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Abstract: A river water quality spatial profile has a diverse pattern of variation over different 

climatic regions. To comprehend this phenomenon, our study evaluated the spatial scale variation 

of the Water Quality Index (WQI). The study was carried out over four main climatic classes in Asia 

based on the Koppen-Geiger climate classification system: tropical, temperate, cold, and arid. The 

one-dimensional surface water quality model, QUAL2Kw was selected and compared for water 

quality simulations. Calibration and validation were separately performed for the model 

predictions over different climate classes. The accuracy of the water quality model was assessed 

using different statistical analyses. The spatial profile of WQI was calculated using model 

predictions based on dissolved oxygen (DO), biological oxygen demand (BOD), nitrate (NO3), and 

pH. The results showed that there is a smaller longitudinal variation of WQI in the cold climatic 

regions than other regions, which does not change the status of WQI. Streams from arid, temperate, 

and tropical climatic regions show a decreasing trend of DO with respect to the longitudinal profiles 

of main river flows. Since this study found that each climate zone has the different impact on DO 

dynamics such as reaeration rate, reoxygenation, and oxygen solubility. The outcomes obtained in 

this study are expected to provide the impetus for developing a strategy for the viable improvement 

of the water environment. 
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1. Introduction 

Climate characteristics have a significant impact on the spatio-temporal variation of surface 

water quality. Deteriorating water quality presents a serious problem to the water security of many 

zones in different climatic classes. The geo-spatial variability of water resources and socio-economic 

pressures present complex challenges to sustainable management of water resource to meet 

domestic, agricultural, and industrial water demands [1]. The impact of climate change on water 

stressors has compounded further the challenge of the planning and prediction of water quantity and 

quality within the hydro-ecosystems in different climate regions. Some studies focusing on the 

impact of climate change on hydrological systems, while much attention has been given to water 

balance, less attention has been given to trans-climatic water quality profiles [2,3]. It has been 

acknowledged that the impact of climate change will influence the quality of water through human 

activities and complex natural mechanisms over different regions [4–6]. Variation in climate may also 

have an indirect influence on surface water health through changes in land scape pattern [7–10]. 

Accordingly, a deterioration of water quality has been observed in a number of studies on the 
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influence of water quality due to climate change, particularly on water pollutants and their physio-

chemical characteristics—such as DO, total suspended solid (TSS), ammonia (NH3), and turbidity—

within the changing hydrometeorological ecosystems [11–13]. Surface water quality has a diverse 

pattern of variations and it is not only a function of climate but also urbanization through 

anthropogenic activities [13–15]. 

Surface water quality has considerable influence on an organism’s wellbeing and on global 

economic and social advancement. Conversely, regional climate, human actions, and economic and social 

activities have various effects on water quality [16–18]. In water quality simulations, it has been observed 

that the water quality models and various artificial intelligence approaches provided reasonable results 

and the practical modeling approach guarantees the use of models for forthcoming options for surface 

water quality [19–23]. In the last few decades, the development of surface water quality models (WQMs) 

to support decision making processes in water management and governance has intensified. From simple 

empirical based models to advanced and complexly coupled models, numerous WQMs have been 

developed for the analysis and prediction of the quality of water due to changes in rivers, lakes, and 

oceans. The WQMs provide extensive waterscape analytic and complex geo-morphological simulation 

capabilities [24]. Most of the models are adaptable to various environments subject to appropriate 

definitions of boundary conditions, dimensional variation, and parameter characterization. Basic models 

require hydro-meteorological data inputs, including precipitation, flow, humidity, and chemical and 

biological data with varying temporal resolutions [19,25,26]. Good WQMs are expected to process higher 

temporal resolution results from the lower resolution of the corresponding input data available [27]. The 

increasing demand for modeling integrated physio-chemical and hydro-biological processes in typical 

ecosystems requires the inclusion of additional fluxes to simulate mutually dependent complex processes 

such as nutrient generation, transport, transformation, and recirculation in hydrological systems. Such 

high expectation output from the advanced and coupled WQM models is limited due to over-

parameterization and associated assumptions in the process [28,29]. Opinions remain divided on whether 

higher dimensional complex models (two-dimensional or three-dimensional) or simple models based on 

appropriate theories and logic is the best approach to water quality modeling [30–32]. 

In this context, QUAL2kw is the prominent model for the simulation and comparison of water 

quality and quantity in diverse settings for various parameters [33,34]. The QUAL2kw is a flexible 

one-dimensional (1-D) dynamic model having two version that can be applied also to steady state 

and unsteady state mode. It has several new elements, including DO dynamics with rooted plants, 

changing of algal extinction to BOD (CBOD), and utilization of CBOD in the denitrification process 

[35]. QUAL2Kw has been applied in many settings [33,34,36–39]. QUAL2kw can model the 

compound interaction between and across organic and inorganic pathways in aquatic conditions. It 

can capture reactions and the decay process of phytoplankton, nitrate, ammonia, phosphate, DO, 

BOD, organic phosphorous, and nitrogen concentrations [34,40–42]. The dynamic interactions 

between nutrient loads from various sources and the consequent longitudinal and lateral water 

quality pattern in the recipient water body are best described by the WQMs [27,31]. 

The water quality index (WQI) is used to evaluate the quality of the water ecosystem from 

different sources using a group of selected parameters. It reduces the long list of parameters to a 

single composite number, normally dimensionless, in a simplistic reproducible sequence [43–46]. The 

WQI has been widely applied in the monitoring of water quality for both groundwater and surface 

water, specifically on rivers, playing a significant role in water resource management [47–49]. WQI 

can be developed over the longitudinal profile of a river using the corresponding water quality results 

obtained from the best WQMs to indicate the spatial trends of water quality along a river regime 

[41,50]. Compared with the conventional water quality surveys, WQI methods are an efficient tool of 

communication and facilitate understanding of the overall state of the water body based on a single 

value (index) rather than the list of parametric values. Thus, rather than comparing the various values 

for different parameters, WQI is an efficient and effective way to describe and easily compare the 

characteristic state of water quality, which is crucial in water resource management. 

Several reviews and studies have assessed the impacts of climate on hydrological circulation in 

several regions [51]. Currently, many studies and literature reviews have been carried out on climate 
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change phenomena and sustainable urban water supply, at local and global scales, outlining the 

problems associated with climate change impacts and uncontrolled urbanization [5,10,48,49]. The 

mitigation of the effects of climate change requires a collection of reliable data on water quality for 

effective monitoring and management at local, regional, and global levels as previously performed 

in several countries [48,49,52–54]. However, a gap remains on the longitudinal profiling of water 

quality assessment across the different climatic regions. The usual method of water quality 

conservation involves the use of sustainable ecosystem health strategies, allowing for the assortment 

of pollutant discharges and flow control but not allowing for the assessment of environmental factors 

[55]. 

Previous studies have revealed that DO concentrations in rivers are influenced by environmental 

conditions upstream points and along the sections of the river [20]. At the same time, different studies 

discuss how higher temperatures reduce the solubility of DO and re-oxygenation rate. Consequently, it is 

critical for environmental researchers to consider the regional climate impact independently on river 

water quality along with other management strategies such as flow augmentation, aeration, and water 

treatment practices [20,56–58]. This assessment is used to evaluate the spatial variation of water quality 

over different Koppen climate classes. The following study was carried out within the main climatic 

zones of Asia. Streams having similar characteristics were selected from each climatic class. The main 

limitation experienced in this study is; scarcity of long-term data, especially for the Baghmati river 

and Galing river. In each climate zone, there are several rivers, therefore difficult to obtain sufficient 

long-term data for each river that may be identified for the study. 

The present work explores the complex interplay of WQI among four different climatic classes 

in Asia and the performance of the model is evaluated. Through analysis, it is determined whether 

the spatial scale variations are consistent or differ within each climatic class. In this study, the Koppen-

Geiger climate classification was used to select the four major climatic regions over Asia. Koppen-Geiger 

climate classification comprised a total of five main climatic regions according to climate boundary 

condition [59,60]. Out of the five main climatic regions, four major regions were selected covering the 

entire study area, Asia. To this aim, the objectives of this research are: (1) to predict the longitudinal water 

quality profile over different climate classes; (2) to develop WQI for different streams having different 

climatic patterns; (3) to investigate the spatial scale variation of the river WQI over different climate 

classes; and (4) to investigate the spatial scale relationship of the river water quality and flow toward 

the downstream end of the river profile over different climate classes. 

2. Materials and Methods 

2.1. Study Site 

This research was conducted in four main climatic regions of Asia, arid, temperate, tropical, and 

cold, based on the Koppen-Geiger climate classification. Many authors have used the original 

Köppen climate classification to determine the climate zones and to analyze their findings in specific 

climatic zones [61–63]. The Koppen climate classification has been modified by various authors [64–

66], but the original Koppen climate classification (hereafter referred to as Koppen-Geiger climate 

classification), is still the most frequently used classification [52]. Four different rivers having similar 

characteristics were selected from each climatic class: Yamuna River, India from the arid climatic 

region; Baghmati River, Nepal from the temperate climatic region; Galing river, Malaysia from the 

tropical climatic region; and Nakdon River, Korea from the cold climatic region. The Köppen climate 

classification system is the most extensively used system for classifying the world’s climates. 

However, it has been updating regularly since it was first published in 1884. In the current study, the 

authors have used the most recent updated climate classification map [64]. There are many rivers, 

lakes, streams, creeks, and artificial channels in Asia. However, in the present study, the authors used 

these rivers based on the facts that. 

• The study selected the rivers with the comparably similar hydraulic characteristics, having a 

natural flow, unlike artificial channels. 
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• All the rivers have mostly similar land type characteristics passing through urban as well as 

vegetative areas. 

• All the rivers section having several urban networks of wastewater drains flowing into them. 

• All the rivers have common data characteristics which are useful for their comparative water 

quality profile analysis and assessment. 

Furthermore, we have to choose one stream from each climate classes and the rivers which have 

been chosen for this study have common temporal data. Moreover, the chosen rivers individually, 

have been part of the recent studies, therefore it was useful to compare our results with those 

published studies. Therefore, based on the above-mentioned facts, the authors chose these rivers for 

their study. Figure 1 describes the study area and four majors corresponding Koppen-Geiger climate 

classification regions. 

 

Figure 1. Locations of four different rivers and their corresponding major Koppen-Geiger climate 

classes. 

2.1.1. Yamuna River 

Yamuna River in India is located in the arid climatic region. It is one of the main tributaries of 

the river Ganges and is used as the main source of drinking water for over 16.8 million people in New 

Delhi [67]. The condition of the river water quality deteriorates once the river flows out of the city. 

Even though the national capital region constitutes only 1% of the watershed, it generates more than 

half of the pollution load into the river [68]. The stretch of the river within the city is not only 

necessary for both ecological and economic development but acts as a sink for waste-disposal and 

transport. Moreover, unplanned development and population pressure within the national capital 

territory have exerted stress on water supply and sanitation of Yamuna River. Lack of sufficient sewer 

connectivity among waste water treatment plants and surface drains caused a direct discharge of 

waste water into the Yamuna River, leading to increased effluent load into the river [69]. 

The Yamuna River provides water for domestic and industrial use in Delhi, the capital city of 

India. The diversion canal for the water supply to the city of Delhi is located 10 km away, between 

Palla and Wazirabad. During the summer, the residual flow after the diversion remains for the 

environmental flow during summer seasons. After only 300 m downstream of the Wazirabad 

barrage, a large drain known as the Najafghar drain enters the waterway. Downstream of the 

Najafghr drain, 13 others small to medium drains also enter the Yamuna waterway. The waterway 

exits the city near the Okhla barrage, nearly 39 km downstream of Palla. The total area of the Yamuna 

basin is around 9500 Ha, of which almost 8000 Ha is a dry area which also contributes to the river 

pollution by direct surface runoff [70,71]. The major sources of the Yamuna water pollution are 

characterized as point sources through which contaminating refuse is discharged directly into the 

Yamuna River [72]. Figure 2a shows a detailed description of the Yamuna River in India. 

https://www.sciencedirect.com/science/article/pii/S0022169415006939#t0005
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Figure 2. Description of study area (a) Yamuna River, India; (b) Baghmati River, Nepal; (c) Galling 

River, Malaysia; and (d) Nakdong River, Korea. 

2.1.2. Baghmati River 

The Baghmati river originates from the Sheopuri ranges at 1500 m above sea level (27°47′ N, 

85°17′ E) in Nepal. It then flows through the Kathmandu valley in a highly populated area. Increased 

population pressure and the high rate of urbanization within the catchment have changed the water 

quality and the quantity dynamics of the Bagmati River [73] (Jain and Sinha 2004). In particular, 

during the dry periods, the river water quality deteriorates, limiting any meaningful social and 

economic use [74,75]. The mean annual precipitation in the predominantly alluvial soil prairies of the 

river basin is 1250 mm, of which nearly 1120 mm falls during the summer monsoon period. The 

source of the river (foothills regions) receives much higher precipitation (greater than 2000 mm 

yearly) [76]. The study site is a 25 km stretch of the river meandering through the Kathmandu valley 

in Nepal. The stretch rises from about 25 km north of the capital city, Kathmandu, before flowing 

downwards to the valley floor, cutting through the Mahabharat ranges southwards before finally 

emerging onto the Ganges plains. For this study, the stretch from the Atterkhel location to Chovar 

village (the exit point from the valley) was identified. Kathmandu fulfilled around 90% of the water 

requirements during the wet season and almost 60% during the dry period. In addition, the river 

serves as a cultural resource, especially to the Hindu–Buddhist communities in Nepal [36,37]. Figure 

2b shows the location of the headwater, point source inflow, and mainstream observation points of 

the Baghmati River, Nepal. 
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2.1.3. Galing River 

Similar to other global climatic zones, the temperate zone (i.e., Galing River in Malaysia) also 

has major water quality concerns. One of the main problems is the deteriorating water quality of 

Galing River, which flows through the locality of Kuantan, Pahang. Presently, the general quality of 

Galing River is very poor, and is described as Class IV based on the water quality standard of 

Malaysia [77]. The river water quality has primarily deteriorated due to pollutants discharged from 

both residential and commercial settlements without adequate treatment [78–80]. The Galing 

waterway is the prime drainage system for the entire metropolitan area of Kuantan, and it drifts 

through the furthermost built-up area of Kuantan city, sited in the eastern coastal region of the 

Malaysian peninsula. Kuantan is the capital city of the Pahang state and one of the largest cities in 

Malaysia. Over the past decade, due to the enactment of the “Kuantan District Locality Plan 2004–

2015”, the area has been developing very rapidly, resulting in major environmental and ecological 

poverty. The coastline area of Pahang state has been remarkably urbanized and forested, and 

agricultural sections have decreased in size and have been converted to land for residential and 

industrial buildings [77–79,81]. The river begins in the Semamb industrial zone and meets the 

Kuantan River at site 8 km upstream from the coast of the South Sea [77]. Figure 2c shows the location 

of the headwater, point source inflow, and mainstream observation points. 

2.1.4. Nakdong River 

The area selected for the Nakdong River in this study is located between longitude 127°29′19″ 

E–129°18′00″ E and latitude 34°59′41″ N–37°12′52″ N in South Korea. The river meets the watersheds 

of the Seomjin river in the west, the Han river to the north and the coastal watershed in the east, 

facing the southward to the seafront of the Nakdong River in the south [82]. The Nakdong River has 

the second largest watershed, after Han river in the Korea South with an expansive watershed’s 

estimated to be 9196.18 square miles (which is about 25% area of the whole country) and the length 

of the river is about 522 km [83]. 

The Nakdong River is a network of one of the key water resources supporting major cities such 

as Daegu and Busan on the southeastern parts of South Korea [84]. The watershed of the Nakdong 

River comprises a woven network of 13 streams: Nakdong River, Geumho River, Gam Creek, Hwang 

River, West Nakdong River, Nam River, Pyeonggang Creek, Yangsan Creek, Miryang River, 

Naeseong Creek, Maekdo River, and Deokcheon River. Figure 2d shows the location of the 

headwater, the point source inflow, and the mainstream observation points of the Nakdong River, 

South Korea. 

2.2. Input Data Sets 

In this study, the average annual input data sets were utilized, including the initial concentrations 

of BOD, DO, pH, components of the nitrogenous compound, and point inflow information for the 

period of 2011 and 2012. Data for Nakdong River was obtained from the database systems of Korea, 

including the Water Environment Information System (WEIS) (http://water.nier.go.kr), Water 

Resources Management Information System (WRMIS) (http://www.wamis.go.kr) Korea Environment 

Corporation, and the Korea Meteorological Administration (KMA) (http://www.weather.go.kr). Data 

for the Yamuna River case were collected from various government agencies including the Central 

Water Commission (CWC) (http://www.cwc.nic.in/), Central Pollution Control Board (CPCB) 

(http://cpcb.nic.in), National Water Quality Monitoring Program (NWMP), and the Ministry of 

Environment, Forest, and Climate Change (MEFC) (http://www.moef.nic.in/). Input data for the case of 

Baghmati River were obtained from the Central Bureau of Statistics (CBS), the Department of 

Hydrology and Meteorology (DHM) (http://www.dhm.gov.np/), and other scientific papers, journals, 

and personal communication from various sources such as the Ministry of Urban Development (MUD) 

(http://www.bagmati.gov.np) as well as other scientific papers, journals, and personal communication 

from various sources. The input data for Galing River were gained from the Department of 

Environment (DOE) and the Ministry of Natural Resources & Environment (https://www.doe.gov.my), 

http://www.wamis.go.kr/
http://cpcb.nic.in/
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the Malaysia Environmental Performance Index (MEPI) (http://www.epi.utm.my) supplementary data 

information, and the Department of Irrigation and Drainage (http://h2o.water.gov.my), as well as other 

scientific papers, journals, and personal communication from various sources. Furthermore, the 

missing meteorological information including precipitation, wind speed, air temperature, solar 

radiation, and specific humidity was retrieved from the global data assimilation system (GLDAS) 

datasets [85]. The adopted parameters are mostly used as water quality indicators in many countries. 

Therefore, they were selected as performance indicators to examine the water quality profile. The 

nitrogenous compound such as TN, NO3, and NH3 have been used in our study as these compounds 

have the most severe impact on the aquatic environment. Furthermore, among all other nitrogenous 

compounds, these three most important components are available which are common for all streams. 

For example, organic nitrogen is available in case of the Nakdong river but it is not available in the case 

of other streams. 

2.3. Water Quality Modeling 

The one-dimensional stream water quality model, QUAL2Kw, was selected and compared for 

water quality simulations on a selected river of each climate class. Calibration and validation were 

performed for both models over the different climatic regions, separately. 

QUAL2Kw 

QUAL2Kw is a one-dimensional water quality analysis model commonly used in water resource 

assessments. It is suitable for application to an adequately-mixed river-condition with a 

comprehensive mass transport evaluation capacity to analyze the molecular diffusion, advection, and 

dispersion phenomena in one direction [35]. This model is used to simulate a river as a chain of 

numerical units having identical hydro-geometric properties and hydraulic characteristics, including 

biological and chemical rate constants. The QUAL2Kw algorithm is used in the Visual Basic for 

Applications (VBA) program language. MS Excel is used for the graphical user function for data entry, 

operations, and visualization of the output information. Fortran 95 program is used to execute 

numerical algorithms for the unit element processing sequence. The model is then run using a 

program compiled by the Excel VBA interphase. QUAL2Kw applies a mass conservation governing 

relation at a particular concentration Si in the elemental (without hypothetic) unit i. In this case, the 

transport process and input loading parametric-terms are excluded from the equation when 

considering the algae modeling [33–37,41]. 

( ) ( )wd,1 1
1 1 1

ii i i i i i
i i i i i i i i

i i i i i i

QdS Q Q E E W
S S S S S S S K

dt V V V V V V

− −
− − += − − + − + − +   (1) 

Here, S is the concentration (mg/L), Q is the discharge (m3/s), wd is the withdrawal (m3/s), V is 

the flow quantity (m3), E is the coefficient of bulk dispersive flux among reach i and consecutive reach 

i + 1 (m3/s), and W is the external pollutant (mg/s), and K is the recipient sinks and discharge of 

external sources of the pollutant due to physio-chemical reactions and mass transport dynamics 

(g/m3/s). The sink/source terminology (K) in the equation needs a vast specification of the number of 

water quality parameters for every state variable (e.g., maximum production rate of phytoplankton). 

The user can select appropriate parameters as constants which are applied in an optimization of the 

genetic algorithm (GA). Further information about the model equations can be obtained from 

(https://www.epa.gov/). Figure 3 shows graphical illustration of the interactions water quality 

parameters involves in QUAL2kw model. The study adopted 1 D model because of the fact that the 

authors had only the longitudinal water quality data of all the four rivers. Furthermore, two-

dimensional (2-D), or three-dimensional (3-D) water quality models are more suitable for water 

bodies having higher retention times such as lakes or ponds. Therefore, the authors were not unable 

to use a 2-D or 3-D water quality models. The other feasible alternative was QUAL2K. QUAL2Kw is 

the modified form of QUAL2K which has the ability to automatically optimize the data. Furthermore, 

https://www.epa.gov/
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QUAL2K and QUAL2Kw are both renown water quality models and over the years many researchers 

have used these models for their research. 

 

Figure 3. QUAL2Kw graphical illustration of water quality parameters: o—dissolved oxygen, ap—

phytoplankton, ab—algae (bottom algae), no—nitrogen (organic), Mo—detritus, Cf—CBOD fast, Cs—

CBOD slow, Cr—inorganic carbon, nn—nitrite nitrogen, na—ammonium nitrogen, pi—inorganic 

phosphorus, and po—organic phosphorus. 

2.4. Calibration and Validation of the Model 

Calibration is essential for the consistency of the final model results to analyze water quality. The 

following steps were undertaken to calibrate the QUAL2Kw water quality models. Obtained data from 

each climatic region were simulated for a period of 2011 by repetitive tuning of reaction constants and 

environmental parameters (Tables S1–S4). The calibrated reaction constants and environmental 

parameters were used for verification of the model results. The boundary reference conditions—including 

BOD, DO, qmmonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), and total phosphorus (T-P)—were used 

along the upstream as well as downstream sections and drains. The kinetic input parameters for the model 

were extracted from the literature and other models and were then adapted to the local conditions. The 

final output comprised a combination of the optimal states of every constant adjusted. The model 

calibration and the model validation were conducted in parallel. 

2.5. Assessment of the Model Accuracy 

The accuracy of model simulation is achieved by comparing the simulated data (theoretical) 

with the corresponding observations (actual). Ten statistical rating tools were used in this study to 

evaluate the accuracy of the model [86–90]. The first statistic tool used is the mean absolute error 

(MAE), which measures the deviation among predicted results and observed values. The MAE 

formula is given as 

1

1
MAE

N

n n

n

D M
N =

= −  (2) 

The second statistic tool used is the mean square error (MSE), which estimates the mean of the 

square of variation or errors among the model predictions and measured values. 
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( )
2

1

1
MSE

N

n n

n

D M
N =

= −  (3) 

The third statistic tool used is the root mean square (RMSE), which represents the standard 

deviations of samples among measured and predicted values. The units of the RMSE are the same as 

the units of the model predictions and ground observations. 

( )
2

1

1
RMSE

N

n n

n

D M
N =

= −  (4) 

The fourth statistic tool used is the normalized root mean square error (NRMSE), which is a 

measure of the deviation among observed and predicted results. As the error lessens, the model 

prediction accuracy rises. 

( )
2

1

1 1
NRMSE

N

n n

n n

D M
N D=

= −   (5) 

The fifth statistic tool used is the mean absolute percentage error (MAPE), measures the variation 

of the modeling results in percentage 

1

1
MAPE

N
n n

n n

D M

N D=

−
=   (6) 

The sixth statistic tool used is the coefficient of determination (R2), which evaluates the relative 

deviation of simulated results from the observed data attained by the model. The expression for (R2) 

is obtained by squaring the Pearson correlation coefficient (PCC) equation as 

( )( )

( ) ( )

2

12

2 2

1 1

R

N

n n n n

n

N N

n n n n

n n

D D M M

D D M M

=

= =

 
− − 

 =

− −



 
 (7) 

The seventh statistic tool used is Nash–Sutcliffe’s model efficiency (ME), which measures the 

ratio of the model deviation from the true (measured) data [80]. 

( )

( )

2

1

2

1

ME 1

N

n n

n

N

n

n

D M

D D

=

=

−

= −

−




 (8) 

The eighth statistic tool used is the percentage model (PM) bias, which is determined by the 

summation of the difference between the normalized model error normalized from the observed data 

in order to give a measure if the model under or overestimations against the observed values. 

( )
1

1

PMbias 100

N

n n

n

N

n

n

D M

D

=

=

−

= 



 (9) 

The ninth statistic tool is the cost function (CF), which indicates the correlation, the best line of 

fit between the simulated and actual measurements. 
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1

1
CF

N
n n

n

D M

N D=

−
=   (10) 

The tenth statistic tool used is the index of agreement (IOA), which estimates the fitness of model 

prediction. IOA is a dimensionless quantity and varies between 0 and 1. As the value of IOA 

approaches closer to 1, the prediction accuracy increases. 

( )

( )

2

1

2

1

IOA 1

N

n n

n

N

n n n n

n

D M

D D M M

=

=

−

= −

− + −




 (11) 

Here, Dn is the measured data, Mn is the simulated data, N is the sum of all the matching data 

between the model and measurements, n is the nth comparison, and σD is the standard deviation of 

the measured data. 

2.6. Water Quality Index (WQI) Development 

WQI is a comparative number which mirrors the combined impacts of various water quality 

variables on the general quality of the specific water sampled. The indices simplify different 

qualifications based on the individual parameter value into a single composite value which is easier 

to use and understand. Globally, the World Health Organization (WHO) has developed WQI for 

different uses such as the WQI for drinking. Various governmental and regional authorities have 

developed their own WQI based on their priorities, levels of technology, and institutional capacities. 

There are some other WQI methods, but weighted arithmetic index also allows use of secondary data 

without conducting any field experiment and household investigations from different 

correspondents. The benefits of the weighted arithmetic mean method applied in the study are as 

follows [91–93]. 

• This technique integrates information from several water quality variables into a numerical form 

that measures the fitness of the water ecosystem with the number scale. 

• Fewer variables are needed in evaluating the overall water quality for specific use. 

• Advantageous for the report of overall water bodies health for the corresponding community 

and policymakers. 

• Mirrors the overall influence of different water quality variables that are significant for the 

management and administration of water environments. 

The main method for deriving WQI is the weighted arithmetic index (WAI) method [46,92,93]. 

The WQI was derived from the WAI method, proposed by Horton [94] and formulated by Brown 

[95]. The weighted arithmetic based WQI is derived from the following expression. 

1
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Here, k is the count of parameters, Wi is the value reflecting the unit weight of each water quality 

parameter, and Qi is the water quality rating of each variable. The unit weight of water quality 

variable is inversely proportional to the standard limits of the corresponding water quality variable. 

Qi was determined according to the formula below established by Brown [95]. 

( ) ( )100 /i i i i iQ O I P I= − −    (14) 
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where Oi indicates an observed value of each parameter, Pi is the standard allowable value of each 

variable, and Ii is the ideal value of each parameter in a clean ecosystem. With the exception of pH and 

dissolved oxygen, all the ideal values (Ii) are assumed to be zero for drinking water [96]. The sub-index 

of each water quality parameter is obtained by multiplying the Qi rating with its unit weight. Using 

another WQI Calculator available online, the results were confirmed for different geo-graphical 

locations (https://www.water-research.net). Table 1 describe the ranges and status of WQI. 

The study has used basic physiochemical parameters such as BOD, DO, pH, and NO3 as main 

indicators for WQI assessment. The adopted parameters are mostly used as water quality indicators 

in many countries and are therefore more consistently monitored. Therefore, they were selected as 

performance indicators to examine the water quality profile. Furthermore, WQI index can be 

developed with many water quality parameters based on their availability. In this study, we are 

dealing only with those parameters which are common in all streams. Since, the online WQI 

calculator does not have the total nitrogen or inorganic nitrogen, in order to compare our results with 

the online available calculator, we utilized the relevant available and common parameters. 

Table 1. Ranges and status of WQI. 

WQI Water Quality Status (WQS) 

90–100 Excellent 

70–90 Good 

50–70 Average 

25–50 Poor 

0–25 Very Poor 

3. Results and Discussion 

3.1. Model Calibration and Validation 

The performance of the QUAL2Kw model has been assessed based on the simulated and 

observed results of BOD, DO pH, and nitrogenous compound at their corresponding monitoring 

stations on each river over different climatic regions of Asia. Summaries of the calibrated and 

confirmed water quality profiles and statistical evaluations are shown in Figures 4–7 and Table 2. The 

simulated value of the model’s output showed good agreement with the observed value via different 

statistical approaches to assess the performance of the modeling tools for different climatic regions. 

To attain a solid statistical evaluation of model performance, 10 different statistical analyses were 

performed. Figure 4 shows the output profile of the validated values for BOD, DO, TN, and pH for 

the case of Yamuna River. Once the Yamuna River enters the urban region, the water quality degrades 

in terms of BOD, TN, and DO. The result indicates that the Yamuna waterway health is very poor 

according to local water quality standards. The spatial profile of the Yamuna River water quality 

concurs with the findings of previous studies [97–99]. Moreover, study included all of the possible 

inflow sources contributing to the mainstream river with their input concentrations of BOD, DO, pH, 

and other nitrogenous compounds. Previous studies have only defined the water quality based on 

BOD and DO by not considering pH and total nitrogen, which also have directly impact on the overall 

water quality [74,97,98]. 

https://www.water-research.net/
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Table 2. Statistical evaluation of calibrated and validated results for predicted and observed 

River Parameter MAE MSE RMSE NRMSE MAPE R2 ME PMB CF IOA 

Yamuna River 

Calibration 

DO 0.45 0.25 0.50 0.21 0.67 0.90 0.86 –19.36 0.11 0.95 

BOD 12.28 172.1 13.12 0.31 0.23 0.86 0.84 –25.76 0.03 0.91 

TN 3.97 22.91 4.79 0.20 0.14 0.87 0.86 17.57 0.05 0.92 

PH 0.10 0.02 0.14 0.01 0.01 0.79 0.81 –0.83 0.21 0.92 

Yamuna River 

Validation 

DO 0.48 0.27 0.52 0.222 0.715 0.96 0.92 –10.6 0.12 0.97 

BOD 13.2 185 13.6 0.335 0.251 0.93 0.90 –17.7 0.03 0.93 

TN 4.32 24.9 4.99 0.221 0.149 0.95 0.93 19.1 0.05 0.94 

PH 0.11 0.02 0.14 0.016 0.014 0.87 0.89 –0.91 0.23 0.94 

Baghmati River Calibration 

DO 0.03 0.01 0.1 0.01 1.02 0.93 0.86 –0.29 0.01 0.96 

BOD 1.40 6.14 2.48 0.05 2.46 0.90 0.92 –0.80 0.49 0.92 

TN 0.73 1.04 1.02 0.03 2.10 0.90 0.89 –0.97 0.25 0.93 

PH 0.05 0.01 0.10 0.01 0.61 0.87 0.79 –0.60 0.02 0.93 

Baghmati River Validation 

DO 0.03 0.01 0.10 0.009 1.071 0.98 0.91 –0.30 0.01 0.97 

BOD 1.49 6.53 2.56 0.057 2.612 0.96 0.98 –0.85 0.52 0.93 

TN 0.78 1.12 1.06 0.035 2.255 0.97 0.96 –1.04 0.27 0.94 

PH 0.05 0.01 0.10 0.011 0.661 0.95 0.86 –0.65 0.02 0.94 

Galing 

River Calibration 

DO 0.25 0.12 0.35 0.12 0.11 0.87 0.73 –5.89 0.32 0.90 

BOD 1.46 3.52 1.88 0.11 0.09 0.90 0.90 8.66 1.84 0.91 

TN 0.44 0.27 0.52 0.20 0.19 0.84 0.43 17.57 0.56 0.88 

PH 0.05 0.02 0.14 0.01 0.01 0.72 0.79 –0.31 0.05 0.91 

Galing 

River Validation 

DO 0.27 0.13 0.36 0.124 0.115 0.93 0.78 –6.27 0.34 0.93 

BOD 1.57 3.78 1.94 0.122 0.094 0.97 0.97 9.31 1.98 0.94 

TN 0.48 0.29 0.54 0.216 0.202 0.91 0.47 19.1 0.61 0.91 

PH 0.05 0.02 0.14 0.009 0.007 0.79 0.87 –0.34 0.06 0.94 

Nakdong River Calibration 

DO 0.21 0.13 0.26 0.06 0.02 0.86 0.88 –0.93 0.05 0.96 

BOD 0.14 0.03 0.17 0.03 0.07 0.80 0.86 –1.02 0.07 0.92 

TN 0.22 0.07 0.26 0.10 0.09 0.86 0.86 9.09 0.13 0.93 

PH 0.11 0.02 0.14 0.02 0.01 0.65 0.84 0.18 0.06 0.93 

Nakdong River Validation 

DO 0.22 0.14 0.37 0.065 0.019 0.91 0.93 –0.98 0.05 0.97 

BOD 0.15 0.03 0.17 0.033 0.072 0.85 0.91 –0.49 0.07 0.93 

TN 0.24 0.07 0.26 0.112 0.096 0.93 0.92 9.77 0.14 0.94 

PH 0.12 0.02 0.14 0.017 0.015 0.71 0.91 0.20 0.06 0.94 
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The statistical analysis in the Table 2 shows that the QUAL2Kw performed well to some extent 

for the Yamuna River in arid climatic regions. All of the simulated water quality parameters (BOD, 

DO, TN, and pH) show the lower error value of MAE, MSE, RMSE, NRMSE, and MAPE for the 

observed values using the QUAL2Kw model in the Yamuna River (Table 2). In the validation, all the 

statistical errors (MAE, MSE, RMSE, NRMSE, and MAPE) have lower values (between simulated and 

observed) for the simulated water quality parameters such as DO, BOD, TN, and pH (Table 2). 

Similarly, predictions of model have higher the Pearson correlation coefficient value with 

observations. Furthermore, statistical analysis employing ME, PMB, CF, and IOA revealed that the 

model shows better appraisal (Table 2). These statistical results comparing simulated and observed 

values showed that the model is nearly consistent in predicting the river water quality profiles. 

Overall, the simulated results reveal that the quality of Yamuna river is very bad comparative to 

World Health Organization (WHO) standards. Our results are parallel with the previous study [92], 

which applied QUAL2Kw for assessment of the Yamuna River water quality. Moreover, this study 

reveals that significant changes were observed in DO profile in the arid climatic region. An arid 

climate usually has a warm temperature and the DO level reduced rapidly due to more consumption 

by river biology and less reoxygenation [100]. 

Figure 5 shows the result of validated profiles for BOD, DO, TN, and pH for the case of Galing 

River. The study assessed that the health of the waterway is very poor in accordance with the 

National Water Quality Standards (NWQS) for Malaysia. For example, the spatial profile for BOD 

and DO varied from 10 to 22 mg/L Class II–III and 1.85–4.5 mg/L (Class V–III), respectively. The 

findings of previous studies also revealed that the quality of the waterway is very poor [78,79]. All of 

the simulated variables (BOD, DO, TN, and pH) show the lower error value of MAE, MSE, RMSE, 

NRMSE, and MAPE with observing values for the QUAL2Kw model. In the validation (Figure 5), 

statistical estimators (MAE, MSE, RMSE, NRMSE, and MAPE) has also shown lower values (among 

predicted and observed) for BOD, DO, TN, and pH (Table 2). 

  

  

Figure 4. Confirmation of water quality model results in Yamuna River (arid climatic region) for BOD, 

DO, TN, and pH. 

Figure 6 shows the results of validated profiles for BOD, DO, TN, and pH of Bagmati River. The 

validated results (Figure 6) show that the water quality profile in the initial 10 km, differ from the 

rest of the downstream profile. The downstream water is extremely polluted and does not even meet 



Int. J. Environ. Res. Public Health 2018, 15, 2258  14 of 26 

 

the marginal standard of water quality. In the upstream segments of the river, the DO level is still 

near to 6 mg/L, indicating comparatively better quality. As the water flows toward downstream, it 

becomes more polluted due to mixing with household waste discharge and cremation activities. 

Moreover, decayed flowers contribute to the pollution discharge in the stream from offerings made 

by worshippers at Pashupatinath Temple. 

  

  

Figure 5. Confirmation of water quality model results in Galing River (tropical climatic region) for 

BOD, DO, TN, and pH. 

  

  

Figure 6. Confirmation of water quality model results in Baghmati River (temperate climatic region) 

for BOD, DO, TN, and pH. 
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Furthermore, the cremation activities performed along the bank of the river contribute to the 

pollution discharge. The high value of BOD and TN concentrations for a stretch of the river from 10 to 24 

km was due to the inflow from the highly contaminated Dhobi, Tukucha, Hanumante, and Bishnumati 

kholas drains. The validated results (Figure 6) show that the QUAL2Kw model shows good agreement 

with the observed data. Statistical errors such as MAE, MSE, RMSE, NRMSE, and MAPE show the lower 

values between the predicted and observed values for pH, DO, BOD, and TN (Table 2). 

Figure 7 shows the validated longitudinal profile of Nakdong River water quality for BOD, DO, 

TN, and pH. Minor changes are apparent in the spatial variation of water quality for all water quality 

variables, despite the very long profile selected in this study of around 250 km. The water quality 

profile for DO shows that the cold climate has a comparatively higher reaeration of oxygen level than 

any other climatic regions. The smaller variation and rising of the DO profile toward downstream 

might be due to the positive effect of temperature and pressure on the actual amount of oxygen in 

the cold climatic region [100]. Furthermore, passing near urbanized regions increased the amounts of 

BOD and TN in the river but did not decline the amount of DO. Statistical error estimators such as 

MAE, MSE, RMSE, NRMSE, and MAPE show a lower value for the QUAL2Kw model between the 

predicted and observed values for pH, DO, BOD, COD, and TN (Table 2). 

  

  

Figure 7. Confirmation of water quality model results in the Nakdong River (cold climatic region) for 

BOD, DO, TN, and pH. 

3.2. Models Accuracy Assessment 

In this study, the water quality data of two different events were used. The first event data were 

used to calibrate the models by comparing the model prediction and mainstream observation values 

with statistical evaluation (Table 2) to obtain some reasonable results. The environmental parameters 

including kinetics and stoichiometric constants were adjusted to obtain the reasonable profile of river 

water quality (Tables S1–S4). Table 2 shows the goodness of fit of the calibrated models for MAE, 

MSE, RMSE, NRMSE, MAPE, PCC, ME, PM Bias, CF, and IOA. Therefore, the calibrated model’s 

parameters, including kinetics and stoichiometric constants, were applied to validate the model. 
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3.3. Assessment of Water Quality Index Using Validated Results 

For comparison purposes, in this study each length of the spatial profile was divided into an 

equal number of WQI segments. Figure 8 presents the spatial effects of the water quality 

concentration on the spatial profile of WQI. Figure 8 shows that, overall, the concentrations of BOD, 

NH3, NO3, and TN have directly influenced on the spatial profile of WQI, with the exception of DO 

concentration, which was increased. The correct level of DO concentration is desirable for a 

sustainable water ecosystem. The overall water quality spatial profile of the Yamuna River ranged 

from ‘good’ to ‘poor’, and the mean value was close to the poor water quality (Figure 9a). The WQI 

profile of Bagmati River ranged from ‘medium’ to ‘poor’, and the mean value was close to the 

medium water quality (Figure 9b). The WQI profile of Galing River was ‘medium’, and less spatial 

variation was observed for the overall WQI profile (Figure 9c). However, spatial variation was still 

observed in the fitness levels of the WQI for the case of the BOD and DO sub-indexes. 

These results indicated that the water quality of the Yamuna, Baghmati, and Galing Rivers is severely 

affected by the waste water direct discharge and climatic warming conditions [101]. Furthermore, along 

with the point and non-point source urban discharge, the concentrations of TN, DO, and BOD were also 

affected by the environmental and climatic conditions. The DO level shows a more substantial decline in 

the warm climatic region such as the arid, tropical, and temperate climates. As the water merges with the 

residential discharge, the DO is rapidly consumed in the relatively warmer climatic zones due to elevated 

oxidation process during the degradation of the organic matter [100]. This concurs with a previous study 

by Blumberg and Toro [101], which shows the climatic influences on the concentration of the DO profile 

along with other house pollution discharge. 

  
(a) (b) 

  
(c) (d) 

 

Figure 8. Spatial effect of water quality concentration on the overall water quality index (a) Yamuna 

River, (b) Baghmati River, (c) Galing River, and (d) Nakdong River. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9. Spatial profile of water quality index: (a) Yamuna River India/arid climate, (b) Baghmati 

River Nepal/temperate climate, (c) Galing River Malaysia/tropical climate, and (d) Nakdong River 

Korea/cold climate. 
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3.4. Spatial Scale Interrelationship between Water Quality Parameters and Flow Profile 

Figure 10 shows the spatial scale interrelationship among the quantity of the river flow profile 

and the concentrations of BOD and DO. Usually, a high fresh-water flow rate is considered to 

improve the concentration of DO. However, exceptions occur since the concentration of DO, BOD, 

and nitrogen also depends on the different reaction rates, which differ among the climatic zones. This 

study shows that the concentration of DO increases in the cold climatic zone with respect to the flow 

rate, while DO concentration declines in all other climate classes including the arid, temperate, and 

tropical zones with respect to the flow profile. The greater possibility of a high reoxygenation rate is 

also observed in the cold climatic zone than in the other climate regions (Figure 10d). Although the 

longest possible stretch of the Nakdong River was selected, the DO reoxygenation seems to be greater 

in the cold climatic region than in all other climatic zones. The profile of river flow stated to as quality 

versus quantity in the magnitude of longitudinal regime assessment. The concentration of river 

pollution comprises different nutrients in the water ecosystem [102]. Overall, the BOD profile trend 

is increasing in all climate classes which is due to addition of urban drain water in the river ecosystem 

(Figures 4–7). Similarly, DO rate is declining in all climatic classes except cold climatic region. From 

this finding, it can be agreed that water quality is a function of both water natural climate as well as 

anthropogenic activities [13–15]. 

  

(a) (b) 

  

(c) (d) 

Figure 10. Dissolved oxygen concentration with respect to flow profile (a) Yamuna River, (b) 

Baghmati River, (c) Galing River, and (d) Nakdong River. 

Understanding of the DO and stream temperature is very important in aquatic biochemistry for 

sustainable riverine ecosystem [103–105]. Solubility of DO is inversely proportional to the 
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temperature, therefore higher stream temperature reduces the oxygen solubility thereby depressing 

the DO. This is consistent with the observation that the instream DO in the warmer climates zone 

were lower compared to those in the cold climate zones. Best management practice for sustainable 

river water quality requires definition of the minimum DO for the survival of the moderate aquatic 

life and river ecosystem [106–109]. It is therefore important that different climate conditions, based 

on temperature variation, has to recognize the reduced solubility of DO in warmer climates as 

compared to the rivers in cold climatic zones. Hence a higher minimum DO level is required in the 

streams in the warmer climate than in those in the cold climate [106–110]. 

The solubility of DO operates on the principle of temperature effect on the kinetic energy of 

particles in a medium. Increasing temperature results in an increase of kinetic energy of the DO, 

breaking its intermolecular bonds, hence creating a tendency to escape from the liquid solvent. i.e., 

water. This study has confirmed this significance of this principle that rivers in warmer climate 

regions i.e., high surface and air temperatures, had lower DO and reaeration rates as compared to the 

river in the colder climatic zones. Since all the rivers were receiving waste effluents from urban 

discharges, the organic waste load carrying capacity of the rivers, for same flow depends on the 

resulting DO and reaeration rate. It is important for the municipal and water authorities to recognize 

the decreasing solubility of DO and increasing oxidation rate at higher temperature as a risk for the 

river in warmer climate zones [106–108,110–112]. 

Many features of water quality and quantity are systemically related. The health of a water 

ecosystem can spatially vary in importance depending on the actual quantity river flow profile, 

dilution rate, and chemical reaction constant rates in particular climatic zones. Environmental 

mechanisms are incorporated in the connection between the river flow and the health of subsequent 

water bodies. The objective of approaches such as water quality conservation (quantity and quality 

required to maintain water bodies at a safe level) is to safeguard the sustainability of the water 

environment [102]. Currently, most studies are concerned with the quantity of the flow to preserve 

the ecological health of a river [55], but do not focus on the effect of permanent climatic conditions 

which also has an influence on the sustainability of the water environment. 

3.5. Study Significance and Limitations 

This study is the first-time approach to describe the variation of surface water quality for the 

different climate classes of Asia. Previous studies by [4–11] described the effect of climate on 

individual stream water quality. However, no study has yet been conducted that describes the 

variation of water quality in different climate zones at a continental or global scale. In the current 

study, four different streams with similar characteristics in the major climatic zones of Asia were 

selected. Although the effect of anthropogenic activities on poor water quality is virtually unvarying, 

certain climatological conditions of different climate zones also deteriorate the water quality to below 

the required level for different purposes. Environmental events such as heavy rainfall and storms in 

the different climate classes lead to the extreme destruction of the embankments of streams, which in 

turn increases the concentration of nutrients in the water ecosystem. Environmental conditions can 

alter the rate of oxygenation, while deoxygenation leads to a variation in the streams’ water quality 

such as in DO, BOD, and nitrogenous constituents. According to the report by United Nations 

Environment Program [113], permanent environmental conditions in different zones may have a 

detrimental effect on river water quality, rendering the water unfit for drinking, irrigation, and other 

purposes. The major limitation of this study is the unavailability of temporally matched input data 

for model development. However, in the current study, the maximum possible matching of input 

data, at least for similar extents of year, was attempted. In addition, the current study only describes 

the spatial variation in the water quality profile. Furthermore, each climate zone has many streams. 

However, the study only considered rivers with the maximum possible environmental 

characteristics, enabling each stream to represent the main stream in each climate zone. 
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4. Conclusions 

In the current study, the QUAL2Kw model is used to assess the water quality profile of selected 

streams in different climate zones of Asia. Different statistical analyses such as mean MAE, MSE, 

RMSE, NRMSE, MAPE, PCC, ME, PMB, CF, and IOA were applied to assess the performance of the 

model’s predictions. Furthermore, using validated results of each stream, spatial profile of the WQI 

index was developed. The overall WQI of Yamuna River was poor water quality. While Galing and 

Baghmati Rivers show medium water quality considering the WQI, the longest possible profile of the 

Nakdong River in the cold climate region showed no spatial variation in the overall status of the 

water quality index. The spatial profile of the WQI will lead to assist the decision-making process for 

the management of the water quality of water ecosystems. While Galing and Baghmati Rivers show 

medium water quality considering the WQI, the longest possible profile of the Nakdong River in the 

cold climate region showed no spatial variation of water quality. 

All climatic streams, except Nakdong River (cold climatic stream), show a decline in DO as the 

water moves toward downstream areas. The cold climatic stream of Nakdong River shows an 

increase in DO, demonstrating high reoxygenation rates. The reach wise development of WQI using the 

best fit model can facilitate decision-making and could easily be implemented in other streams and lakes 

with similar characteristics in different climatological regions. Thus, surface water quality models such as 

QUAL2Kw used to assist WQI assessment offer a useful tool to efficiently predict the influences of 

contamination on stream water quality. The profile-based WQI assessment will be a valuable tool in an 

emerging management policy for improving water quality, rendering it easier for decision-makers to 

appraise different water quality management tactics. Furthermore, this research can be improved by 

conducting this study on other streams having similar characteristics and compare the results of this 

research. Moreover, the assessment of more than one river in each climate class having similar hydraulic 

and environmental characteristics will improve the overall findings of this study. 

By comparing numerical results with analytical results will improve the overall soundness of 

this study. Using more than one stream from each climate class for assessment of regional climatic 

impact will provide a new direction in the sustainable management and assessment of regional 

ecology. Furthermore, in most of the cases, only anthropogenic activities on water quality are 

considered but the regional climatic impact has been ignored. The anthropogenic activities coupled 

with regional climatic impact will broaden the interaction of water quality variation with changing 

the environment, globally. The results of the present study can be useful in the monitoring and 

control of river water quality in different climate patterns. The outcomes obtained in this study will 

facilitate the development of a strategy for the viable improvement of sustainable water 

environments. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Calibrated 

parameters for the QUAL2Kw model over Yamuna River in the arid climate region, Table S2: Calibrated 

parameters for the QUAL2Kw model over Baghmati River in the temperate climate region, Table S3: Calibrated 

parameters for the QUAL2Kw model over Galing River in the tropical climate region, Table S4: Calibrated 

parameters for the QUAL2Kw model over Nakdong River in the cold climate region. 
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