmer weather; hence, its incidence is also elevated. Schijven et al. [34] studied
the relationship between Campylobacter and climate change using the quantitative microbial risk
assessment (QMRA) approach. The results indicate that Campylobacter cases associated with poultry
consumption are likely to increase under climate change, whereas risks associated with the drinking
water pathway are likely to decrease due to increased inactivation in higher warmer temperatures.
However, there is no direct interrelationship between CAM and CLP infections.

There are strong associations between Salmonella and the environment, especially temperature
(Figure 2). However, even if SAL exhibited the most connections in this network, the relative abundance
of cases did not appear to affect the interrelationships. In addition, Lake (2017) [16] reported that,
in contrast to Campylobacter, there is a much clearer biological mechanism explaining why higher
temperature leads to an elevated incidence of illness with Salmonella, i.e., at elevated ambient
temperatures, Salmonella reproduction may be enhanced. Other studies, however, indicated that
maximum and minimum temperatures, relative humidity, and rainfall were all positively correlated
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with the number of cases of Salmonella, with the lag values of the effects being between 2 weeks and
2 months [35–37]. These reported that rainfall, especially heavy rainfall events, may affect the frequency
and level of contamination of drinking water and hence enteric infection. A strong association between
drinking water quality, precipitation, and gastroenteritis was reported [38].

Among 12 foodborne pathogens, EIEC, BAC, LIS, and YER infections were not significantly
influenced by any of the 5 climatic variables in South Korea. However, the lack of relationships
between these FBD pathogens and climatic factors remains unclear. For example, LIS–STA had a
slightly elevated Z-score, although this did not reach statistical significance (Table 2). Thus, these
relationships may vary with respect to regional differences in the effects of climatic factors, possibly
affecting the incidence of bacterial FBDs [19].

4.3. Limitations

To better understand these interrelationships, it would be interesting to investigate the time
series—that is, by using Lotka–Volterra modeling as an example of a dynamic model of a microbial
community [39,40]—considering the lag effects of meteorological variables on foodborne infection [7] as
well as the spatial, regional, or worldwide distributions of these FBD infections with respect to multiple
climatic factors. Moreover, the mechanisms and genetic effects involved in these interrelationships
remain unclear. In particular, pathogenic E. coli exhibited different interrelationships with respect to
serotype, necessitating further study. In addition, the incidences of some bacterial FBDs are largely
dependent on food safety interventions and policies as well as human factors including behavior and
consumption patterns [41]. These social, public health, and environmental relationships should also be
considered alongside multiple climatic factors. Studies of vulnerability to FBDs and future climate
change with respect to aging are also required.

Although we used PCA and the PCCM technique as a novel approach to identify possible
interrelationships between FBD pathogens and climatic factors, these interrelationships must be
confirmed by further studies with more robust data. Nevertheless, the results suggest that perturbed
interrelationships or higher-order relationships among these climatic factors play an important role in
the incidence of FBDs. Moreover, the interrelationships between multiple climatic factors and bacterial
FBD incidence can be used to develop prediction models for future disease patterns with respect
to climate change. However, determining the causality and directions of these relationships in the
network presented herein requires further prospective and functional studies of these mechanisms to
identify the interrelationships between FBD pathogens and additional climatic factors. We anticipate
our method will serve as a foundation for more sophisticated prediction models and the identification
of mechanisms of future patterns of FBD with respect to climate change.

5. Conclusions

In conclusion, this study could highlight the understanding of the interrelationship between
climatic variables and FBD incidence by characterizing the association between multiple climate
factors and the incidence of FBDs in South Korea. In addition, these results show climate forces as
factors influencing enteric disease incidence, emphasizing the potential effect of future regional climate
change on FBD risk. Notably, the combination of climatic factors including temperature, relative
humidity, rainfall, insolation, and cloudiness emerged as potential forecast factors for salmonellosis,
vibriosis, STA, and pathogenic E. coli infection. Thus, our results showed many pathways through
which FBD may be affected by multiple climate factors. The statistical analysis used in this study
could be useful for determining the effects of multiple climate factors on FBD patterns using QMRA.
Moreover, the interrelationships between various climatic factors and the national incidences of
bacterial FBD could contribute to the development of prediction models for future patterns of diseases
based on climate change. However, multiple climatic factors may have direct or indirect effects on
FBD, and consequently, there could be a huge degree of uncertainty as to the overall effect of multiple
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climate factors on FBD. Therefore, it is important to recognize that FBD usually occurs as a consequence
of a combination of one or more specific climatic factors [42].
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