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Abstract: Kaolinite can be used as in-furnace adsorbent to capture gaseous semi-volatile metals
during combustion, incineration, or gasification processes for the purposes of toxic metals emission
control, ash deposition/slagging/corrosion inhibition, ultrafine particulate matter emission control,
and so on. In this work, the adsorptions of typical heavy metals (Pb and Cd) and typical alkali metals
(Na and K) by meta-kaolinite were investigated by the DFT calculation. The adsorption energies
followed the sequence of NaOH-Si surface > KOH-Si surface > PbO-Al surface ≈ CdO-Al surface ≈
NaOH-Al surface > KOH-Al surface > NaCl-Al surface ≈ Na-Si surface > Na-Al surface > KCl-Al
surface > Pb-Al surface > PbCl2-Al surface > CdCl2-Al surface ≈ K-Si surface ≈ PbCl-Al surface
> K-Al surface > CdCl-Al surface > NaCl-Si surface > KCl-Si surface > Cd-Al surface. Si surface
was found available to the adsorptions of Na, K, and their compounds, although it was invalid to
the adsorptions of Pb, Cd, and their compounds. The interactions between adsorbates and surfaces
were revealed. Furthermore, the discussion of combining with the experimental data was applied to
the subject validity of calculation results and the effect of chlorine on adsorption and the effect of
reducing atmosphere on adsorption.
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1. Introduction

As a nonmetallic mineral, kaolinite is widely distributed in the world with large proven reserves.
Its global production was 37 million tons in 2017 [1]. The primary uses of kaolinite are paper coating
and filling, ceramics, paint, refractories, etc. due to its whiteness, brightness, glossiness, abrasiveness,
viscosity, and fine particle size [2]. Besides the traditional uses, kaolinite can be used as in-furnace
adsorbent to capture gaseous semi-volatile metals during combustion, incineration, or gasification
processes for several purposes [3–5].

The first purpose is to control submicron heavy metals emission during coal, municipal solid
waste, or sewage sludge combustion. Semi-volatile metals such as lead (Pb) and Cadmium (Cd)
evaporate partially in furnace, and then condense in flue to be submicron aerosols (PM1) which
are difficult to remove efficiently via an electrostatic precipitator and bag filter [6–9]. Furthermore,
activated carbon cannot remove these fine particles effectively either, although it is effective to remove
elemental mercury which remains gaseous at low temperature [10]. The addition of supermicron
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kaolinite powder into the furnace can induce semi-volatile metals migration from submicron aerosols
to supermicron particles [5,11–13]. Yao et al. added 5% of kaolinite in dried sludge, resulting in capture
efficiencies of 50% and 40% for the control of submicron Pb and submicron Cd emissions, respectively,
during the drop tube furnace combustion [11].

The second purpose is to lessen ash deposition, slagging and high-temperature corrosion during
high potassium (K) biomass and high sodium (Na) coal combustion or some co-combustion situations.
These alkali metals volatilize in furnace, then react with ash particles to form low melting point phases
rendering the particle surfaces sticky, or form sulfate condensing on heating surfaces directly [3,14].
A similar situation occurs in bed agglomeration, causing the defluidization of fluidized beds [15].
Aho added kaolinite in a 20 kW bubbling bed reactor with the fuel of biomass, and no coating of bed
particles occurred at dosage >0.3 times the mass flow of ash [16].

The third purpose is to reduce particulate matter emissions during coal combustion, which
contain high levels of alkali metals. Na and K have been proven to contribute greatly to ultrafine
particulate matters formation by vaporization and condensation during the combustion of high Na
coal and biomass, respectively [17,18]. Sun et al. added 3% raw kaolinite and modified kaolinite
into pulverized coal and reduced by about 16% and 40% PM0.2 respectively during combustion
in drop tube furnace [18]. The fourth purpose is to mitigate the blade corrosion in gas turbine of
integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustors (PFBC) in
combined-cycle power generation systems [19,20].

The effect of kaolinite on metal capture has been investigated extensively, however, few studies
focused on the capture mechanisms which has not been understood well yet [5,13]. Wendt et al.
developed the aerosol size fractionation method (ASFM) to investigate the effect and mechanisms of
Pb/Cd/Na capture by kaolinite powder with in-furnace injection process as industrial application
background [21]. They described the kinetics of single metal capture and dual metals capture [12,22].
Shadman et al. developed thermogravimetric on-line detect method to investigate the effect and
mechanisms of Pb/Cd/Na capture by kaolinite flake with high temperature fixed bed process as an
industrial application background [23–25]. The resultant data included reaction product, saturated
adsorption amount, and morphology changes [23–26].

Most previous research attempted to understand the capture mechanisms by experiments and
obtained the results at macroscopic level. Some important phenomena and effects were found and
interpreted [12]. However, the investigation of the capture mechanisms of heavy metals and alkali
metals by kaolinite at the atomic level was just started. Since the capture occurs above 800 ◦C usually,
it was difficult to conduct the atomic level observation of capture processes. The theoretical calculation
based on density functional theory (DFT) was considered as an appropriate method to investigate
these processes at an atomic level at the present stage. In the previous research, we calculated the
adsorption of Pb and Cd on kaolinite surfaces, and revealed some information on adsorption sites,
the adsorption energies and so on [27,28]. Recently, the calculation of Na adsorption was reported as
well [29]. Many experimental phenomena were interpreted by the results from calculation, for example,
the difference between Pb capture and Cd capture [27].

In this work, further investigation on the capture mechanisms was carried out. The calculation
objects contained not only heavy metals (Pb and Cd) but also alkali metals (Na and K). Meta-kaolinite
was considered as the adsorbent for the dehydroxylation of kaolinite caused by the flash calcination
in the furnace [30]. This extensive comparison of different adsorption cases would give more
interpretation and prediction to the results from experiment and application. Besides, a deeper
understanding of adsorption mechanisms would help to figure out how to improve the capture ability
of kaolinite.
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2. Modeling and Computational Details

2.1. Adsorbates

The species of heavy metals and alkali metals in furnace were difficult to detect by experiments,
instead, they were predicted by thermodynamic equilibrium calculation based on Gibbs free energy
minimization. It was found that the major species of Pb were monoxide, dichloride, monochloride,
and single atoms in a waste incinerator while the major species of Na and K were considered as
monochloride and hydroxide in the furnace [31,32]. These species were also involved in the combustion
process and gasification process of coal or biomass [33–35]. In this work, the species of adsorbates
involved in the calculation contained the single atoms of Pb, Cd, Na, and K; the oxides of PbO and
CdO; the hydroxides of NaOH and KOH; the monochlorides of PbCl, CdCl, NaCl, and KCl; and the
dichlorides of PbCl2 and CdCl2. The original structures of these adsorbates were downloaded from
NIST Chemistry WebBook [36]. Then, these original structures were optimized in the lattice by DFT
calculation. The computational details are described in Section 2.3. The optimized structures of
adsorbates are shown in Figure 1.
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Figure 1. Geometric structures of adsorbates. The units of the bond length and bond angles are Å
and ◦, respectively.

The structures of the diatomic molecules in Figure 1 are similar to each other, for example,
the bond lengths of PbO and CdO are around 1.9 Å; and the bond lengths of PbCl, CdCl, NaCl, and
KCl are around 2.4 Å. However, the structures of the triatomic molecules in Figure 1 are different from
each other, for example, NaOH and PbCl2 are broken line molecules while KOH and CdCl2 are linear
molecules. The difference in structures should cause differences in adsorption characteristics.

2.2. Adsorption Surfaces

The raw kaolinite and calcined kaolinite were detected by scanning electron microscope (SEM)
and the results are shown in Figure 2a,b. Both the raw kaolinite particle and calcined kaolinite were
composed of the stacked flakes. The surface morphology of these flakes suggested that the layer
structure remained well after the dehydroxylation induced by calcination. Therefore, the upper and
lower surfaces of layers should dominate the total exposed surfaces, and the side surfaces were
minority and negligible. We have investigated the adsorption ability of upper and lower surfaces
which were described as aluminum (Al) surface (0 0 1) and silicon (Si) surface (0 0 1) [27,28]. Al surface
has the abilities of Pb and Cd adsorption while an Si surface does not during the research on Pb and
Cd adsorption [27,28]. However, it was unknown if Si surface was invalid in Na and K adsorption
either. Consequently, both Al and Si surfaces were investigated as adsorption surfaces in this work.
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Figure 2. SEM micrographs of (a) raw kaolinite and (b) calcined kaolinite at 1000 ◦C for 30 min.

The Al/Si surface of meta-kaolinite was derived from the Al/Si surface of kaolinite by the
method of gradual dehydroxylation described before in [28]. Considering the weak interaction
between layers of meta-kaolinite, only one layer was used as sorbent. The test of the layer number
supported this decision that the difference between the adsorption energies of one-layer and two-layer
structures was less than 2%. The supercell size was 2 × 1 × 1 and the vacuum thickness was 15 Å.
The structures of meta-kaolinite surface are shown in Figure 3. No atoms were constrained during
geometry optimization.
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2.3. Computational Methods

The DFT calculations were on the basis of the plane-wave pseudopotential approach (CASTEP
program) with the Vanderbilt ultra-soft pseudopotential, the generalized gradient approximation
and the Perdew, Burke, and Ernzerhof functional (GGA-PBE) [37,38]. The geometry optimization
algorithm was Broyden-Fletcher-Goldfarb-Shanno (BFGS) [39]. The plane-wave basis set energy cutoff
was set at 380 eV. The convergence parameters were 5 × 10−7 eV/atom for self-consistent field (SCF)
tolerance, 5 × 10−6 eV/atom for energy, 0.01 eV/Å for maximum force, 0.02 GPa for maximum stress,
and 5 × 10−4 Å for maximum displacement. The adsorption energy (∆Eadsorption) was defined as
Equation (1).

∆Eadsorption = Esorbate+sorbent − (Esorbate + Esorbent) (1)

where Esorbate+sorbent, Esorbate, and Esorbent are the energies of the sorbent with the adsorbed molecule,
the sorbate, and bare sorbent, respectively. The charge density difference (∆ ρ ) was defined as
Equation (2).

∆ ρ = ρ sorbate+sorbent − ( ρ sorbate + ρ sorbent) (2)
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where ρ sorbate+sorbent, ρ sorbate, and ρ sorbent are the electron densities of the sorbent with the adsorbed
molecule, the sorbate, and bare sorbent, respectively. Mulliken population was calculated for the
analysis of charge transfer behavior [40].

3. Results

3.1. Single Atom Adsorption on Al Surface

The structures of single atom adsorption on Al surface are shown in Figure 4. The stable adsorption
site with the highest adsorption energy was close to the center of Al ring. The Pb atom was close to
two raised oxygen (O) atoms and one Al atom in Al surface. The position of Cd atom was similar to
that of Pb atom, however, the Cd atom was closer to the Al atom and farther away from two raised O
atoms. The Na atom and the K atom were almost on the center of Al ring. Compared with the K atom,
the Na atom seemed to have stronger attraction to the two raised O atoms, because the distances of
Na-O (around 2.4 Å) were shorter than that of K-O (around 2.6 Å).
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Figure 4. Optimized structures of single atom adsorptions on Al surface. Top view of (a) Pb adsorption,
(b) Cd adsorption, (c) Na adsorption, and (d) K adsorption. Side view of (e) Pb adsorption, (f) Cd
adsorption, (g) Na adsorption, and (h) K adsorption.

The distributions of electron density and electron density difference are shown in Figure 5.
The interaction between the Pb atom and the Al atom was obvious, while the interaction between
the Cd atom and Al atom existed as well but was weaker. No similar interaction was found in Na
adsorption or K adsorption. The charge accumulation between a single atom and two raised O atoms
was close to the Pb atom but was away from the Na atom and the K atom. It indicated that Na-O
has a stronger ionic bond characteristic than Pb-O which exhibited a covalent bond characteristic [41].
The interaction between the K atom and two raised O atoms was weak and no interaction was found
between the Cd atom and two raised O atoms.
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Figure 5. Electron density of single atom adsorptions on Al surface: top view of (a) Pb adsorption,
(b) Cd adsorption, (c) Na adsorption, and (d) K adsorption. Electron density difference of single atom
adsorptions on Al surface: top view of (e) Pb adsorption, (f) Cd adsorption, (g) Na adsorption, and (h)
K adsorption. Pink means charge accumulation while green means charge depletion.
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The adsorption energies and the Mulliken charge change were listed in Table 1. The adsorption
energies followed the sequence of Na > Pb > K > Cd. The first three adsorptions (Na, Pb, and K) were
chemical while the last (Cd) was physical judging from the adsorption energies. The Mulliken charge
changes show the similar sequence but did not coincide completely. It is noteworthy that the interaction
between single atom and two raised O atoms in Al surface followed the same sequence to adsorption
energies. It presented in the distance and charge accumulation described above. For example,
dNa-O = 2.39 Å < dPb-O = 2.65 ≈ dK-O = 2.69 Å < dCd-O = 3.35 Å, where d indicates the average
distance between the metal atom and two raised O atoms. Therefore, the attraction from the raised O
atoms was considered to play the dominant role in single atom adsorption on Al surface while the
attraction from Al atoms was less important.

Table 1. Mulliken charge changes and adsorption energies of 14 species adsorptions on Al surface.

Sorbate Mulliken Charge Change 1 (e)
Adsorption Energy

(kJ/mol)

Pb Pb: +0.49 Total: +0.49 −224
Cd Cd: +0.22 Total: +0.22 −36
Na Na: +0.70 Total: +0.70 −243
K K: +0.79 Total: +0.79 −168

PbO Pb: +0.42 O: −0.40 Total: +0.02 −476
CdO Cd: +0.43 O: −0.35 Total: +0.08 −471

NaOH Na: +0.14 O: +0.18 H: +0.02 Total: +0.34 −474
KOH K: +0.14 O: +0.30 H: +0.01 Total: +0.45 −368

PbCl Pb: +0.18 Cl: −0.02 Total: +0.16 −196
CdCl Cd: +0.10 Cl: +0.02 Total: +0.12 −149
NaCl Na: +0.13 Cl: +0.25 Total: +0.38 −300
KCl K: +0.15 Cl: +0.39 Total: +0.54 −239

PbCl2 Pb: +0.1 Cl1: 0 Cl2: 0 Total: +0.10 −209
CdCl2 Cd: +0.05 Cl1: +0.06 Cl2: +0.06 Total: +0.16 −199

1 Mulliken charge change is defined as the charge difference after and before adsorption. + indicates electron
donation while − indicates electron acceptance.

3.2. Oxide and Hydroxide Adsorption on Al Surface

On the Al surface, the Al ring consists of six sides of Al-O-Al. Two raised O atoms are on the
opposite sides as shown in Figure 3. The adsorption of PbO molecule caused the move of one raised O
atom to the side next to its original site and far away from the O atom in PbO, as shown in Figure 6a.
In the adsorption structure, the Pb atom was in the center of Al ring and the O atom in PbO seemed to
be the third raised O atom in Al ring, forming a new symmetrical structure. The lengths of two newly
formed Al-O bonds (the O atom was from PbO) were 1.77 Å and 1.97 Å, close to the original bond
length of 1.76 Å in Al surface. The PbO molecule was elongated so that the distances between the Pb
atom and three raised O atoms were all around 2.3 Å, resulting in the center site of Pb atom.
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Figure 6. Optimized structures of oxide molecule adsorptions and hydroxide molecule adsorptions
on Al surface. Top view of (a) PbO adsorption, (b) CdO adsorption, (c) NaOH adsorption, and (d)
KOH adsorption. Side view of (e) PbO adsorption, (f) CdO adsorption, (g) NaOH adsorption, and (h)
KOH adsorption.
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The adsorption structure of CdO molecule was pretty similar to that of PbO molecule, as shown in
Figure 6b. However, the structures of NaOH adsorption and KOH adsorption were different. Although
the position of the Na atom was also in the center of Al ring, and the O atom in NaOH seemed to bond
with the Al atoms, the raised O atom originally in Al surface did not move to other sites, as shown
in Figure 6c. Therefore, the adsorption structure of the NaOH molecule was not as symmetrical as
that of PbO molecule. Because of the attractions from the surface to the O atom from NaOH, the bond
length of Na-O in NaOH was elongated as well. The structure of the KOH molecule is linear before
adsorption; however, it turned into a broken line type like the NaOH molecule after adsorption.

The electron density distribution shown in Figure 7a described the overlap of electron density
between the Pb atom and three raised O atoms, one of which was derived from PbO. The symmetric
shape of isosurface suggested that the O atom derived from PbO was integrated into Al surface so well
that it exhibited few differences from two original raised O atoms. Moreover, this overlap indicated
the covalent characteristic of three Pb-O bonds, which were supported by the charge accumulation
between the Pb atom and two raised O atoms in Figure 7e [41]. No overlap of electron density between
the O atom derived from PbO and Al atoms and no charge accumulation between them, but the
charge accumulation around the O atom derived from PbO. It indicated the ionic characteristic of
an O-Al bond, same as the Al2O3 crystal. The Mulliken charge changes in Table 1 indicated the
charge acceptance of the O atom derived from PbO as well. The same characteristics were found
in CdO adsorption structure by the analysis of Figure 7b,f. However, in NaOH adsorption and
KOH adsorption, no overlap of electron density between Na-O or K-O were found and the charge
accumulated around raised O atoms as shown in Figure 7g,h, indicating the ionic characteristics of
Na-O bond and K-O bond. Besides that, the O-H derived from NaOH or KOH was considered as the
charge donator to Al surface according to the analysis of electron density difference and the Mulliken
charge change. Overall, the interactions between the O atoms derived from sorbates and the Al atoms
were stronger than the interactions between the metal atoms derived from sorbates and the raised
O atoms.
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Figure 7. Electron density of oxide molecule adsorptions and hydroxide molecule adsorptions on
Al surface: top view of (a) PbO adsorption, (b) CdO adsorption, (c) NaOH adsorption, and (d)
KOH adsorption. Electron density difference of oxide molecule adsorptions and hydroxide molecule
adsorptions on Al surface: top view of (e) PbO adsorption, (f) CdO adsorption, (g) NaOH adsorption,
and (h) KOH adsorption.

The adsorption energies of PbO, CdO, NaOH, and KOH shown in Table 1 were much higher than
that of single atoms and followed the sequence of PbO ≈ CdO ≈ NaOH > KOH. These adsorptions
were all chemical for the adsorption energies higher than −350 kJ/mol. Although the cations of four
compounds were different, their adsorption energies were very close. It should be due to the strong
attraction between the O atom and the Al atoms in the adsorption structure. The interaction between
the metal atom and the raised O atoms did not dominate the adsorption.
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3.3. Chloride Adsorption on Al Surface

The adsorption structures of monochlorides are shown in Figure 8. In PbCl adsorption structure
the Pb atom was on the center of Al ring while the Cl atom was close to two Al atoms. The similar
structure was shown in the adsorption of CdCl, NaCl, and KCl. The difference was in the average
distance of Cl-Al that dK-Cl = 2.41 ≈ dNa-Cl = 2.49 Å < dCd-Cl = 2.74 Å ≈ dPb-Cl = 2.82 Å. All four
monochloride molecules were elongated for adsorption.
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Figure 8. Optimized structures of monochloride molecule adsorptions on Al surface. Top view of (a)
PbCl adsorption, (b) CdCl adsorption, (c) NaCl adsorption, and (d) KCl adsorption. Side view of (e)
PbCl adsorption, (f) CdCl adsorption, (g) NaCl adsorption, and (h) KCl adsorption.

The distribution of electron density and electron density difference of monochloride adsorptions
are shown in Figure 9. The charge accumulation was found between the Cl atom and the Al atoms,
indicating the covalent characteristic of Cl-Al in all four adsorption structures. There was obvious
charge accumulation between the Pb atom and the Al atom in PbCl adsorption, the same as that in Pb
atom adsorption. Moreover, no such interaction was found in the adsorption of other monochlorides,
the same as the in single adsorption as well. The Mulliken charge changes of the Cl atom in PbCl
adsorption and CdCl adsorption were much lower than that in NaCl adsorption and KCl adsorption.
Compared with the interaction between the Cl atom and the Al atoms, the interaction between metal
atom and the raised O atom was insignificant. The adsorption energies sequence of NaCl > KCl > PbCl
> CdCl shown in Table 1 indicated that the Cl atom bonding with Na and K was more active than that
bonding with Pb and Cd.
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Figure 9. Electron density of monochloride molecule adsorptions on Al surface: top view of (a)
PbCl adsorption, (b) CdCl adsorption, (c) NaCl adsorption, and (d) KCl adsorption. Electron density
difference of monochloride molecule adsorptions on Al surface: top view of (e) PbCl adsorption,
(f) CdCl adsorption, (g) NaCl adsorption, and (h) KCl adsorption.
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The dichloride adsorption structures are shown in Figure 10a–d. The PbCl2 molecule has the
shape of a broken line. In Figure 10a,c, the Cl atom was above Al-O-Al and was close to one of
Al atom. The Pb atom was close to one raised O atom. The CdCl2 molecule has the shape of
straight line. In Figure 10b,d, the positions of Cl atom were similar to that of PbCl2 adsorption,
but was closer one of Al atom in Al-O-Al. The Cd atom was almost on the center of the Al ring.
The distribution of electron density and electron density difference of dichloride adsorption structures
are shown in Figure 10e–h. The overlap of electron density between the Pb atom and one raised O
atom and the charge accumulation between the Cl atoms and the Al atoms indicated the covalent
characteristic of Pb-O bond and Cl-Al bond. The similar bond characteristics were shown in CdCl2
adsorption structure. According to Table 1, the adsorption energies of PbCl2 (−209 kJ/mol) and CdCl2
(−199 kJ/mol) increased with the additional Cl atoms compared with those of PbCl (−196 kJ/mol)
and CdCl (−149 kJ/mol), however, these increases were limited.
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Figure 10. Optimized structures of dichloride molecule adsorptions on Al surface. Top view of the
structures of (a) PbCl2 adsorption and (b) CdCl2 adsorption. Side view of the structures of (c) PbCl2
adsorption and (d) CdCl2 adsorption. Electron density difference of dichloride adsorption structures on
Al surface: top view of (e) PbCl2 adsorption, (f) CdCl2 adsorption. Side view of (g) PbCl2 adsorption,
and (h) CdCl2 adsorption.

3.4. Alkali Metal Adsorption on Si Surface

Si surface was considered invalid to the adsorption of Pb, Cd, and their compounds [27,28].
However, it showed ability to adsorb Na, K, and their compounds. The adsorption structures of single
atoms, hydroxide, and monochloride of Na and K on Si surface are shown in Figure 11. The Na atom
and K atom were considered to be adsorbed on the center of Si ring other than on the top of O atom
according to the comparison of adsorption energies. The charge transfers after the adsorption of the
Na atom and the K atom on Si surface were higher than that on Al surface, as shown in Tables 1
and 2. So were the adsorption energies, which indicated that the adsorptions of Na atom and K atom
were chemical. The charge accumulation was found not only between the adsorbed atom and the
O atoms from Si ring but also between the adsorbed atom and one O atom from Al ring, as shown
in Figure 12a,b,g,h. The adsorptions of NaOH and KOH caused the decomposition of metal atom
and OH. The adsorption structures of NaOH and KOH in Figure 12c,d indicated that the alkali atom
remained on the center of Si ring while OH combined with the Si atom causing the broken of Si-O-Al.
The adsorption energies of NaOH and KOH on Si surface were higher than −600 kJ/mol, the highest
in all cases. The distribution of electron density difference in Figure 12i,j revealed the strong interaction
between OH and the Si atom, which was considered as the reason for the high adsorption energies
of NaOH and KOH. According to the adsorption energy in Table 2, NaCl was adsorbed chemically
while KCl was physically. The distribution of electron density difference in Figure 12k,l indicated that
the Na atom had interaction with the O atoms from Si ring and Al ring, the K atom had no obvious
interaction with surface and the Cl atom had no interaction with surface. Therefore, the attraction
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between NaCl/KCl and Si surface was due to the interaction between the Na/K atom and surface.
The Cl atom in NaCl and KCl inhibited the adsorption on Si surface, however, it was in favor of the
adsorption on Al surface. The adsorption energies in Table 2 were higher than those obtained by
Zhang et al. [29].Int. J. Environ. Res. Public Health 2018, 15, x 10 of 14 
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Figure 11. Optimized structures of alkali metal adsorptions on Si surface. Top view of the structures of
(a) Na atom adsorption, (b) K atom adsorption, (c) NaOH adsorption, (d) KOH adsorption, (e) NaCl
adsorption, and (f) KCl adsorption. Side view of the structures of (g) Na atom adsorption, (h) K atom
adsorption, (i) NaOH adsorption, (j) KOH adsorption, (k) NaCl adsorption, and (l) KCl adsorption.

Table 2. Mulliken charge changes and adsorption energies of six species adsorption on Si surface.

Sorbate Mulliken Charge Change (e) Adsorption Energy
(kJ/mol)

Na Na: +1.09 Total: +1.09 −295
K K: +1.17 Total: +1.17 −197

NaOH Na: +0.42 O: +0.15 H: +0.11 Total: +0.68 −742
KOH K: +0.35 O: +0.31 H: +0.05 Total: +0.71 −655

NaCl Na: +0.13 Cl: +0.05 Total: +0.18 −142
KCl K: +0.17 Cl: +0.09 Total: +0.21 −52

Int. J. Environ. Res. Public Health 2018, 15, x 10 of 14 

 

 

Figure 11. Optimized structures of alkali metal adsorptions on Si surface. Top view of the structures 

of (a) Na atom adsorption, (b) K atom adsorption, (c) NaOH adsorption, (d) KOH adsorption, (e) 

NaCl adsorption, and (f) KCl adsorption. Side view of the structures of (g) Na atom adsorption, (h) K 

atom adsorption, (i) NaOH adsorption, (j) KOH adsorption, (k) NaCl adsorption, and (l) KCl 

adsorption. 

Table 2. Mulliken charge changes and adsorption energies of six species adsorption on Si surface. 

Sorbate Mulliken Charge Change (e) Adsorption Energy (kJ/mol) 

Na Na: +1.09   Total: +1.09 −295 

K K: +1.17   Total: +1.17 −197 

NaOH Na: +0.42 O: +0.15 H: +0.11 Total: +0.68 −742 

KOH K: +0.35 O: +0.31 H: +0.05 Total: +0.71 −655 

NaCl Na: +0.13 Cl: +0.05  Total: +0.18 −142 

KCl K: +0.17 Cl: +0.09  Total: +0.21 −52 

 

Figure 12. Electron density of single atom adsorptions on Si surface: top view of (a) Na atom 

adsorption, (b) K atom adsorption, (c) NaOH adsorption, (d) KOH adsorption, (e) NaCl adsorption, 

and (f) KCl adsorption. Electron density difference of single atom adsorptions on Al surface: top view 

of (g) Na atom adsorption, (h) K atom adsorption, (i) NaOH adsorption, (j) KOH adsorption, (k) NaCl 

adsorption, and (l) KCl adsorption. 

4. Discussion 

4.1. Comparison with Experimental Data 

The adsorption of heavy metals and alkali metals at high temperature consists of not only the 

surface adsorption but also the inward diffusion [27,29]. No experimental data could be used to 

compare with calculation data directly. Therefore, the comparison of the experimental data and the 

calculation data were discussed conservatively. The experimental studies on the metal oxide and 

hydroxide adsorption by kaolinite were carried out by Wendt et al. who developed the aerosol size 

fractionation method (ASFM) to detect the reactions between PbO/CdO/NaOH and kaolinite powder 

Figure 12. Electron density of single atom adsorptions on Si surface: top view of (a) Na atom adsorption,
(b) K atom adsorption, (c) NaOH adsorption, (d) KOH adsorption, (e) NaCl adsorption, and (f) KCl
adsorption. Electron density difference of single atom adsorptions on Al surface: top view of (g)
Na atom adsorption, (h) K atom adsorption, (i) NaOH adsorption, (j) KOH adsorption, (k) NaCl
adsorption, and (l) KCl adsorption.
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4. Discussion

4.1. Comparison with Experimental Data

The adsorption of heavy metals and alkali metals at high temperature consists of not only the
surface adsorption but also the inward diffusion [27,29]. No experimental data could be used to
compare with calculation data directly. Therefore, the comparison of the experimental data and the
calculation data were discussed conservatively. The experimental studies on the metal oxide and
hydroxide adsorption by kaolinite were carried out by Wendt et al. who developed the aerosol size
fractionation method (ASFM) to detect the reactions between PbO/CdO/NaOH and kaolinite powder
in an 18 kW vertical combustor [12,21,22,42]. The capture efficiency of PbO vapor was close to that of
NaOH vapor and higher than that of CdO vapor at 1160 ◦C; however, all these efficiencies turned to
close to each other at 1280 ◦C [12,22,42]. Wendt et al. attributed the difference between PbO/NaOH
adsorption and CdO adsorption at lower temperatures to the products melting which helped the
diffusion of products to inside of kaolinite and the exposure of unreacted kaolinite to outside [12,42].
The products of PbO adsorption and NaOH adsorption melted at 1160 ◦C but the products of CdO
adsorption did not melt until the temperature was up to 1280 ◦C [12,42]. According to the adsorption
energies in this work, there was no obvious difference in the adsorption of PbO, CdO, and NaOH.
Therefore, the adsorptions of PbO, CdO, and NaOH should have less difference in chemical process
but more in physical process. Yao et al. compared the capture of PbCl2 and CdCl2 by kaolinite during
sewage sludge combustion [43]. At 800–950 ◦C, the capture efficiencies of PbCl2 was higher than that
of CdCl2, agreeing with the higher adsorption energy of PbCl2 than that of CdCl2 in this work. In
this view, it is possible to use adsorption energy to evaluate the chemical adsorption process of heavy
metals and alkali metals vapor by kaolinite.

It is a pity that no available data about the adsorption of K and its compounds were found so that
the discussion combining with experimental data and calculation data was absent here. In this work,
the adsorption energies of K and its compounds were always lower than that of Na and its compounds.
Therefore, it is inferred that the adsorption efficiencies of K and its compound would be weaker than
that of Na and its compounds as well.

4.2. Effect of Chlorine Metal Capture

The thermodynamic equilibrium studies indicated that chloride was the main species of Pb, Cd,
Na, and K in furnace at around 1000 ◦C when the solid fuel contained sufficient Cl [31]. Wendt et al.
found that the addition of Cl depressed the metal capture by kaolinite significantly. Therefore, chloride
was more difficult to absorb than oxide or hydroxide by kaolinite. The much lower adsorption energies
of chlorides than those of oxides and hydroxide in this work supported this experimental conclusion.
Moreover, there was no Cl in the products of metal chloride adsorption, so the process of Cl release
should follow the chloride adsorption [3,23,29]. The lower adsorption energy and the Cl release process
would be the main reason for low capture efficiency of chlorides. According to the thermodynamic
equilibrium calculation, higher temperature causes less metal chlorides and more metal oxides during
combustion [31]. Therefore, the high temperature can enhance the metal capture by kaolinite through
not only the increase of reaction rate and the promotion of products melting but also the transformation
of chlorides to oxides.

4.3. Effect of Reducing Atmosphere on Metal Capture

The atmosphere mentioned here indicates the oxidizing atmosphere and the reducing atmosphere.
In the reducing atmosphere, some heavy metals such as Pb and Cd were supposed to be the elementary
substance vapor according to the experimental research and the thermodynamic equilibrium
calculation [4,31]. The metal adsorption in reducing atmosphere and the elementary metal vapor
adsorption by kaolinite has not been reported yet. The calculation results in this work indicated that
Pb vapor adsorption was possible because the Pb atom adsorption energy was as high as −224 kJ/mol,
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however, Cd vapor adsorption was impossible because the adsorption energy was physical. During
the combustion, some local areas in furnace are at reducing atmosphere, moreover, the solid fuel inside
or surrounding are at reducing atmosphere. Thus, the presence of elementary Pb vapor was possible
and a new adsorption path was proposed. During combustion, kaolinite adsorbed elementary Pb
vapor first at reducing atmosphere, and then the adsorption was oxidized in an oxidizing atmosphere,
turning to PbO adsorption which was much more stable than elementary Pb adsorption.

4.4. Competitive Adsorption of Multicomponents

Gale et al. found that PbO and CdO could improve each other’s capture efficiency by enhancing
the eutectic-melt during CdO adsorption by kaolinite and avoiding the excessive-melt during PbO
adsorption by kaolinite [44]. According to similar adsorption energy of PbO and CdO, the competition
between their adsorption would be equal in chemistry. Gale et al. found that the presence of
NaOH inhibited PbO capture and the presence of PbO had no effect on NaOH adsorption [44].
They considered NaOH to have a slightly higher reaction rate than PbO, thus achieving capture before
the most significant sorbent deactivation occurs [44]. The calculation results supported this opinion
that NaOH could adsorb on both Al surface and Si surface while PbO could only adsorb on Al surface.
The excessive melt should be induced by NaOH mainly. Further investigation should be performed to
reveal mechanisms of the competitive adsorption.

5. Conclusions

The adsorptions of typical heavy metals (Pb and Cd) and typical alkali metals (Na and K) by
meta-kaolinite were investigated by the DFT calculation. The adsorption energies were obtained and
followed the sequence of NaOH-Si surface > KOH-Si surface > PbO-Al surface ≈ CdO-Al surface ≈
NaOH-Al surface > KOH-Al surface > NaCl-Al surface ≈ Na-Si surface > Na-Al surface > KCl-Al
surface > Pb-Al surface > PbCl2-Al surface > CdCl2-Al surface ≈ K-Si surface ≈ PbCl-Al surface > K-Al
surface > CdCl-Al surface > NaCl-Si surface > KCl-Si surface > Cd-Al surface. All the adsorptions on
Al surface were chemical except for the Cd atom adsorption. The adsorptions of metal atoms were due
to the attraction from the raised O atoms in Al surface. The adsorptions of metal oxide and hydroxide
were due to the attraction from the Al atoms to the O atom. The adsorptions of metal chloride were
due to the attraction from the Al atoms to the Cl atoms. Although Pb, Cd, and their compounds did
not adsorb on Si surface, Na, K, and their compounds did. The Cl atom in NaCl and KCl inhibited
adsorption on Si surface; however, it was in favor of adsorption on Al surface. The strong adsorptions
of NaOH and KOH were due to their decomposition and the products of OH.
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