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Abstract: Arboviruses are responsible for a large burden of disease globally and are thus subject to
intense epidemiological scrutiny. However, a variable notably absent from most epidemiological
analyses has been the impact of violence on arboviral transmission and surveillance. Violence impedes
surveillance and delivery of health and preventative services and affects an individual’s health-related
behaviors when survival takes priority. Moreover, low and middle-income countries bear a
disproportionately high burden of violence and related health outcomes, including vector borne diseases.
To better understand the epidemiology of arboviral outbreaks in Cali, Colombia, we georeferenced
chikungunya (CHIKV), dengue (DENV), and Zika (ZIKV) viral cases from The National System of
Surveillance in Public Health between October 2014 and April 2016. We extracted homicide data from
the municipal monthly reports and kernel density of homicide distribution from IdeasPaz. Crucially,
an overall higher risk of homicide is associated with increased risk of reported DENV, lower rates of
acute testing, and higher rates of lab versus clinical discordance. In the context of high violence as a
potential barrier to access to preventive health services, a community approach to improve health
and peace should be considered.

Keywords: arboviral surveillance; neighborhood violence; clinical diagnosis; laboratory specificity;
spatial clustering; community health

1. Introduction

Dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV) viruses are examples of vector-borne
viruses (arboviruses) transmitted by infected Aedes aegypti mosquitoes. Arboviruses are responsible
for a significant burden of disease globally [1–3], with at least 35% of the population at risk for
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DENV infection alone [2–4]. Though difficult to quantify due to limited data, one estimate attributes
300,000–5,000,000 DALYs (nondiscounted, unweighted disability-adjusted life years) in 2005 to four
arboviruses: YFV, Japanese encephalitis virus, Rift Valley fever virus, and CHIKV (before emergence
in the Americas) [1]. DENV alone is estimated to be responsible for 390 million infections per year,
including 96 million symptomatic cases with 14% of the burden in the Americas [2]. Billions live in areas
at risk of these infections [3,5–7], which cause acute febrile disease and long-term sequelae [1,8–12].
The long-term impacts of ZIKV are still unclear, as the severe complications at birth for exposed fetuses
is likely to be only the tip of the iceberg as epidemiological studies follow these ZIKV-exposed infants
through neurodevelopment [13–15]. Arboviral outbreaks are forecasted to change and expand in
geographic and absolute burden.

Arboviruses cause a public health burden in Colombia. CHIKV emerged as an outbreak between
September 2014 and 25 September 2015 [16]. Per the Colombian Ministry of Health and Social
Protection Epidemiology Bulletin (25 October–31 October 2015) [17], 712 municipalities reported
439,000 cases during the outbreak [16]. The outbreak disproportionally affected the city of Santiago
de Cali which reported 44,877 cumulative cases of apparent disease through 17 October 2015 [18].
DENV is hyperendemic in Colombia and Cali with over 18,000 cases reported to The National System
of Surveillance in Public Health (SIVIGILA) in the department of Valle del Cauca between week 1
and week 48, 2015 [17]. ZIKV entered Colombia via Brazil, and the first new case was reported in
October 2015 [19]. Between week 40 of 2015 and week 3 of 2016, municipalities reported 20,297 suspected
and 1050 lab-confirmed cases to the National Institute of Health [17]. Through April 2016, clinics reported
3139 suspected cases of ZIKV disease to the Municipal Secretary of Public Health of Cali [17].

Violence can impact health delivery-impeding surveillance and delivery of services [20–22]—and
affect an individual’s health-related behaviors, when survival takes priority [23]. Furthermore,
The World Health Organization (WHO) identified violence as a risk factor for increased communicable
disease [20]. Violence has previously been studied as a contagious disease exhibiting spatiotemporal
clustering and self-prorogation [24–28]. We hypothesize that neighborhood safety and arboviruses
are linked in Cali as high rates of violence may act as a barrier to services, including reliable water,
mosquito spraying, public health, and epidemiological intervention.

Violence is a complex construct with multiple contributors. Due to lack of more granular data, we
use homicide rates as a proxy for the burden of violence. However, violence can have different sources,
from individual variables to social, political, and institutional ones, including domestic violence,
political violence, politically or socio-economically driven homicides, gangs, microtrafficking, and
poverty provoked violence. Social determinants of health such a wealth, education, and violence
contribute to health inequities [29,30]. Particularly relevant to the case study in Colombia is political
violence. Globally, Colombia is the country with the second most internally displaced persons
(IDP), with 7 million (14.5% of the population) between 1985 and August 2017, and 487,129 IDPs
between January 2015 and December 2017. Seventy-seven to seventy-eight percent [31,32] of all
internally displaced persons live in 234 to 282 of 1122 municipalities. The United Nations Office for
the Coordination of Humanitarian Affairs organized these municipalities into departments by priority
of most affected areas—Valle del Cauca ranks 12th. Grajales et al. report land control and forced
displacement are associated with economic and political movements, creating rural violence and large
refugee populations [33].

A review on violence and health in low and middle-income settings (LMIC) highlighted the
disproportionate burden violence has on LMICs where over 90% of violence-related deaths occur
and the associated mortality rate is nearly 2.5× greater compared to high income countries [34].
Cali is one of the 30 most violent cities worldwide [35], reporting 64 homicides per 1,000,000 people
annually. Homicide was ranked as the primary and secondary cause of death in 2008–2014 and 2015,
respectively [36]. In 2010, the Ministry of Social Protection prioritized violence as the country’s main
public health problem due to its magnitude and impact on health [37]. As noted in a recent pediatric
trauma study in Cali, there is a “long-standing history of violence associated with the weak social
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structure resulting from years of drug trafficking, migration to urban areas, poor economic development,
the presence of illegal armed groups, and changed familial, social, and religious patterns” [38].

The municipal secretary of health of Cali publishes an annual action plan which includes activities
to prevent both vector-borne diseases and violence; with the caveat that these programs are linked
to funding at the city level which are subject to change. Vector-borne disease prevention focuses
on breeding site control, community education, and quality health service [39] with the goal of
strengthening public health and intelligence surveillance for the integrated analysis of environmental
monitoring of the disease; includes surveillance and analysis of morbidity and mortality, etiological
agents, risk factors, entomology, reservoirs, and wild populations, to predict, target, and stratify
risk [40]. The 2018 plan aims to (1) perform 11,600 drain inspections; (2) decrease arboviral incidence
by 10% in priority areas; (3) report 100% of diagnoses confirmed cases of febrile DENV, CHIKV, and
ZIKV; and (4) install Wolbachia infected Aedes aegypti nurseries in 1000 homes [40].

The Municipal 10-year plan for public health focuses violence prevention on strengthening
coordination for joint intervention of all government agencies and community empowerment for
sexual violence prevention [39]. The Municipal Secretary of Health of Cali (SOH) 2018 action plan
includes multiple activities to address violence through community centers for life, harm reduction,
promotion of mental health awareness, community-based surveillance and intervention, strengthening
mental health help-line, and care for female violence victims [40].

Different geospatial approaches have been used to examine vector-borne diseases at different
scales [41–43]—from using remote sensing and spatial analysis, to identifying regional/national
patterns [44–46], to using more localized spatial analysis [47]. Typically, spatial exploratory analysis can
be used to identify patterns in both surveillance and potential exploratory variables. DENV geospatial
analyses have included either mosquito intensity or human case data [48–50]. The hypothesis proposed
here was developed from a series of spatial narratives describing local-vector-borne-disease risk in
which interrelated topics of poverty, lack of city services, and perceived and actual danger often
intersected [50]. Herein, we will analyze patterns of arboviral risk and access to laboratory diagnostics
and at the same time take a first step in revealing how arboviral risk is affected by violence by
comparing and contrasting arboviral-risk patterns with measures of neighborhood violence.

2. Materials and Methods

2.1. Ethics

Appropriate local (Universidad Icesi, Cali, Colombia #061) and University institutional review
boards (Kent State University #15-529) approved this study. Secondary human case data are presented
at the aggregate neighborhood level. As individuals are anonymous, the IRBs deemed informed
consent unnecessary.

2.2. Location and Study Population

Cali is 160 km from the Pacific coast of Colombia in the department of Valle del Cauca with a
population of 2,369,821 in 2015 [36]. The climate is tropical (25.5 ◦C median temperature and 752 mm
annual precipitation from 2015 to 2016) [36]. National annual median GNI per capita is US $7560 [51] with
16.5% of the population in Cali living in poverty and 3.4% living in extreme poverty in 2015 [36]. A child
born in Cali in 2015 can expect to live 74.4 years on average [36]. The top two primary causes of death
have been homicide and hypertension since 2008 [36]. Populations are constantly immigrating to Cali
from all over the country, especially from the regions of Pacific, Cauca, and the coffee growing regions
known as the coffee axis. More recently, immigration from Venezuela to Colombia has increased with
over one million immigrants registered in just two years including over 16,000 Venezuelans registered
as living in the department of Valle del Cauca during the 2018 census as reported the local newspaper
and reports from the Ministry of foreign relations in 2018 [52–54]. This large-scale immigration
could affect transmission dynamics [55,56]. A small proportion (5.3%) of the population of Cali lives
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in unplanned urbanizations according to a 2015 survey done by the Territorial Organization Plan
(POT) [57]. The study population included incident cases of confirmed or suspected CHIKV, DENV,
or ZIKV infections from the municipal area of Cali reported between October 2014 and April 2016 to
SIVIGILA. Laboratory confirmation was not available for reported Zika cases or chikungunya cases.

2.3. Study Design

Incident case data were collected retrospectively from The National System of Surveillance in Public
Health (SIVIGILA) via the Municipal Secretary of Public Health of Cali. DENV, CHIKV, and ZIKV
infections case reports included laboratory results and patient home and work addresses (Figure A1).
Three-thousand-seven-hundred-and-fifty duplicate records were excluded from 33,443 initial results.

2.4. Data Sources and Linking Data

The following data sources were used to extract data for the final analysis. SIVIGILA. National
Institutes of Health of Colombia (INS) maintain ongoing passive, national surveillance in Colombia
using SIVIGILA, the agency responsible for the systematic and constant observation and analysis
of health events. It is Colombia’s reportable disease database to which all secretaries of health
contribute. Rodriguez-Morales et al. [58] previously described the surveillance system. Briefly, in
the present study, cases were georeferenced at the neighborhood level according to reported home
addresses. DANE. The administrative department of planning of the municipality of Cali publishes the
neighborhood level characteristics (2005 DANE Census). We downloaded these reports and compiled
the neighborhood level data into comma-separated value (CSV) files. These were linked to shapefiles
of Cali neighborhoods and to georeferenced cases by neighborhood. Ideaspaz. As neighborhood level
data were not available in the official reports of homicide in Cali, we accessed kernel density files
of five levels of homicide risk over space as published by IdeasPaz. We extracted these estimates of
homicide risk on 5 May 2018 from JSON (JavaScript Object Notation) files. To validate the smoothed
homicide-risk data, we compared the files to comuna-level risk as published by the Inter-institutional
Committee on Deaths from External Causes. We mapped the Ideaspaz homicide kernel density layers
in ArcGIS® software by Esri (Esri ArcGIS desktop: release 10.3.1, Redlands, CA, USA). The methods
to collect the data and construct the kernel density layers are available at www.ideaspaz.org. Briefly,
homicide data were extracted from the Ministry of Defense between 1990 and 2016 at the municipal
and departmental level. Population estimates and projections were extracted from DANE from 1985
to 2020 at municipal and departmental level. Homicides rate per 100,000 persons was calculated by
Fundación Ideas para La Paz at municipal level with data from the DANE population (April 2017)
and total homicide cases per municipality (mindefensa). Homicide concentration was estimated by
kernel density analysis, with a 100 m edge cell size and a 500 m search radius. Concentration of
homicides was extracted from SIEDCO national police data. Inter-institutional Committee on Deaths
from External Causes. Due to the lack of temporal data in the kernel density files of homicide risk
from IdeasPaz, we also extracted comuna-level-aggregated monthly counts of homicides from official
monthly reports by the Inter-institutional Committee on Deaths from External Causes—Observatorio
De Seguridad De Cali (http://www.cali.gov.co/). Linking data. Data were extracted from various
data sources at the neighborhood level including: education, income, marital status, race/ethnicity,
age structure, population, utility services coverage rates, and homicides. The urban Cali shapefile
was obtained from the Caucaseco Scientific Research Center. All data were merged with the shapefile
at the neighborhood level. Case home addresses were standardized using the SoH guidelines and
georeferenced the addresses using municipal secretary of health of Cali software (Supplementary
Materials “Estandar creacion archivo para Georreferenciar”).

2.5. Case Definitions

ZIKV. Rodriguez-Morales, Galindo-Marquez, García-Loaiza, Sabogal-Roman, Marin-Loaiza,
Ayala, Lagos-Grisales, Lozada-Riascos, Parra-Valencia, Rojas-Palacios, López, López, and

www.ideaspaz.org
http://www.cali.gov.co/
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Grobusch [58] previously described the ZIKV case definition. Briefly, determination of ZIKV infection
included either laboratory or syndromic surveillance—clinical definition of fever, rash, conjunctivitis,
and arthralgias in a municipality with previous ZIKV circulation, at least one case confirmed
by Real-Time PCR (polymerase chain reaction) to detect virus. The clinical definition has been
recommended by the World Health Organization (WHO), Pan American Health Organization (PAHO),
as well the U.S. Centers for Disease Control and Prevention (CDC). After one case is confirmed
by RT-PCR in a municipality, nonrisk patients may be diagnosed by clinical definition [58]. DENV.
Villar et al. [59] previously described the DENV surveillance system in Colombia. Briefly, probable
and confirmed cases of DENV are reported weekly, and cases of serious dengue disease and mortality
due to dengue disease are notified immediately by mandatory reporting to SIVIGILA. In the case
of an outbreak, serological samples are taken from 5% of cases of DENV fever (DF) and all cases of
serious dengue disease [59]. Sarti et al. [60] previously described the SIVIGILA DENV reports of cases
diagnosed as probable and confirmed cases of DF, DENV with alarm signs (DWS), and severe DENV
(SD) as defined by the WHO in 2009. Briefly, laboratory confirmation requires anti-DENV IgM and IgG
detection, virus isolation, or detection of DENV virus genomic sequences with RT-PCR. Virus isolation
is attempted in 6 to 7% of samples received [60]. CHIKV. Determination of CHIKV infection included
either laboratory and syndromic surveillance. The clinical definition has been recommended by WHO,
PAHO, as well CDC. DENV laboratory diagnostics are reported per SIVIGILA guidelines with acute
infection measured by PCR, IgM, or NS1. Test, lab result, and agent were queried to determine testing
by acute methods (NS1 ELISA, IgG, PCR, and viral isolation), the result of the assay (Negative, Positive,
Equivocal, or No Data), and the agent used in the assay (DENV vs. other). Data were analyzed using
apparent disease including both suspected and clinically confirmed (clinical diagnosis, regardless of
laboratory confirmation) and laboratory confirmed cases using the definitions provided by SIVIGLA.

2.6. Analysis

Kernel density layers of total homicides from Ideaspaz JSON files were mapped in ArcGIS®

software by Esri (Esri ArcGIS desktop: release 10.3.1; Redlands, CA, USA). Concentration of homicides
was extracted by city from Fundación Ideas Para La Paz from SIEDCO national police data during
February 2017. Spatial density was calculated by kernel density analysis using a 100 m edge cell size
and a 500 m search radius.

Homicide time series of Inter-institutional Committee on Deaths from External Causes were
analyzed using R-Studio, Version 1.0.136 package “Forecast” using an Auto Regressive Integrated
Moving Average model (ARIMA) selecting the best model by comparing AICc with varying parameters
(p, d, and q) where p is the order (time lags), d is the degrees of differencing (times the past values are
subtracted from the data), and q is the order of the moving-average model. The model permitted “drift”
or nonstationary seasonality, meaning adjacent seasons moved separately over time. The autoARIMA
function estimated the data fit best to 4 time-lags, 1 degree of differencing, and 0 moving average model.

Georeferenced cases of reported DENV, DENV laboratory diagnostics, and confirmed acute DENV
density from SIVIGILA were mapped using WGS1984 projection in R Studio, Version 1.0.136 [61].
Spatial density was calculated by kernel density analysis using a 100m edge cell size and a 500 m
search radius. Spatial scan statistics were conducted using SatScan [62] with Bernoulli distribution [63].
SatScan searched for high clusters of reported DENV cases, DENV laboratory diagnostics, and
confirmed acute DENV using a maximum spatial cluster size of 50 percent of population at risk and a
circular window shape. Only secondary clusters without geographic overlap are reported. Clusters
were mapped using ArcGIS® software by ESRI (ESRI ArcGIS Desktop: release 10.3.1; Redlands, CA,
USA) (Figure 3). The associated relative risk and p-value of the hotspot was estimated comparing the
ratio of the observed and expected cases under a random distribution as previously described [64].

Generalized liner models (GLM) from R-studio package “stats” were used to estimate adjusted
effects of neighborhood relative risk of homicide (IdeasPaz) on number of reported DENV cases (Poisson
distribution), low or high levels acute testing (binomial distribution), and low or high levels of confirmed
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acute illness (binomial distribution). Covariates included neighborhood level social strata, observed
number of cases (in the case of acute testing and confirmed acute illness) and population density.

3. Results

The SIVIGILA query resulted in 33,443 records; 3750 duplicates were removed if the person
ID matched within one week of report for the same disease code; 26,985 cases were georeferenced
and 2708 were not located and removed. The final analysis included 2636 CHIKV, 3139 ZIKV, and
21,210 DENV cases (Figure A1).

Of cases reported to SIVIGILA during the study period, the lab confirmed few cases with DENV
antigen (Appendix A, Table A1). Of note, we excluded from this analysis: unidentified antigens (n = 9)
and lab assays omitted from the DENV case reporting form (code: 11, 17, 20, 58, 85, JA, MO, LA)
(n = 1447). Laboratories confirmed 14% of DENV cases (2989/21,210) by acute methods (PCR, NS1
ELISA, or IgM ELISA), of which only 56.5% tested positive. Acute testing achieved 56.5%, 85.7%,
56.1%, and 57.1% sensitivity compared to clinical diagnosis of severe DENV fever, nonsevere DENV
fever, and DENV death respectively (Table 1).

Table 1. Results for acute dengue virus (DENV) testing by clinical severity.

Nonsevere DENV Severe DENV DENV Death Total

Total acute testing 2904 42 7 2953
Negative 1275 (6%) 6 (5%) 3 (23%) 1284
Positive 1629 (9%) 36 (28%) 4 (46%) 1669

Sensitivity compared to clinical diagnosis 56.1% 85.7% 57.1% 56.5%

Patterns in incident arboviral cases emerged over time with clear outbreak seasons (Figure 1)
and concurrent outbreaks. There appears to be either a real increase in cases over the epidemic
curve or a tendency to diagnose what is in an outbreak as sensitivity remains constant (interquartile
range = 0.4–0.6) over time (Figure 1).Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  7 of 21 
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and viral isolation), the result of the assay (Negative (−), Positive (+), Equivocal, or No Data (ND)), 
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Average monthly homicide risk rates varied by region with the lowest (1.38 cases) and highest 
(12.71) risks reported in Comunas 22 and 15, respectively. 

Figure 1. Cases reported to The National System of Surveillance in Public Health (SIVIGILA) over
time. Laboratory results reported as per SIVIGILA. Acute diagnostics included PCR, IgM, or NS1.
We queried the variables test, lab result, and agent to determine acute methods (NS1 ELISA, IgG, PCR,
and viral isolation), the result of the assay (Negative (−), Positive (+), Equivocal, or No Data (ND)),
and the agent used in the assay (DENV vs. non). NA = data unavailable from lab.
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Homicide rates varied over time (Figure 2) (Pearson’s correlation coefficient = 0.37 95% CI =
0.3–0.4, p-value < 0.0001). By decomposing the time series using the R “forecast” package (Appendix A,
Figure A2), we visualized the observed time series, trend, seasonal effects, and random effects
(Supplementary Materials).

Average monthly homicide risk rates varied by region with the lowest (1.38 cases) and highest
(12.71) risks reported in Comunas 22 and 15, respectively.

In spatial analysis, we observe spatial clustering of acute testing of DENV among all DENV cases
reported. Likelihood of lab confirmed acute infection increased in the Northwest region of the city
compared to other regions (relative risk = 1.38, p < 0.001) and decreased in the central-eastern region
(RR = 0.56, p < 0.001), also reporting higher total numbers of DENV cases (Figure 3).
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Figure 3. SatScan analysis of acute DENV laboratory testing among all DENV cases reported to
SIVIGILA in Cali 2014–2016. RR = Relative Risk calculated as ratio of observed versus expected number
of cases having lab confirmation of acute infection compared to no lab confirmation or non-acute lab
diagnosis in urban area of Cali, Colombia.
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We observed spatial clustering of homicides-homicides increased in the central-east of the city
compared to other regions. This region overlaps with the high DENV risk and low acute testing
(Figure 4).
Int. J. Environ. Res. Public Health 2018, 15, x FOR PEER REVIEW  9 of 21 
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Figure 4. Total homicide risk kernel density in urban area of Cali, Colombia. Extracted from IdeasPaz
on 5 May 2018. Briefly, homicide data were extracted from the Ministry of Defense between 1990 and
2016. Homicide concentration was estimated by kernel density analysis, with a 100 m edge cell size and
a 500 m search radius. Concentration of homicides was extracted from SIEDCO national police data.

Among acutely tested cases, we observed spatial clustering of sensitivity of lab diagnostics
compared to clinical diagnosis (Figure 5).
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Figure 5. Spatial clustering of true DENV positives among acutely tested DENV cases reported to
SIVIGILA in urban area of Cali, Colombia 2014–2016. RR = Relative Risk calculated as ratio of observed
versus expected number of cases having lab a positive lab results compared to negative lab result
among cases tested by lab for acute DENV infection in urban area of Cali, Colombia.

Lower median neighborhood social strata (government assessed level of median neighborhood
income level) and higher homicide risk is associated with higher burden of DENV (p < 0.001, Table 2,
Absolute Burden of DENV); lower rates of acute testing (p < 0.001, Table 2, Access to DENV Laboratory
Testing); and higher rates of discordance between lab diagnosis and clinically suspected DENV cases
(p < 0.001, Table 2, Discordance Between Lab and Clinician).
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Table 2. Absolute burden of DENV by social strata and total homicide risk; DENV acute testing rates by
social strata and total homicide risk; and confirmed DENV acute by social strata and total homicide risk.

Absolute Burden of DENV Access to DENV
Laboratory Testing

Discordance Between Lab
and Clinician

Lower risk
of Total
DENV

Higher Risk
of Total
DENV

Higher Rates of
Acute DENV

Testing

Lower Rates of
Acute DENV

Testing

Higher Rates of
Confirmed

Acute DENV

Lower Rates of
Confirmed

Acute DENV

n 19,673 19,672 6185 5561 306 3695

Median Social Strata of Neighborhood (%) p < 0.001.

Low 3176 (16.9) 1997 (10.6) 208 (3.4) 1526 (27.4) 0 (0.0) 378 (10.2)
2 2568 (13.6) 5855 (31.1) 2007 (32.7) 3193 (57.4) 0 (0) 2158 (58.4)
3 1525 (8.1) 8476 (45.0) 3222 (52.5) 842 (15.1) 40 (13.1) 1159 (31.4)
4 1786 (9.5) 1906 (10.1) 204 (3.3) 0 (0.0) 259 (84.6) 0 (0.0)
5 5395 (28.7) 584 (3.1) 414 (6.8) 0 (0.0) 0 (0) 0 (0)

High 4368 (23.2) 0 (0) 66 (1.1) 0 (0.0) 0 (0) 0 (0)
Not reported - - 11 (0.2) 0 (0.0) 7 (2.3) -

Homicide Risk over space (%) p < 0.001.

Low 6522 (34.7) 230 (1.2) 204 (3.3) 0 (0.0) 16 (5.2) 0 (0.0)
1 122 (0.6) 566 (3.0) 128 (2.1) 0 (0.0) 0 (0) 0 (0)
2 3942 (20.9) 2452 (13.0) 1101 (17.8) 0 (0.0) 75 (24.5) 23 (0.6)
3 3446 (18.3) 3688 (19.6) 1750 (28.3) 18 (0.3) 94 (30.7) 449 (12.2)
4 2715 (14.4) 5492 (29.2) 1824 (29.5) 537 (9.7) 121 (39.5) 1422 (38.5)

High 2071 (11) 6390 (34.0) 1178 (19.0) 5006 (90.0) 0 (0) 1801 (48.7)

Controlling for SES and population density, overall kernel density of reported DENV risk
(suspected and confirmed acute) is associated with increased risk of homicide and increasing wealth
(social strata) (Table 3, GLM Poisson Regression for Kernel Density of DENV RISK (1–5)). Controlling
for absolute burden of observed cases, SES, and population density, access to access to DENV laboratory
testing decreased with increasing homicide risk and decreasing wealth (p < 0.001) (Table 3, GLM
Binomial Regression for Acute Testing RR above and below 1).

Table 3. DENV cases reported by region by social strata and homicide risk (GLM, Poisson) and GLM
binomial regression for acute testing Relative Risk above and below 1.

GLM Poisson Regression for Kernel
Density of DENV RISK (1–5)

GLM Binomial Regression for Acute
Testing RR above and below 1

OR 2.5% 97.5% OR 2.5% 97.5%
Homicide Risk 1.14 * 1.13 1.14 0.03 * 0.02 0.04

Social Strata 1.06 * 1.05 1.06 5.18 * 3.89 7.01
Interaction of Social Strata and

homicide risk 1.02 * 1.02 1.02

Population Density 1.11 1.11 1.12 0.95 0.84 1.08
Observed DENV Cases 1.02 * 1.02 1.02

* p < 0.001; Homicide risk by spatial join between case acute testing RR and kernel density of homicide risk (1–5).
Social strata and population density by spatial join between case acute testing RR and neighborhood mean social
strata (1–6) and population density (population/squared meters). OR = Odds Ratio. GLM: Generalize Linear
Regression; RR: Relative Risk.

4. Discussion

We observe an intersection between violence and health—risk of arboviral infection and homicide
are geographically clustered, specifically in the central-western region. These findings support our
hypothesis that reported violence impact disease risk. Amongst clusters of limited access to acute
testing, we found an association with lower social strata and increased homicide risk. We observe
low sensitivity of lab-diagnostics (compared to clinical diagnosis) associated with lower social strata
and higher homicide risk. However, as with other studies exploring fine-scale relationships between
disease and violence [65], data deficiencies limit sophisticated modeling. In Cali, these deficiencies are
likely under-reported in disease surveillance and unavailable or context-poor spatial data on violence.
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A WHO violence and health report [20] identified violence as a risk factor for increased
communicable disease and identified specific factors increasing risk of communicable during conflicts:
(1) the decline in immunization coverage; (2) population movements and overcrowding in refugee
camps; (3) greater exposure to vectors and environmental hazards, such as polluted water; (4) the
reduction in public health campaigns and outreach activities; and (5) the lack of access to health care
services. Furthermore, specific arboviral examples are becoming more apparent [21,22]: one DENV
intervention study concluded that the wider social context of urban violence and insecurity hindered
intervention acceptance despite the potential for DENV prevention and called for further research on
insecurity’s impact on DENV prevention programs [21]. An intervention for mobilizing against Aedes
aegypti under difficult security conditions in southern Mexico found urban violence inhibited DENV
prevention [22]. We previously found that perceived risk factors included proximity to standing water,
canals, poverty, invasions, localized violence, and military migration. These risks overlapped arboviral
case density maps and identified areas suitable for transmission but are possibly underreporting to the
surveillance system [50].

Localized patterns of arboviruses can result from a variety of different ecological, socio-economic,
behavioral, and political factors. While studies have previously considered different aspects of this
disease system for Cali, a notably absent variable in these epidemiological analyses has been the impact
of violence. While the interrelationship between disease presence and safety/security is likely to be a
factor in most environments, this is especially pertinent for Cali, with its well-documented legacy of
violence. In this paper we have made the first step in linking disease presence and violence spatially
and temporally by considering the co-occurrence of arboviral risk and homicide risk. Unfortunately,
the quality and scale of violence-associated data lags other more traditional arbovirus surveillance
data, meaning our findings are hypothesis generating, especially at finer subneighborhood scales
where results could influence vector control strategies.

Gaps in arboviral surveillance system exist in this region, where cases of arboviral infection are
routinely under-reported due to complex social, economic, and political factors [50], including violence.
Use of health services such as laboratory diagnostics, and subsequent case reporting, is influenced by
access and the external environment. Access defined as the fit between the patient and the health care
system, is determined by five factors: availability, accessibility, accommodations, affordability, and
acceptability [66]. Increased access and decreased cost are expected to lead to increased formal care
treatment-seeking behavior, and thus increased positive outcome. The question remains as to how
violence affects accessibility, for example, in terms of clinic location, hours of access, and perceived
safety in attending. We suspect systematic underreporting by region according to access to health
services related to SES as previously reported by Sarti et al. [60]. Access to preventative services
may be inversely related to violence, as previously noted [21,22]. An independent study reported
aggregated-confirmed-DENV incidence rates 5.8× and 3.5× higher compared to Colombian state and
local levels, respectively [60].

We observed spatial clustering of lab-confirmed acute infection (Figure 5), suggesting underlying
geographic patterns in the access to DENV-laboratory testing. One study in Kenya [67] found access
to care varies by the level of care available locally. Furthermore, we observed spatial clustering of
specificity of clinical diagnosis compared to lab-confirmed acute cases (Figure 5), suggesting variable
quality of clinical care. These clusters are correlated with social strata of the neighborhoods in the
clusters (Table 2), after controlling for absolute arboviral burden.

Overall, laboratory confirmation rates of arboviruses are low (Table 1). The Special Programme
for Research and Training in Tropical Diseases, with researchers and representatives from ministries of
health found low lab confirmation rates [68], confirmed by others [69], which limits the surveillance
system, response time, and outbreak response. As reported previously [70,71], clinical diagnosis
achieved low specificity compared to lab diagnosis (Table 2). This may impact clinical care. Surveillance
systems of asymptomatic arboviral transmission suffer from underreporting and a lack of access to care
around the world [72,73]. For example, one study in Brazil estimated 12–17:1 DENV cases per reported
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case in the community [74], with comparable results observed in Nicaragua, Thailand, Cambodia,
Brazil, Colombia, Mexico, and Philippines [60].

We find evidence of concurrent outbreaks of DENV, CHIKV, and ZIKV (Figure 1)—however,
laboratory confirmation was only available for DENV cases which may include clinical
misdiagnosis [75,76] (Table 1), especially with coinfection [77–80], and serological cross-reactivity
between closely-related flaviviruses DENV and ZIKV [81–85]. Previous studies identified patterns
explaining co-endemicity of human DENV surveillance data [50,86–93]. Globally from 1952 to 2017,
49.2% (123/250) of the studied countries/territories reported two or more Aedes spp.-transmitted
diseases in common [90]. Recent studies have reported DENV, CHIKV, and ZIKV co-circulation in
South America [50,91–93]. Our work supports previously identified temporal patterns of human
DENV infections surveillance; finding clear temporal sequence [94], temporal patterns varying from
year to year [95], correlation with seasonal climate [96]; and spatiotemporal patterns [96,97].

The quality of violence-related data limits our ability to co-model the outcomes identified here.
Interestingly, homicides also displayed temporal patterns with a trend of decreasing risk from 2015 to
2018 and marked seasonal variation. However, within this decreasing trend, finer-scale patterns emerge.
Violence rates remain high in some regions, suggesting underreported disease burdens and lower
access to DENV laboratory testing and confirmation. Furthermore, the central-east of Cali reported
higher homicide rates on the exterior of the eastern urban boundary, which experiences invasion,
or the establishment of informal settlements [57]. Here, for example, an additional risk of mosquito
breeding habitats associated with typical informal settlement living is also present. This provides a
considerable public health challenge: areas with a high density of informal settlements have high
rates of violence yet more limited access to diagnostics and vector control. Moreover, the nature of
these settlements is likely to facilitate mosquito breeding. While our data limits our ability to resolve
finer-scale spatial patterns, at a more aggregate scale we did find an association between increased risk
of reported arboviral infection and reported homicide risk.

Recently, Geographic Information Science is reassessing appropriate spatial-scale of analysis
considering both physical and social-behavioral context, interpretation, and public health implications.
The uncertain geographic context problem [98,99] states: if data does not capture the human experience,
then subsequent analyses and insights will be deficient [100]. Although challenging to collect,
context-rich data would improve traditional epidemiological analysis. Vector-borne disease maps
usually include environmental (including moisture and vegetation), infrastructure, climatic (micro
and macro), entomological, and human data layers (density, social, behavioral, political, and disease
surveillance) [101,102]. Public health intervention requires data on subneighborhood scale features,
such as houses, streets, standing water, and trash [103,104] which are traditionally incomplete or
available at courses space-time scales. For example, while human density, economic hardship [105,106],
and standing water are associated with DENV, these relationships may vary in intensity and co-vary
to produce microregions of risk. New mixed-methods of data collection are required to quantify and
map the context of patterns of violence and disease risk identified here.

The community context of violence permeates private lives. Venegas Luque et al. [23] reviewed
the psychosocial and mental health effects of internal violence in Colombia, citing legal actions in which
the government takes responsibility for psychosocial care of the displaced population; recognizes
how violence effects personal and community stability; reinforces the displaced population’s right
to health; emphasizes mental health care; and consolidates public policy for the care and reparation
of violence victims [23]. High rates of domestic violence have also been reported in Cali, with 35%
of children (5–9 years old) and 31% of women experiencing domestic abuse in 2005, although the
authors suspected high rates of underreporting [107]. In the same study, communes 13, 14, and 15
in the District of Aguablanca and commune 6 had the highest concentration of cases of domestic
violence [107], the same regions identified in the current study for high arboviral and violence risk.

Some proximate barriers to laboratory diagnostics and case reporting have been suggested:
health care access, especially in areas most at-risk of arboviral infection [50]; and/or limited public
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health resources for data management and reporting (Figure 6). Patients who report to clinics may
be excluded from hospital surveillance required by the municipal secretary of health guidelines,
placing them at higher risk of mortality (SoH guidelines). Patients living in violent contexts may
be especially vulnerable to lack of access to health care services as identified by WHO [20]. Further,
the urban poor may be disproportionately affected by outbreaks in the future [56,108,109] as the
potential for outbreaks changes with temperature [110–112], vector adaptation to urban environments
(including water storage and household containers) [113,114], and violence as a barrier to preventative
services [20–22]. The long-term impacts of arboviral infection, especially in children, could create a
vicious cycle of disability, poverty, and violence if left uncontrolled [115,116].
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5. Conclusions

We present outbreaks of DENV, CHIKV, and ZIKV at the macro- and microscales in Cali and
identify patterns of homicide associated with reported cases during an outbreak over time and space.
Factors secondary to traditional epidemiological surveillance and public health efforts in this endemic
region, such as neighborhood violence, can impact endemic and epidemic disease. These trends
could be further analyzed if violence data were available at a finer spatial scale. We have linked
arboviral surveillance and violence spatially. We observed spatial clustering of both acute testing
and specificity of clinical vs. laboratory diagnosis. An overall higher risk of homicide is associated
with increased risk of reported DENV, lower rates of acute testing, and higher rates of lab versus
clinical discordance. While we do not suggest that increased homicide rates themselves drive increased
mosquito-borne disease rates, the correlation shown here underscores the need for integrated vector
control; environmental health; and a community approach to holistically improve public health.
New data shows peace-generation may be incentivized using a system similar to carbon credits [117].
Furthermore, the NGO Cure Violence believes that violence can be treated as an infectious disease
using a Health Violence Cure Model which is being implemented in over 60 communities in twenty-five
U.S. cities and five continents [26] with success rates up to 70% [118].
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Figure A2. Decomposition of time series trends in monthly homicide reports. Panel observed shows
observed time series data. Panel “trend” shows general trend of decreasing monthly homicides
between January 2015 and March 2018 (monthly homicides = −16.07ln(x) + 154.84; R2 = 0.9119).
Panel “seasonal” shows a seasonal trend with marked peaks near the beginning of the year and a
smaller peak at mid-year. Panel “random” shows the unexplained variation.
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Table A1. DENV lab results by assay and antigen.

Assay IgM PCR NS1 ELISA Viral Isolation Total acute DENV IgG

DENV (n = 21,210)
Tested (%) 2727 (12.9) 39 (0.18) 216 (1.01) 2 (0.001) 2953 (13.9) 196 (0.9)

Positive (%) 1496 (54.9) 28 (71.8) 145 (67.1) 0 (0) 1669 (56.5) 137 (69.9)
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