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Abstract: Due to their simple layout and adaptability to various environments, straw checkerboards
are widely used to control windblown sand in China. To fully understand the wind proofing and
sand-fixing benefits of different board specifications, and to determine the restorative effects of straw
checkerboard, we tested different sizes of checkerboard, determined their performance as a windbreak
and in trapping shifting sand, and constructed models based on wind tunnel tests, enabling the wind
speed flow field to be analysed. We also sampled the soil in areas where straw checkerboards had
been established for several years and analysed the trends in soil physical and chemical properties
over time. We found that all sizes of straw checkerboard effectively reduced the wind speed near the
surface and formed a protected area, with the best protective effect achieved for a one-meter board.
All sizes of straw checkerboard effectively intercepted windblown sand to form surface accumulation,
with the one-meter board again showing the best performance. The use of a straw checkerboard also
effectively improved the physical and chemical properties of soil and promoted ecological restoration.
These results indicate that straw checkerboards are a low-cost engineering measure that could play
an important role in desertification control and the ecological restoration of sandy land ecosystems.

Keywords: straw checkerboard; wind velocity flow field; surface erosion; soil physical and chemical
properties; vegetation restoration

1. Introduction

According to China’s desertification and sandy status bulletin, China’s desert area in 2014
was 261.16 million km2, accounting for 27.20% of the total land area. The sandy land area was
172.12 million km2, accounting for 17.93% of the total land area [1], with wind erosion being the main
process responsible for soil degradation and desertification [2,3]. Straw from wheat, rice, and other
plants is placed in the shape of a checkerboard, with one half buried in the sand and the other half
exposed (Figure 1), typically to a height of about 20 cm. Straw checkerboards form squares of various
sizes, with sides of 1.0, 2.0, or 3.0 m. Due to their low cost, ease of use, and convenient and effective
features, straw checkerboards have been widely used in desertification prevention and windblown
sand control in China [4]. Straw checkerboards were first used in the northwest windy sand area
and have become one of the most widely-used and well-applied engineering measures to control soil
erosion throughout the country [5]. In addition, straw checkerboards have played an important role in
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the construction of railways, pipelines, expressways, and power transmission lines [6], and their use
has been extended to Africa, Eastern Asia, and Mongolia [7].
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Figure 1. Semi-buried straw checkerboard.

The existing research on the protective principle of straw checkerboards is thorough. A straw
checkerboard prevents sand from being suspended and transported by the wind, changes the structure
of the wind flow by increasing the surface roughness and threshold wind speed, and reduces the
near surface wind speed [8,9]. Some studies analysed the roughness, sediment transport, and other
indicators, and measured the wind speed profile to illustrate the effect of a windbreak [5,10] enabling
the creation of a simple model [11]. Other studies used wind tunnel simulation experiments to
investigate single sand-barrier grids and to propose appropriate structural characteristics [12]. Some
researchers analysed the effects of sand barriers on the environment, including changes in the soil
water content on the windward slopes of sand dunes in different locations [13], and changes in soil
particle size after the placement of straw checkerboards over long time scales [14].

The use of sand barriers is based on the similarity between wind tunnel tests and computer-based
numerical simulations of aerodynamic conditions [11,15], with few field experiments having been
conducted. The main objective of such experiments has been to assess wind parameters, with less
focus on surface erosion. The influence of straw checkerboards on the ecological restoration of sandy
land has mostly been assessed based on long-term studies, or by measuring basic soil data over a short
period [13,16]. No single time scale explains soil changes and community succession. As such, the aims
of this study were to combine field experiments with wind tunnel experiments to analyse the wind
flow field of a cross-section and longitudinal section of a straw checkerboard grid; analyse the sediment
accumulation in a straw checkerboard grid, based on the premise of two-phase flow and by conducting
a quantitative analysis of sediment volume; and observe the changes in soil physical and chemical
properties and microbial activity and to clarify the process of ecological restoration after placing a straw
checkerboard in the field. Another aim of this research was to reach a comprehensive understanding of
the capacity of straw checkerboards to protect and transform the ecological environment in sandy areas.
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2. Materials and Methods

2.1. Site Description

This study was divided into field observation and wind tunnel simulation experiments. The field
site was located at the Yanchi Research Station (37◦42′31′′ N, 107◦13′45′′ E, 1530 m a.s.l.), Ningxia
Province, Northern China. The station is located at the southern edge of the Mu Us desert in the
transitional area between the arid and semi-arid climatic zones. The annual average temperature is
8.1 ◦C. The annual rainfall is 287 mm, with large interannual variations (133–572 mm·yr−1), which is
far less than the annual evaporation of 2024 mm, and 80% of the rainfall is concentrated in the period
of June to September. The soil is sandy, with a bulk density of 1.54 ± 0.08 g·cm−3 (mean ± SD) in the
upper 10 cm of the soil profile, and the soil pH is 8.42 ± 1.4 (mean ± SD). Some areas have been sown
by air to promote ecological restoration, with the main vegetation currently consisting of shrubs such
as Artemisia ordosica and Hedysarum mongolicum.

The wind tunnel system of Beijing Forestry University is located at the Mount Jiu Sand Physics
Laboratory in Beijing. The wind tunnel consists of two sections: the wind tunnel body and the
monitoring system. The total length of the tunnel body is 24 m, of which the test section is 12 m,
the cross-sectional area is 0.6 × 0.6 m, and the wind speed range is continuously adjustable from
3 to 40 m·s−1. The monitoring system consists of a power system, three-dimensional displacement
measuring system, hot film anemometer (IFA300, TSI, Shoreview, MN, USA), and a hotline anemometer
(KIMO, Montpon Ménestérol, France). In the three-dimensional displacement measuring system,
the position of the anemometer probe can be adjusted with a precision of 1 mm. The hot film anemometer
was used to adjust the roughness element and measure the wind velocity profile. The wind speed flow
field was measured by the KIMO hot line anemometer.

2.2. Experimental Design and Data Collection

To determine the windbreaking efficiency and sand-fixing capacity of straw checkerboards, square
grids with sides of 1, 2, and 3 m were laid out separately in a field of shifting sand. The sand barrier
height was 20 cm. The different sides of the sand barrier were arranged in 10 rows and 5 columns, and
in the middle column, a three-cup anemometer (Onset, Bourne, MA, USA) and HoBo weather station
(Onset, Bourne, MA, USA) were set up. The measurement heights were 20 cm and 1 m (Figure 2).
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2.2.1. Surface Roughness

To analyse the effect of straw checkerboards on the near surface wind speed, we selected
a roughness that reflected the characteristics of the underlying surface. Surface roughness is
an important indicator of the effectiveness of sand control [17,18]. In near-surface airflow, due to the
resistance of the rough surface, the wind speed increases with height. Close to the surface, there is
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a location where the wind speed is equal to the resistance. At this altitude the wind velocity is zero.
The height at which velocity is extrapolated to zero is a measure of surface roughness [19]. In practice,
it is difficult to measure the surface roughness directly, and an indirect method is usually used for its
derivation [20]. According to the distribution of wind speed with altitude, when the near-surface air
flow is neutral in the atmosphere [21]:

V = 5.75×VF × lg
(

H
Z0

)
(1)

where V is wind speed at height H (m s−1), VF is the frictional flow rate (m s−1), and Z0 is the surface
roughness (m).

The roughness formula is as follows:

lgZ0 =
lgZ2−AlgZ1

1−A

A = V2
V1

(2)

where V1 (m·s−1) is the speed at the height of Z1, and V2 (m·s−1) is the speed at the height of Z2 at the
same time.

From Equation (2), we calculated the roughness by measuring the wind speed corresponding to
any two heights. In this study, we selected the heights of 0.2 and 1 m.

2.2.2. Wind Speed Flow Field

To analyse the wind speed distribution in the straw checkerboard grid, we constructed a model
with lengths of 10, 20, and 30 cm, while maintaining a ratio of 1:10 between the wind tunnel model
and the actual checkerboard in the field. According to the wind speed gradient, we set the wind speed
to 5, 8, or 11 m·s−1.

The longitudinal flow field was measured at the center line in the middle of a column in a grid.
The distance between the measuring point and the gridline was 1 cm, the minimum height of the
measurement point was 1 cm, the highest point was 10 cm, the adjacent measurement points were
1 cm away, and 90 measurement points were taken in each grid. Measurements were recorded along
the wind direction from the first grid until the wind speed reached a stable level and a plane flow-field
measurement point was then set on the next grid. The measurement point of the plane-flow field had
a height of 1 cm, with a distance between the measurement point and the gridline of 1 cm, and the
distance between the adjacent points also 1 cm, as shown in Figure 2. The wind speed flow field was
interpolated through a simulation using Golden surfer 12.0 software (Surfer, Golden, CO, USA).

2.2.3. Surface Erosion

To determine the erosional condition of the surface in the field after laying a straw checkerboard
and to study the extent of sand fixation, we placed graduated bamboo measurement poles in the sand
barrier grid at points where the wind speed was stable. The diameter of each pole was 3 mm and
the length was 50 cm. Each pole was inserted 20 cm into the ground with the upper part of the pole
protruding 30 cm out of the ground. Each side of the straw checkerboard was equally divided into
10 units, and the grid was divided into 100 small squares, with all vertexes being measurement points
(Figure 3). After each wind event, the scale on the measuring pole was recorded. When a stable surface
formed following erosion, the final change in surface height according to the scale on the bamboo pole
was recorded and a computer was used to produce a three-dimensional (3D) topographic map. Surface
erosion conditions were simulated using Golden software surfer 12.0 (Surfer, Golden, CO, USA).
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2.3. Soil Sampling and Sample Survey

To study the influence of the straw checkerboard barriers on ecological restoration after their
deployment, we conducted a long-term study of the sandy land management in this area over a period
of many years. We arranged 1 m straw checkerboards in 2006, 2011, 2015, and 2016. Soil samples were
taken from the four plots and bare sand was used as a control. The depth of soil sampling was 40 cm,
with each 10 cm being sampled as a separate layer. Simultaneously, three 2 × 2 m areas were randomly
assigned to observe the vegetation type and coverage.

Soil particle size was measured by a laser particle size analyser (Ankersmid, Nijverdal, The
Netherlands), using sodium hexametaphosphate as a dispersant. We used a sodium hydroxide
absorption titration method to determine the degree of soil carbon mineralisation [22] and a commercial
pH meter (LeiCi, Shanghai, China) to determine soil pH. Soil total nitrogen and total phosphorus were
determined using an automatic chemical analyser (LI-COR, Lincoln, NE, USA), and soil organic matter
was determined using a potassium dichromate dilution heat method [23]. The soil moisture content
was determined using the drying method at 105 ◦C [23].

2.4. Statistical Analysis

One-way analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) post-hoc
tests were used to examine differences in roughness at different levels of wind velocity, pH, clay, silt,
sand, soil water, total nitrogen, total phosphorus, organic matter, and the mineralisation rate of each
soil depth among years. Statistical significance was determined at a level of p < 0.05. All statistical
analyses were performed using SPSS software (ver. 19.0; SPSS Inc., Chicago, IL, USA).

3. Results

3.1. Windproofing Efficiency

3.1.1. Surface Roughness

The surface roughness of bare sandy land increased with wind speed (Table 1): the higher
the wind speed, the faster the increase in roughness. When the wind speed increased from 5 to
8 m·s−1, the roughness increased by 24.9%, and when the wind speed increased from 8 to 11 m·s−1,
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the roughness increased by 88%. The surface roughness within the straw checkerboard showed the
opposite trend, decreasing when the wind speed increased from 5 to 11 m·s−1 and roughness was
much greater than for bare sand. The roughness of a one-meter-long straw checkerboard was 46.2,
25.1, and 13.7 times greater than that of the bare sandy land under the three tested wind speeds
of 5, 8, and 11 m·s−1, respectively. The roughness values of the two- and three-meter-long straw
checkerboards were 45.1, 24.4, and 8.7, and 17.2, 18.9, and 4.8 times those of the bare sandy land
under the three different wind speeds, respectively. When the wind speeds were 5 and 8 m·s−1,
the difference in roughness between the one- and two-meter-long straw checkerboards was small.
When the wind speed increased to 11 m·s−1, the roughness of the 1one-meter-long straw checkerboard
was significantly higher than that of the two-meter-long grass squares. The roughness value of the
one- and two-meter-long grass squares was significantly higher than that of the three-meter-long grass
square under the different wind speeds.

Table 1. Roughness of straw checkerboards of different side lengths (cm).

Velocity
Side Length

Bare Sand
1 m 2 m 3 m

5 m·s−1 0.0998 ± 0.00152a 0.0974 ± 0.00187a 0.0372 ± 0.00212a 0.0022 ± 0.00021a
8 m·s−1 0.0678 ± 0.00144b 0.0659 ± 0.00154b 0.0510 ± 0.00186b 0.0027 ± 0.00015a

11 m·s−1 0.0694 ± 0.00164b 0.0439 ± 0.00104c 0.0243 ± 0.00216c 0.0051 ± 0.00026b

Letters a b and c represent significant differences (p < 0.05) among wind speeds. Data represent means ± SD.

3.1.2. Wind Flow Field

The airflow velocity distribution across the different sizes of straw checkerboard is shown in
Figure 4. The positive coordinate on the horizontal axis represents the leeward side of the straw
checkerboard and the negative coordinate indicates the windward side of the straw checkerboard.
The gap between adjacent contour lines is 0.2 m·s−1. The wind speed, before it reached the sand
barrier, had a certain functional relationship with height, with a positive correlation between wind
speed and height. The wind velocity profile was altered as it passed over the sand barrier, but it still
displayed changes with height. The airflow uplifted when it encountered the sand barriers, and the
wind speed within the straw checkerboard reduced, but it increased sharply above the sand barrier.
In the 10-cm-long straw checkerboard, the wind speed fluctuated substantially over the height range
of 0–5 cm. The wind speed clearly decreased near the sand barrier at a height of 0–2 cm, while in
the height range of 2–5 cm, the wind speed increased sharply. In the height range of 5–10 cm, little
change in wind speed occurred, with values being higher than the original wind speed, indicating
that the airflow was stable in this area, and that the wind speed did not change with height. The wind
speed distribution over a 20-cm-long straw checkerboard was similar to the wind speed distribution
over a 10-cm barrier. The wind speed behind the barrier was lower than the original wind speed
over the height range of 0–2 cm. Over the height range of 2–5 cm, the wind speed was affected by
an upwelling airflow when it passed through the sand barrier, and the original wind speed was then
restored. The wind speed also accelerated in the height range of 5–10 cm after it passed over the sand
barrier, and the air flow became relatively stable. In this region, the wind speed was higher than the
original value. The wind speed in the height range of 0–2 cm over the 30 cm straw checkerboard
decreased after it passed through the sand barrier and then remained relatively stable. In the height
range of 2–10 cm, the wind speed increased with the upwelling air flow through the sand barrier, and
then decreased to the original value.
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Figure 4. Longitudinal section of the rate of wind speed acceleration of straw checkerboard.

The wind speed gradually reached a steady state after passing over the straw checkerboard.
Figure 5 shows the numerical values of the wind speed after passing over straw checkerboards with
different specifications under different wind speed conditions 5. The figure demonstrates that when the
airflow passed through the grid, a retardation zone formed behind any obstacle, where the wind speed
decreased sharply. Subsequently, the wind speed in the middle of the grid gradually increased, and
then decreased slightly before the end of the grid. It eventually formed a low velocity area- acceleration
zone-deceleration zone energy structure. On the same side of the straw checkerboard under different
wind speed conditions, the distribution of the flow-field structure was significantly similar. In the
10-cm-long straw checkerboard, a vortex deceleration zone formed on both sides in the first 3 cm,
and two areas of acceleration formed in the following 3–10 cm. The wind speed in the middle of the
grid, i.e., 3–5 cm from the side, continuously increased, and remained in a relatively stable state in
the following 5–10 cm. With increasing wind speed, the range and structure of the different energy
zones were basically the same. In the 20-cm-long straw checkerboard, three areas of weak wind speed
formed on the upwind side of the grid. Two wind shadow zones formed on either side, with one
located within 0–5 cm of the windward side. On the other side, the wind shadow area was larger,
occupying the area of 0–10 cm. The sparsity of contours in the area beyond this zone of low wind
speed indicated that the wind velocity fluctuation in this area was small and the airflow was relatively
stable. The extent of the zone of low wind speed decreased with increasing wind speed, and the
corresponding area of steady flow energy increased accordingly. In the 30-cm-long straw checkerboard,
an obvious deceleration zone formed on both sides of the windward side, and the deceleration zone
was extensive, occupying half of the whole grid along the wind direction. The low wind speed region
on the leeward side of the grid was relatively small, and a relatively stable flow-field distribution was
maintained. As the wind speed increased, the structural differences between the low-speed energy
region and the steady flow region were small.
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3.2. Surface Erosion and Accumulation

Figure 6 shows that the amount of sediment in the straw checkerboard was positive, indicating
that the research area was not a source of sand, and the sand barrier had a protective effect as
a windbreak that encouraged sand fixation. The sand in the one-meter-long straw checkerboard was
more uniform than in the other grids, and the amount of accumulated sediment was greater, with
a fuller shape. The surface formed as a convex shape. In the two-meter-long straw checkerboard, there
was a large amount of sand in the upwind direction and less in the downwind direction. The most
serious erosion occurred in the middle of the grid and an undercutting phenomenon was not obvious.
The three-meter straw checkerboard accumulated less sand than the other checkerboards, with the
distribution of sand grains being similar to that of the two-meter-long straw checkerboard, forming
a concave shape with more sand on both sides than in the middle. The distribution of sediment in
the straw checkerboard had a strong relationship with the wind velocity and structure of the flow
field, with the sediment concentration being higher in low-speed areas. The sediment concentration at
each point in the vertical wind direction was relatively consistent, indicating that the sides of the sand
barrier minimally influenced the sediment yield.

Int. J. Environ. Res. Public Health 2018, 15, x  10 of 17 

 

3.2. Surface Erosion and Accumulation 

Figure 6 shows that the amount of sediment in the straw checkerboard was positive, indicating 

that the research area was not a source of sand, and the sand barrier had a protective effect as a 

windbreak that encouraged sand fixation. The sand in the one-meter-long straw checkerboard was 

more uniform than in the other grids, and the amount of accumulated sediment was greater, with a 

fuller shape. The surface formed as a convex shape. In the two-meter-long straw checkerboard, there 

was a large amount of sand in the upwind direction and less in the downwind direction. The most 

serious erosion occurred in the middle of the grid and an undercutting phenomenon was not 

obvious. The three-meter straw checkerboard accumulated less sand than the other checkerboards, 

with the distribution of sand grains being similar to that of the two-meter-long straw checkerboard, 

forming a concave shape with more sand on both sides than in the middle. The distribution of 

sediment in the straw checkerboard had a strong relationship with the wind velocity and structure 

of the flow field, with the sediment concentration being higher in low-speed areas. The sediment 

concentration at each point in the vertical wind direction was relatively consistent, indicating that 

the sides of the sand barrier minimally influenced the sediment yield. 

 
(a) 

 
(b) 

Wind 

Wind 

Figure 6. Cont.



Int. J. Environ. Res. Public Health 2018, 15, 2184 11 of 17

Int. J. Environ. Res. Public Health 2018, 15, x 11 of 17 

 

 
(c) 

 

Figure 6. Surface erosion and sediment deposition in checkerboards with different lengths. (a) 1m, (b) 
2m, (c) 3m. 

3.3. Ecological Restoration of Sandy Land 

3.3.1. Changes in Soil Physical and Chemical Properties 

It can be seen from Table 2 that the soil pH in straw checkerboard plots, established in different 
years, was largely stable over time. The pH of soil layers changed little over time, with all soil layers 
being weakly alkaline. The soil particle size changed substantially over time. The clay and silt 
content in soil after 10 years increased from 0.273 ± 0.015% and 4.66 ± 0.29% to 0.683 ± 0.028%, 9.243 ± 
0.39%, respectively, while the gravel content in bare sandy land decreased from 95.608 ± 1.97% to 90.075 
± 1.338%. The variation in soil particle size in the different soil layers was similar, although the range 
in changes in the first five years of the study period was much larger than that in the final five years, 
representing more than 70% of the total variation. The soil moisture content increased over time 
after the straw checkerboards were placed in the field, with an increase from 2.621 ± 0.274% to 3.863 
± 0.072% after 10 years, and an overall growth rate of 147.4%. The water content of the 0–10-cm soil 
layer increased after the sand barrier had been in place for one year, accounting for 58.1% of the total 
increase over the whole study period. The increase in the soil moisture content in the 10–20-cm layer 
accounted for half of the total increase. Five years after the straw checkerboard was established, 
more than three-quarters of the total increase in soil moisture content occurred in the deeper soil 
layers. The changes in soil particle size and soil water content indicated that the overall physical 
properties of the soils were significantly improved after straw checkerboards were implemented, 
providing a good environment for vegetation community construction and ecological restoration. 
 

Wind 

Figure 6. Surface erosion and sediment deposition in checkerboards with different lengths. (a) 1 m,
(b) 2 m, (c) 3 m.

3.3. Ecological Restoration of Sandy Land

3.3.1. Changes in Soil Physical and Chemical Properties

It can be seen from Table 2 that the soil pH in straw checkerboard plots, established in different
years, was largely stable over time. The pH of soil layers changed little over time, with all soil layers
being weakly alkaline. The soil particle size changed substantially over time. The clay and silt content
in soil after 10 years increased from 0.273 ± 0.015% and 4.66 ± 0.29% to 0.683 ± 0.028%, 9.243 ± 0.39%,
respectively, while the gravel content in bare sandy land decreased from 95.608 ± 1.97% to 90.075 ±
1.338%. The variation in soil particle size in the different soil layers was similar, although the range
in changes in the first five years of the study period was much larger than that in the final five years,
representing more than 70% of the total variation. The soil moisture content increased over time after
the straw checkerboards were placed in the field, with an increase from 2.621 ± 0.274% to 3.863 ±
0.072% after 10 years, and an overall growth rate of 147.4%. The water content of the 0–10-cm soil
layer increased after the sand barrier had been in place for one year, accounting for 58.1% of the total
increase over the whole study period. The increase in the soil moisture content in the 10–20-cm layer
accounted for half of the total increase. Five years after the straw checkerboard was established, more
than three-quarters of the total increase in soil moisture content occurred in the deeper soil layers.
The changes in soil particle size and soil water content indicated that the overall physical properties of
the soils were significantly improved after straw checkerboards were implemented, providing a good
environment for vegetation community construction and ecological restoration.

The total nitrogen content of the soil increased 1.7-fold from 0.474 to 0.806g·kg−1 over the 10 years
that the straw checkerboard was in place, with 81.6% of the total increase occurring in the first five
years (Table 2). The total nitrogen content of the 0–10-cm soil layer increased rapidly in the first five
years, but clearly decreased by the end of the 10th year. The total nitrogen content in the 10–30-cm soil
layer was basically stable in the first five years, while a large increase was recorded in the last five years.
The total nitrogen content in the 30–40-cm soil layer remained basically unchanged. As the soil depth
increased, the total nitrogen content first increased and then decreased, with the total nitrogen content
of deep soil layers being even lower than that of the surface sediment in bare sandy soil. Following
deposition from the atmosphere, nitrogen accumulates on the surface, whereas the straw checkerboard
intercepts windblown sand so that the surface is lifted and part of the nitrogen is leached into the soil.
The total phosphorus content of the soil remained stable over the 10 years. The soil organic matter
content increased over time, and was significantly higher in surface soil than in the deep soil layers.
The establishment of a straw checkerboard significantly increased the soil total nitrogen, and organic
matter content increased, contributing to the survival of microbial communities and the improvement
of soil conditions.



Int. J. Environ. Res. Public Health 2018, 15, 2184 12 of 17

Table 2. Physical and chemical properties of soil layers in the years after a straw checkerboard was established.

Depth
(cm) Years pH

Clay
(<2 µm)

(%)

Silt
(2–50 µm)

(%)

Sand
(50–2000 µm)

(%)

Soil Water
Content

(%)

Total
Nitrogen
(g·kg−1)

Total
Phosphorus

(g·kg−1)

Organic
Matter

(g·kg−1)

Mineralisation
Rate

(mg·(kg·d)−1)

0–10

0 8.055 ± 0.04a 0.31 ± 0.01a 5.30 ± 0.32a 94.39 ± 1.89a 2.545 ± 0.078a 0.086 ± 0.006a 0.014 ± 0.004a 0.21 ± 0.07a 15.74 ± 1.42a
1 7.990 ± 0.01a 0.53 ± 0.02b 5.47 ± 0.41a 94.00 ± 1.53a 3.228 ± 0.052b 0.064 ± 0.003a 0.013 ± 0.003a 0.26 ± 0.04a 31.85 ± 0.73b
2 7.870 ± 0.03a 0.66 ± 0.04b,c 6.52 ± 0.37b 92.82 ± 1.53b 3.324 ± 0.085b 0.128 ± 0.007b 0.035 ± 0.002b 0.54 ± 0.11b 31.79 ± 0.47b
5 7.945 ± 0.05a 0.73 ± 0.04c 8.36 ± 0.43c 90.91 ± 1.28c 3.356 ± 0.056b 0.261 ± 0.008c 0.048 ± 0.004b 1.18 ± 0.23c 37.41 ± 1.04c

10 7.955 ± 0.01a 0.79 ± 0.02c 9.42 ± 0.42c 89.79 ± 1.37c 3.721 ± 0.054c 0.105 ± 0.005c 0.031 ± 0.002b 3.32 ± 0.31d 40.09 ± 0.71c

10–20

0 8.195 ± 0.04a 0.27 ± 0.02a 4.68 ± 0.28a 95.05 ± 2.03a 3.629 ± 0.085a 0.135 ± 0.008a 0.020 ± 0.006a 0.19 ± 0.06a 15.68 ± 1.33a
1 8.050 ± 0.01a 0.51 ± 0.01b 5.20 ± 0.38b 94.29 ± 1.68a 3.76 ± 0.0690a 0.174 ± 0.007a 0.053 ± 0.004b 0.2 ± 0.05a 29.27 ± 1.29b
2 7.990 ± 0.01a 0.62 ± 0.03c 6.44 ± 0.35c 92.94 ± 1.47b 3.647 ± 0.074a 0.111 ± 0.006a 0.056 ± 0.006b 0.42 ± 0.07b 29.53 ± 0.43b
5 8.085 ± 0.01a 0.71 ± 0.02d 8.25 ± 0.46d 91.04 ± 1.46c 4.102 ± 0.076b 0.144 ± 0.007a 0.037 ± 0.003c 0.93 ± 0.19c 33.27 ± 0.92b

10 8.090 ± 0.01a 0.71 ± 0.04d 9.37 ± 0.38e 89.92 ± 1.29c 4.565 ± 0.072b 0.259 ± 0.009b 0.031 ± 0.003c 2.14 ± 0.25d 34.53 ± 0.52b

20–30

0 8.145 ± 0.02a 0.28 ± 0.01a 4.43 ± 0.31a 95.29 ± 2.2a 2.226 ± 0.063a 0.197 ± 0.008a 0.044 ± 0.006a 0.16 ± 0.05a 16.47 ± 1.25a
1 8.070 ± 0.01a 0.46 ± 0.02b 4.90 ± 0.32a 94.64 ± 1.71b 2.366 ± 0.074a 0.068 ± 0.002b 0.031 ± 0.002a 0.17 ± 0.04a 29.68 ± 1.08b
2 8.015 ± 0.01a 0.59 ± 0.02c 6.37 ± 0.41b 93.04 ± 1.52c 2.623 ± 0.045b 0.156 ± 0.008a 0.062 ± 0.006b 0.26 ± 0.05b 30.29 ± 0.19b
5 8.115 ± 0.02a 0.65 ± 0.03d 8.17 ± 0.39c 91.18 ± 1.55d 3.589 ± 0.069c 0.204 ± 0.008b 0.035 ± 0.004a 0.42 ± 0.12c 30.38 ± 0.48b

10 8.105 ± 0.01a 0.68 ± 0.03d 9.25 ± 0.35d 90.07 ± 1.26d 4.075 ± 0.077d 0.314 ± 0.009c 0.023 ± 0.002c 1.33 ± 0.18d 30.86 ± 0.64b

30–40

0 8.185 ± 0.02a 0.23 ± 0.02a 4.23 ± 0.25a 95.54 ± 1.74a 2.085 ± 0.048a 0.056 ± 0.003a 0.031 ± 0.005a 0.17 ± 0.07a 14.28 ± 0.42a
1 8.030 ± 0.07a 0.42 ± 0.02b 4.68 ± 0.32a 94.90 ± 1.65a 2.235 ± 0.063a 0.112 ± 0.005b 0.019 ± 0.001a 0.17 ± 0.04a 29.08 ± 0.84b
2 8.120 ± 0.06a 0.54 ± 0.03bc 6.17 ± 0.28b 93.29 ± 1.33b 2.335 ± 0.044a 0.193 ± 0.006c 0.037 ± 0.005a 0.24 ± 0.06b 31.48 ± 0.79b
5 8.170 ± 0.04a 0.62 ± 0.02c 8.02 ± 0.35c 91.36 ± 1.48c 2.945 ± 0.066b 0.136 ± 0.007b 0.035 ± 0.004a 0.44 ± 0.08c 29.18 ± 1.28b

10 8.185 ± 0.01a 0.55 ± 0.02c 8.93 ± 0.41c 90.52 ± 1.43c 3.089 ± 0.083b 0.128 ± 0.005b 0.013 ± 0.002b 1.16 ± 0.14d 30.71 ± 1.45b

Letters a, b and c represent significant differences (p < 0.05) in interannual variation. Data are means ± SD.
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Soil carbon mineralisation is a general term that refers to the transformation of organic carbon
into inorganic carbon in soil under the action of microorganisms. Soil carbon mineralisation is used to
characterise the activity of soil microbial communities. The rate of soil carbon mineralisation clearly
improved after the straw checkerboard was established for one year but slowed considerably after
nine years (Table 2). At the end of the 10-year study period, there had been a 2.19-fold increase
from 62.17 ± 1.11 mg (kg·d)−1 to 136.19 ± 0.83 mg (kg·d)−1. From the beginning of the second year,
the surface soil carbon mineralisation capacity continued to increase, and the carbon mineralisation
capacity of the 0–10-cm layer after 10 years was 2.55-fold greater than that of bare sand. The rate of
soil carbon mineralisation in the deep soil layers was basically unchanged. The improvement in soil
carbon mineralisation indicated that microbial activity was stronger and reflected an increase in the
soil organic matter content.

3.3.2. Vegetation Restoration

The ability of a straw checkerboard to restore ecosystems depends on its potential to improve the
near-surface conditions and create a suitable environment for the restoration of vegetation. A pioneer
herbaceous species, Agriophyllum squarrosum, became established after the straw checkerboard was
placed in the field. The number of herbaceous plants increased after two years and their coverage also
increased. Another pioneer herbaceous plant also established itself. After five years, the population of
A. squarrosum declined and the number of Corispermum hyssopifolium plants increased sharply to form
a stable population structure. Several shrubs of A. ordosica also appeared. After 10 years, the pioneer
herbs disappeared, and a stable population of the shrub A. ordosica. formed. The total vegetation
coverage reached 59.83 ± 1.437%. From the perspective of vegetation recovery, the use of a straw
checkerboard played an important role in ecological restoration.

4. Discussion

4.1. Influence of Straw Checkerboard on Wind Speed

Figure 5 shows that the airflow was blocked after passing through the checkerboard, forming
a wind shadow in the upwind direction. Thereafter, wind speed gradually increased in the middle
of the grid. In the downwind direction, airflow was then blocked by the checkerboard and wind
speed again decreased, following a decrease-increase-decrease structure. Dong et al. [12] obtained
similar results and classified these three regions as eddy current deceleration, recovery acceleration,
and blocking deceleration, respectively. In order to achieve better protection, it is necessary to expand
the proportion of the deceleration area and reduce the proportion of the acceleration area as much as
possible. Since the deceleration zone is mainly caused by the physical obstruction of the checkerboard,
reducing the length of the mesh increases airflow blockage so that the area of the deceleration zone is
enlarged. This phenomenon also explains why the one-meter-long straw checkerboard had the best
wind proofing effect.

4.2. Influence of the Straw Checkerboard on Sediment

Many studies have shown that when an air flow passes through a sand barrier, the pressure
difference caused by the blockage and the flow around the barrier can cause eddy currents, which
erode the surface sand and undercut the surface layer [16,24–26]. However, we did not observe this
phenomenon in our study. In all the studies where the undercut phenomenon was observed, a fixed
sand barrier was used, which only an aboveground section [27,28]. For such barriers, part of the air
flow passes through the gap between the sand barrier and the ground surface to form a narrow tube
effect, accelerate the airflow, and cause erosion. The embedded straw checkerboard can protect the
surface sand from erosion and avoid the undercut erosion phenomenon.

Generally, sand accumulating in the checkerboard forms a concave curved surface, as shown
in Figure 6 for the straw checkerboards with side lengths of two and three meters. With a wind
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speed of 4.1 m·s−1, more sand accumulates in the deceleration area and less in the acceleration area.
The sand carrying capacity of sand-driving wind is related to wind speed, such that when wind speed
decreases, the sand carrying capacity of the sand-driving wind reduces, causing the sand to precipitate
and deposit. In contrast, when wind speed accelerates, it blows along the sand surface, picking up
and carrying sand. More sand accumulated in the grid of the one-meter-long straw checkerboard,
and no concave surface formed. This occurred because the one-meter-long straw checkerboard had
better sand accumulation capacity, thus it could intercept more sand grains. This phenomenon also
reflects a deficiency in the straw checkerboard: although it offers protective effects, the duration of this
protection period is short, after which it is easily buried by sand. In practical applications, the straw
checkerboard should be supplemented regularly, or be used in conjunction with aerial sowing and
shrub planting.

4.3. Influence of Straw Checkerboard on Ecological Restoration

We combined the vegetation growth data from Table 3 with soil physical and chemical properties
from Table 2 to analyse the effects of straw checkerboard on the ecological environment of sandy
land. Soil water content and organic matter were positively correlated with the straw checkerboard
laying time, and increased considerably after the appearance of shrubs, indicating that vegetation
had better water conservation capacity and that litter was the main source of soil organic matter. Soil
carbon mineralisation was markedly improved when pioneer herbaceous plants emerged after straw
grid laying, indicating that soil microbial activity also greatly improved, which caused an increase
in total nitrogen content in non-industrial areas. Microbial activity remained stable after a large
increase in the first year. Therefore, we suspect that the decline in total phosphorus content during the
subsequent few years was caused by an increase in the demand for phosphorus due to the increase in
vegetation. In the first two years after the laying of straw checkerboard, the vanguard herbaceous plant
coverage was low. Straw checkerboards could effectively intercept sand grains within sand-driving
wind, so that the wind carried mainly clay and silt. Therefore, clay and silt content increased as sand
content decreased. Thereafter, with the formation of a stable herbaceous plant population and shrub
emergence, the shifting sandy land became fixed sandy land, and transit winds became pure airflows.
The change in soil particle size was thus the result of the action of microorganisms on humus.

Table 3. Vegetation recovery in the years after a sand barrier was constructed on a plot.

Years
Corispermum Hyssopifolium Agriophyllum Squarrosum Artemisia Ordosica Total

CoverageQuantity Coverage Quantity Coverage Quantity Coverage

0 - - - - - - -
1 - - 4.3 ± 0.577 8.72 ± 0.653 - - 8.72 ± 0.576
2 23.3 ± 2.659 1.33 ± 0.178 7.7 ± 0.643 11.53 ± 0.837 - - 12.86 ± 0.731
5 420 ± 23.355 24.35 ± 0.744 - - 1.3 ± 0.114 12.13 ± 0.745 35.71 ± 1.213

10 - - - - 2.7 ± 0.132 59.83 ± 1.013 59.83 ± 1.437

Data represent means ± SD.

The sandy soil in this area has been reported to have a low clay and silt content, and poor soil
cohesion [29–31]; thus, water and nutrient retention is difficult. The physical and chemical properties
of soils with or without sand barriers have also been analysed [32,33]. Other studies have examined
the effect of straw checkerboards on vegetation restoration, arguing that sand barriers can promote
plant growth [34–36]. In our study, the physical and chemical properties of soil changed similar
to the reports by other authors, but the recovery of vegetation far exceeded that reported in other
regions. By comparing the site parameters, we determined that the average rainfall in the study area
was 287 mm, whereas in other areas where similar studies have been conducted, it was as low as
180 mm [14]. Our study area, therefore, received more rainfall and had more stable climatic conditions
to encourage plant growth than experienced in other studies. The improvement in the physical and
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chemical soil properties requires the decomposition of humus by microorganisms [28,37]. Therefore,
precipitation plays an important role in sandy ecosystems.

5. Conclusions

As an important engineering measure for windblown sand control, we analysed the wind
proofing and sand-fixing benefits of different specifications of straw checkerboards and their impact
on ecological restoration. We found that the use of straw checkerboard effectively reduced the surface
wind speed and intercepted sand, with a one-meter-long checkerboard providing optimal performance.
A one-meter-long straw checkerboard effectively improved the sand-driving wind structure, produced
maximum roughness, and prevented sand from being eroded. It also reduced the near-surface wind
speed, improved the wind speed flow field structure, expanded the specific gravity of the deceleration
zone, and reduced wind erosion. The one-meter-long straw checkerboard also intercepted sand more
effectively under sand-driving wind conditions and deposited this sand within the grid. In addition,
the one-meter-long straw checkerboard created a good environment for vegetation growth, promoted
succession in the sandy ecosystem from mobile sandy land to a shrub and herb community, and
improved the physical and chemical properties of soil, including water content, organic matter, and the
soil environment. Based on these results, we concluded that using straw checkerboards is an effective
measure for sand ecosystem management, and that their use could control desertification and promote
the restoration of vegetation ecosystems under arid climate conditions. In addition, this measure can
be used along railways, transport pipelines, and other forms of infrastructure that require protection
from windblown sand.
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