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Abstract: In this study, we design an intelligent model to predict chlorophyll-a concentration, which is
the primary indicator of algal blooms, using extreme learning machine (ELM) models. Modeling algal
blooms is important for environmental management and ecological risk assessment. For this purpose,
the performance of the designed models was evaluated for four artificial weirs in the Nakdong River,
Korea. The Nakdong River has harmful annual algal blooms that can affect health due to exposure
to toxins. In contrast to conventional neural network (NN) that use backpropagation (BP) learning
methods, ELMs are fast learning, feedforward neural networks that use least square estimates (LSE)
for regression. The weights connecting the input layer to the hidden nodes are randomly assigned and
are never updated. The dataset used in this study includes air temperature, rainfall, solar radiation,
total nitrogen, total phosphorus, N/P ratio, and chlorophyll-a concentration, which were collected on
a weekly basis from January 2013 to December 2016. Here, upstream chlorophyll-a concentration data
was used in our ELM2 model to improve algal bloom prediction performance. In contrast, the ELM1
model only uses downstream chlorophyll-a concentration data. The experimental results revealed
that the ELM2 model showed better performance in comparison to the ELM1 model. Furthermore,
the ELM2 model showed good prediction and generalization performance compared to multiple
linear regression (LR), conventional neural network with backpropagation (NN-BP), and adaptive
neuro-fuzzy inference system (ANFIS).

Keywords: Nakdong River; regulated river; harmful algal bloom; environmental management;
prediction modeling; extreme learning machine; ANFIS

1. Introduction

Recent climate change and economic development around the world has been at the cost of
environmental deterioration over the same time period, and development has impacted human life
directly and indirectly. Among environmental degradation issues, algal blooms refer to the explosive
increase and high concentration of phytoplankton in the ecosystem. This has become a challenge
facing human society today as algal blooms are becoming more prevalent throughout the world [1,2].
Water quality, hydrology, and climate are the main factors influencing algal blooms in terms of
chlorophyll dynamics. Although the general relationship between environmental conditions and
phytoplankton dynamics has been extensively studied in the past [3-5], controlling algal blooms
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is difficult because the relationship between environmental factors and algal blooms has different
characteristics that depend on geography and time.

In terms of model development, there are typically two types of forecasting models: deductive and
inductive models. Deductive models are based on existing theories and knowledge, which enable users
to simulate the behavior of various systems. Numerical modeling as a form of deductive modeling has
an advantage in forecasting, considering geographical and hydrodynamic variations [6]. However,
this method requires numerous input data, calibration, and validation, resulting in uncertainty in the
model parameters [7,8]. As an alternative, computational artificial intelligence techniques have been
developed as more efficient tools in recent years for predicting or forecasting algal blooms. With the
development of artificial intelligence models, an artificial neural network (ANN) was applied to predict
algal blooms by assessing eutrophication and simulating chlorophyll-a concentration. Support vector
machine and deep learning techniques were also applied to predict phytoplankton abundance.
Zhang [2] presented a novel prediction approach for algal blooms based on deep learning to represent
and predict highly dynamic and complex phenomena. Tian [3] performed an optimization of a
traditional ANN model for predicting chlorophyll dynamics with the goal of decrease the cost of in-situ
aquatic environmental monitoring and increase the accuracy of bloom forecasting. Loi [9] attempted
to develop an ELM-based predictive model to simulate dynamic changes in phytoplankton abundance
in the Macau Reservoir, given a variety of water variables. Rogers [10] presented a new approach to
nonlinear groundwater management with the aid of ANNs and optimized aquifer remediation.

Considering the drawbacks of ANNSs, extreme learning machine (ELM) was recently thought
to be a better solution. Extreme means that its learning speed is extremely fast while it has higher
generalization than gradient-descent-based learning [11]. In fact, it has been shown that ELM can be
10 times faster compared to some traditional algorithms with backpropagation [12]. ELM has been
used to assess the stability of electric power systems, optimize the lifetime of transportation systems,
and predict electrical power. Xu [13] developed an ELM-based predictor for real-time frequency
stability assessment to enhance the dynamic security of power systems. Sun [14] proposed a two-stage
approach to optimize the lifetime of transportation systems by combining linear programming (LP)
with an ELM. Vergara [15] applied two machine learning techniques to predict active electrical power
in buildings by comparing ELM against multilayer perceptron methods. Yeom [16] proposed a new
design method based on an ELM with automatic knowledge representation from numerical datasets
for short-term electricity-load forecasting. ELM has been applied to water resource management,
including discharge forecasting, future projection-based climate change scenarios using an online
sequential ELM (OS-ELM), and algal bloom prediction using an ELM on reservoirs. Yadav [17] applied
OS-ELM as a new technique capable of updating the model equation based on new data entry without
much increase in computational cost; this was used in flood forecasting on the Neckar River, Germany.
Yin [18] projected future variability of reference evapotranspiration using an ELM and support vector
regression in a mountainous inland watershed in north-west China. Wang [19] proposed a hybrid
mechanism modeling method, which synthesized the advantages of an ecological dynamic model and
a data-driven model. To obtain an appropriate model, a function model library with key impact factors
(IFs) in algal bloom formation was first established, and then Tabu search and a genetic algorithm
were applied for model structure optimization and parameter calibration, respectively. Wang [20]
constructed a mechanism-based model according to algal bloom nonlinear temporal dynamics to
reflect nonlinear dynamic changes in the algal bloom formation mechanism. However, studies have
not focused on predicting algal blooms using machine learning with water quality and climate data in
regulated rivers. Wang [21] proposed an integrated variable fuzzy evaluation model, which has the
precision of the algorithm and operability for the assessment of river water quality based on case studies
of reservoir and river water. Olyaie [22] compared various artificial intelligence methods, particularly
ANNEs, adaptive neuro-fuzzy inference system, and coupled wavelet and neural network for estimating
the suspended sediment load in a river system. Fotovatikhah [23] applied flood management systems,
which are the most promising approaches with respect to accuracy and error rate for flood debris
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forecasting and management. In this study, we attempt to apply ELM-based models to predict
chlorophyll-a concentration as an indicator of algal blooms, which was monitored on a weekly basis in
four weirs in the Nakdong River, South Korea. Despite a growing awareness of the problems associated
with algal blooms in rivers, and particularly in regulated rivers, the drivers of bloom formation and
abundance in rivers are not well understood [24]. The Nakdong River is a regulated river that includes
many artificial weirs. There has been more social interest in this topic after the construction of weirs in
the Nakdong River, and algae blooms have occurred more often downstream rather than upstream.
It has also been difficult to predict algal blooms using numerical models. Thus, it is important to
rapidly and accurately predict algal blooms. It is more difficult to understand and predict algal blooms
in regulated rivers that are connected in sequence because hydrodynamics and water quality are
more diverse than in other rivers. ELM models were applied to 4 weirs in the Nakdong River to
explore the best input structure and develop a model describing weekly chlorophyll-a concentration
while considering parameter minimization, water quality monitoring, and overfitting. Upstream
chlorophyll-a concentration data was used in our ELM2 model to improve algal bloom prediction
performance. In contrast, the ELM1 model only uses downstream chlorophyll-a concentration data.
The ELM1 and ELM2 models showed good performance compared to the conventional neural network
with backpropagation (NN-BP) and adaptive neuro-fuzzy inference system (ANFIS).

This paper is organized in the following manner: Section 2 describes the study area and the water
quality variables that are relevant to the Nakdong River. Section 3 describes the ELM architecture
and learning method. Section 4 presents our simulation results for algal bloom prediction from water
quality and weather data. Finally, concluding comments are presented in Section 5.

2. Study Area

With a length of 525 km, the Nakdong River is the longest river in South Korea, and its watershed
area is 23,384 km?, which is equivalent to approximately 20% of the country’s area. The Nakdong
River has eight weirs which were built in sequence starting in 2012. In particular, four of these weirs
(Gangjeong-Goryeong weir, Dalseong weir, Hapcheon-Changnyeong weir, and Changnyeong-Haman
weir) in the mid-lower Nakdong River region experience harmful algal blooms every summer,
causing many problems for agricultural, residential, and commercial water supplies. Harmful algal
blooms refer to toxic, hypoxia-generating cyanobacterial bloom genera controlled by the synergistic
effects of nutrients (nitrogen and phosphorus), light, temperature, water residence, and biotic
interactions [25]. Since the construction of the weirs, the public and the government have been
interested in managing algal blooms. Figure 1 shows the locations of the four weirs on the Nakdong
River in South Korea and the watershed area.

All data in this study were obtained from the Korean governmental database system, including the
Water Environment Information System and Korea Meteorological Administration System. Monitoring
stations were located 500 m upstream from each weir, and water quality data were gathered weekly
since weir construction. Chlorophyll-a was used as the primary indicator for algal blooms, and other
water quality variables were monitored, including water temperature, pH, dissolved oxygen, electrical
conductivity, total nitrogen, nitrate, ammonia nitrogen, total phosphorus, phosphate, biological
oxygen demand, chemical oxygen demand, and total organic carbon. In the Gangjeong-Goryeong
weir, chlorophyll-a concentration was 19.0 pug/L on average and 106.7 pg/L maximum. In the
Dalseong weir, chlorophyll-a concentration was 26.0 ug/L on average and 104.1 ug/L maximum.
In the Hapcheon-Changnyeong weir, chlorophyll-a concentration was 23.2 ug/L on average and
100.7 pug/L maximum. In the Changnyeong-Haman weir, which is located downstream, the average
chlorophyll-a concentration was the highest at 25.2 ug/L and 123.3 pg/L maximum. Table 1 shows
chlorophyll-a, total nitrogen, and total phosphorus statistical values for the 4 weirs from 2013 to
2016. Correlation analysis results showed that correlation coefficient between total nitrogen and
chlorophyll-a concentration was 0.263 with a positive correlation, the correlation coefficient between
total phosphorous and chlorophyll-a was —0.013 with a negative correlation, the correlation coefficient
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between N/P ratio and chlorophyll-a was 0.092 with a positive correlation in Gangjeong-Goryoung
weir. In the Changnyoung-Haman weir, the correlation coefficient between total nitrogen and
chlorophyll-a was —0.036 with a negative correlation, the correlation coefficient between total
phosphorous and chlorophyll-a was 0.144 with a positive correlation, the correlation coefficient
between N /P ratio and chlorophyll-a was —0.239 with a negative correlation.

Nakdongriver

Geumbho river
" Gangjeong-Goryeong weir

Dalseong weir

Hapheon-Changnyeong weir

Changnyeong-Hamanweir

L IKilometers
0 15 30 60

Figure 1. The study area and main streams.

Table 1. Water quality variables at 4 weirs in the Nakdong River (2013 to 2016).

. Gangjeong-Goryeong Dalseong Hapcheon-Changnyeong Changnyeong-Haman
Variables . . . .
Weir Weir Weir Weir
Chlorophyll-a (ug/L) 19.0 (2.2-106.7) 26.0 (2.7-104.1) 23.2 (1.7-100.7) 25.2 (2.9-123.3)
Total Nitrogen (mg/L) 2.605 (1.201-4.100) 3.723 (1.814-6.433) 3.397 (1.842-6.207) 2.778 (1.249-5.483)
Total Phosphorus (mg/L) 0.048 (0.012-0.157) 0.061 (0.017-0.163) 0.058 (0.016-0.163) 0.054 (0.015-0.174)

Note: Average (Min.-Max.).

There are many methods for classifying ecosystems into trophic categories using nutrients and
algal biomass. The boundaries placed between these categories by aquatic scientists are similar, but they
are not universal. The United States Environmental Protection Agency (US EPA) has suggested that
an annual average chlorophyll-a concentration exceeding 10 ug/L indicates a eutrophic state [26].
The 4-year average total phosphorus concentration in the Nakdong River ranged between 19.0 and
26.0 pg/L. Forsberg and Ryding suggested that annual average total nitrogen concentration values
ranging from 0.6 to 1.5 mg/L also indicates a eutrophic state [27]. The 4-year average total nitrogen
concentration in the Nakdong River ranged from 2.605 to 3.723 mg/L. Also, The Organization for
Economic Co-operation and Development (OECD) suggested that an annual average total phosphorus
concentration exceeding 0.035 mg/L indicates a eutrophic state [28]. The 4-year average chlorophyll-a
concentration in the Nakdong River varied between 0.048 and 0.061 mg/L. Thus, the Nakdong River
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can be considered to be in a eutrophic state based on all three metrics. Figures 2 and 3 show water
quality variations in the Gangjeong-Goryeong and Dalseong weirs from 2013 to 2016.
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Figure 2. Weekly total nitrogen, total phosphorus, and chlorophyll-a data at the Gangjeong-Goryeong

weir from 2013 to 2016 (n = 201).

Total Nitrogen (mg/L)

8.0
6.0 -
q
4.0 &

2.0 1

0.0
13-01-01

14-01-01 15-01-01 16-01-01 17-01-01

Date (yy-mm-dd)

Figure 3. Cont.



Int. J. Environ. Res. Public Health 2018, 15, 2078 6 of 20

—~ 020

=

o0

E 15

w0

=]

—

£ 010

S o

195)

e |

A 0.05 R

s

o

= 0.00 . . . |
13-01-01 14-01-01 15-01-01 16-01-01 17-01-01

Date (yy-mm-dd)

150.0

=

S 120.0

2

F 9001

=S

S 600 -

o

=

]

= 300 14

@)
0.0 1 . ; . |
13-01-01 14-01-01 15-01-01 16-01-01 17-01-01

Date (yy-mm-dd)

Figure 3. Weekly total nitrogen, total phosphorus, and chlorophyll-a data at Dalseong weir from 2013
to 2016 (n = 205).

3. Extreme Learning Machine

3.1. Architecture and Learning Method for ELM

ELM was originally proposed as a learning scheme for single hidden layer feedforward neural
networks (SLENSs). It was later extended to generalized SLFNs, where the hidden layer need not be
neuron-like [29,30]. In the past, gradient-descent-based approaches were used for feedforward neural
networks, where all parameters required tuning, which usually requires significant time. ELM has
only one hidden layer, and the parameters of this hidden layer need not be tuned, including the input
weights and hidden node biases. On the contrary, these hidden node parameters are assigned randomly,
which means that they may be independent of the training data. ELM speed can be thousands of
times faster than traditional feedforward network learning algorithms with backpropagation while
obtaining better generalization performance. The ELM structure has input, hidden, and output layers,
as shown in Figure 4.

The ELM model has advantages regarding real-time learning and good prediction capability.
The output function from generalized SLFNSs is expressed as:

BiGi(wi, b;,x) 1)

M-

fu(x) =

i=1

where w; and b; are the weight and bias between input layer and hidden layer, respectively. The output
weights 8 are parameters to be estimated.
The output function in the hidden layer mapping is as follows:

H(x) = [G1(wq,b1,x), -+ ,Gr(wr,br,x)] )
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The output functions of the hidden nodes can be used by various activation functions.
The well-known activation functions are sigmoid networks, Radial-Basis Function (RBF) networks,
polynomial networks, complex networks, and sine function as follows:

Sigmoid : G(w;, b;, x) = g(w;-x + b;)
RBF : G(w;, bi, x) = g(bil[x — wil))
Sine : G(wj;, b, x) = sin(w;-x + b;)

where conventional random projection is just a specific case of ELM random feature mapping when
a linear additive hidden node is used. It not only proves the existence of the networks, but it also
provides learning solutions.

W%
VA

<>

AT —

’/ﬁ
Figure 4. Architecture of the conventional ELM predictor.

In what follows, we shall review the processing procedure of an ELM as a predictor. For a training
set, given the activation function and hidden node number, the ELM algorithm can be summarized
as three steps: (1) randomly generate the input weights, (2) calculate the hidden layer output matrix,
and (3) calculate the output weights matrix. In marked contrast to traditional learning algorithms,
ELM requires no iterative adjustment of the network parameters during training. Given a training
set { (x;, ti)|x; € RY,t; eR™,i=1,2,---, N}, hidden node output function G(w, b, x), and number
of hidden nodes L, the ELM determines the hidden node parameters and output weights using the
following steps:

(Step 1) Randomly assign hidden node parameters (w;, b;),i =1,2,--- ,N

h(x1)
(Step 2) Calculate the hidden layer output matrix H = :
h(xy)
(Step 3) Calculate the output weights B using a least squares estimate (LSE):

B =HT 3)

where H* is the Moore-Penrose generalized inverse of matrix H. When H'H is nonsingular,
H" = (HTH)leT is the pseudo-inverse of H. This is a standard LSE problem, and the best solution
for B is expressed as follows [16]:

g = (H'H) 'HTT )



Int. J. Environ. Res. Public Health 2018, 15, 2078 8 of 20

3.2. Model Application

Water quality and weather data in the Nakdong River were collected weekly from January 2013 to
December 2016 by the Ministry of Environment, Korea Meteorological Administration. We excluded
2012 and 2017 because the study area had an unstable ecosystem in 2012 during the early period after
weir construction. A low water level was maintained intermittently due to social and political issues in
2017. The dataset includes daily air temperature, rainfall, and solar radiation, as well as weekly total
nitrogen, total phosphorus, N/P ratio (ratio of total nitrogen to total phosphorus) and chlorophyll-a
as inputs to the ELM model. The weekly chlorophyll-a concentration was used as a model output,
which is the primary indicator of algal blooms. Parameters like phosphate, nitrate, ammonia nitrogen,
which were used for predicting algal blooms, were not applied for model training due to model input
minimization and optimization [6-9]. Table 2 shows input variations, periods, and sources.

Table 2. The variables for chlorophyll-a prediction model.

Items Variables Source

Korea Meteorological Administration

Weather Air temperature, Rainfall, Solar radiation (http:/ /kma.go.kr)

Ministry of Environment, National Institute
of Environmental Research
(http:/ /water.nier.go.kr)

Total Nitrogen, Total Phosphorus, N/P ratio,

Water quality chlorophyll-a

The ELM1 model was applied to predict algal blooms using total nitrogen, total phosphorus,
N/P ratio, temperature, precipitation, solar radiation, and chlorophyll-a concentration as independent
parameters, and the ELM2 model used upstream chlorophyll-a as an independent parameter to
improve the predictive power. Figure 5 shows the diagram of the ELM model (ELM2), where t
indicates each week, AT is air temperature, and RF is rainfall, SR is solar radiation, TN is total nitrogen,
TP is total phosphorus, NP is a ratio of total nitrogen over total phosphorus, Chla is chlorophyll-a
concentration, and Chla_u is the upstream chlorophyll-a concentration, respectively. Air temperature
data were collected daily and the weekly average values were used, where the 4-year average annual
air temperature was 13.4-14.6 °C. Rainfall data were also collected daily and the weekly accumulated
values were used, where the 4-year average annual rainfall was 1051-1438 mm/year. Solar radiation
data were collected daily and the weekly average values were used for algal bloom prediction,
where the 4-year average annual solar radiation was 14.1-14.7 MJ/m?. Water quality data with
chlorophyll-a concentration were collected weekly and the weekly data were used for algal bloom
prediction. Chlorophyll-a concentration was used data from 7 days prior.

50% of the dataset was used for training and the other 50% was used for algal bloom prediction
in each weir. The performance of the models in 4 weirs was evaluated using the Pearson correlation
coefficient (R?) and root-mean-square error (RMSE) between the observed and predicted values.
These indicators are defined as follows:

©)

RMSE = , | (% - ) ©)
i=1

where 1 is the number of data; and Y; are Y; are observed data and the mean of observed data,
respectively, and Y; is the value predicted from the model.

S


http://kma.go.kr
http://water.nier.go.kr

Int. J. Environ. Res. Public Health 2018, 15, 2078 9 of 20

Input Model Output

Extreme

@ Learning | Chlat+7day)

Crro >——

Machine
t = week

O = Additional input for ELM 2

Figure 5. Diagram for ELM model (ELM2). AT: air temperature; RF: rainfall; SR: solar radiation;
TN: total nitrogen; TP: total phosphorus; NP: ratio of total nitrogen over total phosphorus;
Chla: chlorophyll-a concentration; Chla_u: upstream chlorophyll-a concentration.

4. Results and Discussion

4.1. Experimental Results

We applied ELM to chlorophyll-a concentration prediction in four weirs located in the Nakdong
River. In the design of ELM, sigmoid networks were adopted as the activation function. We performed
the additional experiments for RBF function and sine function. The experimental results revealed that
RBF and sine function showed a similar performance in comparison to sigmoid function. ELM models
were constructed to determine the optimum number of nodes in the hidden layer. The number of
hidden nodes in this study is determined when the performance of test set for model validation reaches
a minimum while as the number of hidden nodes increases from 2 to 30. The training and testing
performance of the ELM are shown in Figure 6.

25 25

< 207 ~ 0]
B p LA & A
Z 151 AAA MWAANLALDN A ANAPLAS AN 2 151
m 23|
S S
2 101 2 10

5 5

0 T 0

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of nodes Number of nodes
(a) (b)

Figure 6. Performance of ELM as a function of the number of hidden nodes. (a) Gangjeong-Goryeong
weir and (b) Dalseong weir.



Int. J. Environ. Res. Public Health 2018, 15, 2078 10 of 20

The performance of the ELM1 models is shown in Table 3 and Figure 7. The prediction results
for chlorophyll-a concentration in Gangjeong-Goryeong weir show R? = 0.61 for training and 0.47 for
testing, and RMSE of 8.6 ug/L for training and 14.5 ug/L for testing. The prediction results in Dalseong
weir show R? = 0.55 for training and 0.44 for testing, and RMSE of 12.6 for training and 13.5 for testing.
The ELM model shows better performance in Gangjeong-Goryeong weir than in Dalseong weir.
The prediction results in Hapcheon-Changnyeong weir show R? = 0.38 for training and 0.41 for testing,
and RMSE of 15.3 for training and 13.1 for testing. The prediction results in Changnyeong-Haman
weir show R? = 0.29 for training and 0.36 for testing, and RMSE of 16.6 for training and 12.4 for
testing. The Akaike information criterion (AIC) was developed for comparing models, based on
information theory [31]. AIC applied to Gangjeong-Goryeong weir has a value of 371.2 for training
and 452.2 for testing, and 444.6 for training and 455.8 for testing in Dalseong weir. The AIC value in
Hapcheon-Changnyeong weir is 461.3 for training and 436.1 for testing data sets, and 469.0 for training
and 421.9 for testing data sets in Changnyeong-Haman weir. The predictive power of the ELM model
was found to be better in upstream weirs than in downstream weirs. This is because the downstream
Nakdong River has more algal blooming factors, such as tributaries, water intakes, and dam discharge,
which are difficult to control and manage.

Table 3. Statistical analysis of ELM1 model results at four artificial weirs.

ELM1 Model Gangjeong-Goryeong Weir Dalseong Weir Hapcheon-Changnyeong Weir Changnyeong-Haman Weir
» Training 0.61 0.55 0.38 0.29
R Testing 0.47 0.44 041 0.36
Training 8.6 12.6 15.3 16.6
RMSE  Testing 145 135 13.1 124
AIC Training 371.2 444.6 461.3 469.0
Testing 452.2 455.8 436.1 421.9

To improve the accuracy of the chlorophyll-a concentration prediction model, the upstream
chlorophyll-a concentration was used as an independent variable in the ELM2 model. The ELM2
(ELM1) model showed better performance with R? = 0.71 (0.61) for training and 0.45 (0.47) for testing,
RMSE = 6.8 (8.6) for training and 13.8 (14.5) for testing, and AIC = 333.8 (371.2) for training and
452.2 (446.2) for testing in Gangjeong-Goryeong weir. The ELM2 (ELM1) model showed better
performance with R? = 0.76 (0.55) for training and 0.45 (0.44) for testing, RMSE = 8.9 (12.6) for training
and 13.4 (13.5) for testing, and AIC = 388.1 (444.6) for training and 456.9 (455.8) for testing in Dalsone
weir. Table 4 and Figure 8 show the results from the ELM2 model in Gangjeong-Goryeong weir and
Dalseong weir.

Table 4. Statistical analysis of ELM2 model at four artificial weirs.

ELM 2 Model Gangjeong-Goryeong Weir Dalseong Weir Hapcheon-Changnyeong Weir Changnyeong-Haman Weir
) Training 0.71 0.76 0.44 0.32
R Testing 0.45 0.45 0.43 0.46
Training 6.8 8.9 14.6 16.3
RMSE Testing 13.8 134 13.1 11.4
AIC Training 333.8 388.1 455.8 468.3

Testing 446.2 456.9 437.5 410.5
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Figure 7. Training and testing results from the ELM1 model for chlorophyll-a prediction. (a) Training

results and (b) testing results.

The ELM2 (ELM1) model showed better performance with R? = 0.44 (0.38) for training and
0.43 (0.41) for testing, RMSE of 14.6 (15.3) for training and 13.1 (13.1) for testing, and AIC of 455.8
(461.3) for training and 437.5 (436.1) for testing in Hapcheon-Changnyeong weir. The ELM2 (ELM1)
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model showed better performance with R? = 0.32 (0.29) for training and 0.46 (0.36) for testing,
RMSE = 16.3 (16.6) for training and 11.4 (12.4) for testing, and AIC = 468.3 (469.0) for training and 410.5
(421.9) for testing in Changnyeong-Haman weir. The ELM2 results from both downstream weirs were
similar to the ELM1 model (Figures 9-13). This is because the downstream Nakdong River has more
algal blooming factors such as tributaries, water intakes, and dam discharge, which are difficult to
control and manage. Thus, these algal blooming factors need to be applied to the ELM2 model for more
accurate prediction. On the other hand, upstream chlorophyll-a concentration can be a good indicator
to predict algal blooms in upstream weirs. Moreover, we compared with the well-known conventional
neural network with BP (Back-Propagation) in Table 5. Here, the learning rate was 0.001 and the
number of epochs was 1000. In the case of Gangjeong-Goryeong weir, the RMSE values for training
and testing set were 9.27 and 15.73, respectively. We also obtained RMSE values of 11.44 and 14.12 for
training and testing data in Dalseong weir, respectively. In Hapcheon-Changnyeong weir, the RMSE
values for training and testing are 14.69 and 13.43, respectively. We also obtained RMSE values of
16.68 and 11.35 for training and testing in Changnyeong-Haman weir, respectively. Also, we compared
with multiple LR (Linear Regression) in Table 5. In the case of Gangjeong-Goryeong weir, the RMSE
values for training and testing set were 11.3 and 17.5, respectively. We also obtained RMSE values of
15.3 and 20.7 for training and testing data in Dalseong weir, respectively. In Hapcheon-Changnyeong
weir, the RMSE values for training and testing are 14.7 and 13.9, respectively. We also obtained RMSE
values of 16.9 and 14.0 for training and testing in Changnyeong-Haman weir, respectively.

Furthermore, we compared with adaptive neuro-fuzzy inference system (ANFIS) frequently
used in conjunction with regression and prediction problems. The effectiveness of ANFIS has been
demonstrated in real-world application [32-37]. This ANFIS has also known as the most representative
neuro-fuzzy model [38]. Here fuzzy c-means (FCM) clustering is used to determine fuzzy if-then
rules in the design of ANFIS. This ANFIS-FCM program is available in Fuzzy Toolbox of MATLAB
R2018a [38]. As listed in Table 5, the experiments are performed as the number of fuzzy rule (r)
increases. The ANFIS with four or more fuzzy rules is excluded due to overfitting problems that the
number of parameter exceeds the number of training data. The ANFIS-FCM is performed by one-pass
based on LSE without learning. The result clearly showed that the generalization capability of ELM2
outperformed that of ANFIS-FCM.

Table 5. RMSE results of other methods comparing ELM2 at four artificial weirs.

Model RMSE Gangjeong-Goryeong Weir Dalseong Weir Hapcheon-Changnyeong Weir ~ Changnyeong-Haman Weir
M g 58 54 51 i
Multiple LR TTr:S‘Eﬁ;g e oy 150 140
NN with BP T;:;Eg:gg 195‘?7 ﬁ:‘; i;:i i?:i
ANFIS-FCM (r = 2) T;:;Ei‘;g e e 11 130
ANFIS-FCM (r = 3) 2::23 26979 186_98 i;g ﬁé

Water residence time was applied as an independent parameter to improve the model
performance, and we compared these results with the ELM2 model. The Gangjeong-Goryeong
weir results show an RMSE value of 6.2 for training and 14.4 for testing, and the Dalseong results show
an RMSE value of 9.6 for training and 13.3 for testing. The Hapcheon-Changnyeong weir results show
an RMSE value of 15.3 for training and 13.0 for testing, and the Changnyeong-Haman weir results
show 16.2 for training and 11.7 for testing. The performance results including water residence time
were similar to the ELM2 model.
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Figure 8. Training and testing results from the ELM2 model for chlorophyll-a prediction. (a) Training

results and (b) testing results.
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Figure 9. Performance of the ELM1 and ELM2 models in Gangjeong-Goryeong weir. (a) ELM1 model
and (b) ELM2 model.
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Figure 10. Performance of the ELM1 and ELM2 models in Dalseong weir. (a) ELM1 model and

(b) ELM2 model.
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Figure 11. Performance of the ELM1 and ELM2 models in Hapcheon-Changnyeong weir. (a) ELM1 model
and (b) ELM2 model.
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Figure 12. Performance of the ELM1 and ELM2 models in Changnyeong-Haman weir. (a) ELM1 model
and (b) ELM2 model.

The prediction results for Gangjeong-Goryeong weir show that R?> improved by 16.4% for
training and —4.3% for testing, and RMSE improved by 20.9% for training and 4.8% for testing.
The prediction results for Dalseong weir show that R?> improved by 38.2% for training and 2.3% for
testing, and RMSE improved by 29.4% for training and 0.7% for testing. The prediction results
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for Hapcheon-Changnyeong weir show that R?> improved by 15.8% for training and 4.9% for
testing, and RMSE improved by 4.6% for training and 0.0% for testing. The prediction results for
Changnyeong-Haman weir show that R?> improved by 10.3% for training and 27.8% for testing,
and RMSE improved by 1.8% for training and 8.1% for testing. Figure 13 shows a performance
comparison between the ELM1 and ELM2 model results in all four weirs.

1.0 1.0
0.8 0.8
0.6 A 0.6
. =AL ~
~ o ~ — _
0.4 0.4 mE-—_ A
0.2 —A— ELM 1 model 0.2 —A— ELM 1 model
—O&— ELM 2 model —O— ELM 2 modell
0.0 0.0
GG D HC CH GG D HC CH
Sites Sites
20.0 20.0
16.0 16.0
M 120 M 120 ==
é 8.0 é 8.0
4.0 —A— ELM 1 model 4.0 —A— ELM 1 model
—O— ELM 2 model —O— ELM 2 model
0.0 0.0
GG D HC CH GG D HC CH
Sites Sites
(a) (b)

Figure 13. Comparison between the ELM1 and ELM2 model results for chlorophyll-a prediction in all
four weirs. (a) Training results and (b) testing results. GG: Gangjeong-Goryeong weir; D: Dalseong
weir; HC: Hapcheon-Changnyeong weir; CH: Changnyeong-Haman weir.

4.2. ELM Performance Discussion

As shown in Figures 9-13 and Table 5, it was found from these experimental results that ELM
showed good performance and generalization capability in comparison to multiple LR, NN with BP,
and ANFIS-FCM. Therefore, the features of ELM can be summarized as follows:

- ELM consists of a simple tuning-free three-step algorithm.

- The learning speed of ELM is extremely fast.

- The hidden node parameters are independent of training data. Although hidden nodes are
important, they need not be tuned.

- ELM could generate the hidden node parameters before using the training data.

- ELM can be effectively applied to most real-world problems such as compression, feature learning,
clustering, regression and classification.

In general, the superiority of ELM has been demonstrated in comparison with the conventional
neural network through real-world applications in the previous literature [8,9,39-41]. On the
other hand, the ANFIS has been successfully applied to several water quality and algal bloom
problems [32-37]. With similar experimental methods as previous literatures, we shall perform
the experiments on the effects of learning in the design of ANFIS-FCM. Figure 14 shows the error
curves for 100 epochs of training in the design of ANFIS-FCM (r = 2). The learning method for
ANFIS-FCM is performed by forward and backward pass in the hybrid learning procedure based on
BP and LSE. As shown in Figure 14, the training error decreased in the case of four weirs, but the test
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error increased. Usually we use the test error as a true measure of the performance. Thus, the best
model is obtained when the test RMSE is minimal. However, although further training decreased
the training error, it will degrade the performance of the ANFIS-FCM on unforeseen inputs. That is,
the performance after the first epoch is meaningless for this algal bloom data in the case of ANFIS-FCM.
For this reason, the ANFIS-FCM was designed by one-pass without learning as the same manner of
ELM2 in Table 5. These results lead us to the conclusion that the design of ELM2 for algal bloom
prediction is the innovative approach to constructing computationally intelligent model through the
performance comparison with the representative models in statistics, neural network, and neuro-fuzzy
system, respectively.

35

RMSE(train) RMSEf(train)

- RMSE(test) 177 RMSE(test)
30+ 16 A ]
15 J
25+ 14l J
L [ 4

220t 2 "

z X 12t J
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—_— 2% e —
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(c) Hapcheon-Changnyeong weir (d) Changnyeong-Haman weir

Figure 14. RMSE curves obtained by training of ANFIS-FCM for four weirs (num. of rule = 2).
(a) Gangjeong-Goryeong weir; (b) Dalseong weir; (¢) Hapcheon-Changnyeong weir; (d) Changnyeong-
Haman weir.

5. Conclusions

As chlorophyll-a concentration is the primary indicator of algal blooms, an ELM was applied
to predict chlorophyll-a concentration in the Nakdong River, Korea. Water quality and weather data
were collected on a weekly basis from January 2013 to December 2016 by the Ministry of Environment
and Korea Meteorological Administration. Parameters in the dataset include air temperature, rainfall,
solar radiation, total nitrogen, total phosphorus, N/P ratio, and chlorophyll-a concentration. 50% of
the dataset was used for training, and the other 50% of the dataset was used for testing in each weir.
Prediction of chlorophyll-a concentration in Gangjeong-Goryeong and Dalseong weirs, which are
located upstream, shows good results for training and testing. Prediction in Hapcheon-Changnyeong
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and Changnyeong-Haman weirs, which are located downstream, shows worse training and testing
results compared to the two upstream weirs. The predictive power of the ELM models was found to
be better in the upstream weirs.

To improve the accuracy of the chlorophyll-a concentration prediction model, upstream
chlorophyll-a concentration was used as an independent variable in the ELM2 model. Compared to
the original ELM1 prediction model, the ELM2 model showed better performance with higher R? and
lower RMSE values for training and testing datasets in the upstream weirs. The ELM2 model also
showed better performance with higher R? and lower RMSE values for training and testing datasets in
the downstream weirs. However, the results from downstream weirs showed similar performance as
the previous ELM1 model. This is because the downstream Nakdong River has more diverse algal
blooming factors such as tributaries, water intakes, and dam discharge, which are difficult to control
and manage.

ELM-based prediction models for chlorophyll-a concentration in the Nakdong River are proposed
in this paper. The purpose of this study is to apply an ELM algorithm for algal bloom prediction in a
regulated river with artificial weirs. We included the chlorophyll-a concentration measured from the
upstream weir to improve the performance of the algal bloom prediction model. Because we have a
small dataset for use in the ELM, we can improve the accuracy of the algal bloom prediction model by
examining the water quality in tributaries and accumulating more data in the future. The two ELM
models in this study showed superior prediction power, and the upstream chlorophyll-a concentration
shows improved prediction accuracy regarding phytoplankton dynamics in a river with sequential
weirs. These results showed extreme learning machine can handle more the nonlinearity of algal
bloom than linear regression, neural network, and neuro-fuzzy system. Furthermore, these results lead
us to the conclusion that the presented ELMs are the effective models for monitoring and managing
algal blooms in the regulated river. In future research, we will develop algal blooms prediction models
for artificial weirs on the Nakdong and Youngsan rivers in Korea using the Recurrent Neural Network
(RNN) and Deep Neural Network (DNN) methods.
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