
  

Int. J. Environ. Res. Public Health 2017, 14, 1072; doi:10.3390/ijerph14091072 www.mdpi.com/journal/ijerph 

Article 

Smoothed Temporal Atlases of Age-Gender  
All-Cause Mortality in South Africa 

Samuel O. M. Manda 1,2,* and Nada Abdelatif 3 

1 Biostatistics Unit, South African Medical Research Council, 1 Soutpansberg Road, Pretoria 0001,  

South Africa 
2 School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal,  

Pietermaritzburg 3209, South Africa 
3 Biostatistics Unit, South African Medical Research Council, Durban 4091, South Africa; 

nada.abdelatif@mrc.ac.za 

* Correspondence: samuel.manda@mrc.ac.za 

Received: 4 July 2017; Accepted: 8 September 2017; Published: 15 September 2017 

Abstract: Most mortality maps in South Africa and most contried of the sub-Saharan region are 

static, showing aggregated count data over years or at specific years. Lack of space and temporral 

dynamanics in these maps may adversely impact on their use and application for vigorous public 

health policy decisions and interventions. This study aims at describing and modeling sub-national 

distributions of age–gender specific all-cause mortality and their temporal evolutions from 1997 to 

2013 in South Africa. Mortality information that included year, age, gender, and municipality 

administrative division were obtained from Statistics South Africa for the period. Individual 

mortality level data were grouped by three ages groups (0–14, 15–64, and 65 and over) and gender 

(male, female) and aggregated at each of the 234 municipalities in the country. The six age-gender 

all-cause mortality rates may be related due to shared common social deprivation, health and 

demographic risk factors. We undertake a joint analysis of the spatial-temporal variation of the six 

age-gender mortality risks. This is done within a shared component spatial model construction 

where age-gender common and specific spatial and temporal trends are estiamted using a 

hierarchical Bayesian spatial model. The results show municipal and temporal differentials in 

mortality risk profiles between age and gender groupings. High rates were seen in 2005, especially 

for the 15–64 years age group for both males and females. The dynamic geographical and time 

distributions of subnational age-gender all-cause mortality contribute to a better understanding of 

the temporal evolvement and geographical variations in the relationship between demographic 

composition and burden of diseases in South Africa. This provides useful information for effective 

monitoring and evaluation of public health policies and programmes targeting mortality reduction 

across time and sub-populations in the country. 
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1. Background 

High-quality mortality statistics are needed in optimal health planning, decision-making, 

program evaluation, progress monitoring, and resource allocation [1,2]. These data are often only 

reported at high (national) levels of geographic aggregation but not at lower administrative levels for 

local public health decision making. This is despite substantial evidence pointing to variations in 

mortality risks at subnational levels due to, for example, age, gender, and social economic differences [3,4]. 

Additionally, their use both at national and sub-national levels has been limited, as many atlases 

showing geographic distribution of mortality are stationary even though the data has been collected 

over many years [5–7]. This is despite the recent developments and applications of spatial-temporal 
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methods for disease mapping in spatial epidemiologic studies, arising from the work of Clayton and 

Kador, Besag, York, and Mollie, and Knorr-Held and Best [8–10]. These models have been extended 

and applied to a variety of disease settings (Richardson et al., Tzala and Best, Feltbower et al., Manda 

et al. and Ibanez-Beroiz et al. [3,4,11–13] to name a few). Additionally, advances in computer systems, 

the availability of powerful geographical information systems (GIS), and the implementation of many 

types of spatial models in specialized software have led to a greater uptake of small-area disease 

mapping. 

Most mortality atlases fail to properly utilize the basic elements of disease mapping models to 

account for both spatial and time dependence in mortality risks. As pointed out in Ocaña-Riola and 

Mayoral-Cortés [14], several mortality atlases describe the geographical distribution of mortality by 

grouping year on year data into a single period, even though the data may span over 20 years. Most 

atlases use age- and gender-adjusted rates or standardized mortality rates, which for small areas or 

rare causes of death such as cancer, may be unreliable and unstable (Manda et al. and references 

therein [13]). Moreover, these mortality rate indicators may be invalid when applied to different 

strata in subnational areas. Burden of diseases and demographic and many factors related to the 

wellbeing of populations are dynamic and change over time [14]. Thus, the use of static maps of 

mortality may adversely impact interpretations and decision-making processes regarding health 

status of the general population and/or specific populations, the effectiveness of programmes, and 

inequities in health between places and populations [7]. Time effects on mortality should also account 

for the fact that adjacent periods may have similar rates. This is justified, as mortality rates in adjacent 

years are more likely to be similar since both mortality counts and population denominators would 

not have changed considerably. Similarly, mortality rates in adjacent areas could not be assumed to 

be independent of each other. For rare mortality events and sparse populations, sub-population 

mortality rates could be very unstable. These issues could be addressed effectively within a 

spatiotemporal modelling of mortality rates to permit an assessment of the evolution of mortality 

dependence on both space and time. Moreover, these models help to address the problem of missing 

and unmeasured ecological determinants of mortality [15,16].  

In order to provide robust perspectives of mortality over a spectrum of relevant subgroups, 

disease mapping models for the rates should be approached from a time dynamic perspective and 

address specific gender and age categories [14,17,18]. The best way to describe trends in health 

indicators is to evaluate the outcomes of past health policies and to ascertain the current health status 

of the population so that future improvements may be undertaken [19]. Currently, there is no 

research in South Africa, and to the best of our knowledge in sub-Saharan Africa, providing a 

dynamic image of a country’s burden of disease status from a spatial-temporal point of view. Most 

age and gender all-cause mortality risks are analyzed independently, either descriptively [7] or using 

disease mapping models [14,16,20,21]). However, several cause-specific mortality risks from certain 

diseases are age- and gender-dependent, for example, infectious-related deaths are more prevalent 

among young adults and children, and mortality from non-communicable disease are higher in the 

elderly [22]. Thus, independent analyses of age and gender mortality risks would not capture 

common and uncommon risk factor relationships between a number of age-gender mortality rates. [16]. 

It becomes necessary to isolate common and age-gender-specific geographical patterns of mortality 

in a single model, which can be achieved by using the recently developed multivariate disease 

mapping models for multiple disease outcomes [3,10,11,13,15,16,23]. These models will enable us to 

assess similarities as well as differences between geographical risk patterns among age-gender 

groups purportedly sharing common risk profiles. These common factors may be thought of as 

proxies for unobserved health determinants shared by the multiple age and gender mortality risks. 

In the context of populations with limited resources, these methods are appealing due to the 

limitations of the available factors and disease data over the years. Additionally, by combining data 

from different age and gender groups, improvement in precisions and efficiencies of estimates, 

especially for rare mortality groups and causes, are obtained.  

This study is set in the sub-Saharan Africa region, which is in the midst of considerable 

epidemiological and demographic changes that are significantly affecting the region’s disease and 
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mortality profiles [1]. These include the Human immunodeficiency virus infection/acquired immune 

deficiency syndrome (HIV/AIDS) epidemic, which has infected more than 30 percent of adults, and 

has resulted in a sizeable impact that has changed trends in many other diseases including 

tuberculosis (TB). There has also been a rise in lifestyle-related factors for non-communicable diseases 

(NCDs) which now account for a large proportion of adult deaths in the region. In South Africa, 

young adult mortality is increasingly more related to the impact of HIV/AIDS, TB, non-natural 

injuries, and emerging non-communicable diseases. We are not aware of any previous space and time 

dynamics analysis of mortality in South Africa based on the Mortality Statistics vital registration data, 

a very rich mortality data set spanning over a long period. Groenewald et al. [22] made the first 

attempt to assess and compare the cause of death profiles for each of the 52 health districts in South 

Africa. It is within these contexts of scarcity of such research methods and applications that this paper 

aims to explore geographical and temporal structures for several age and gender mortality risks 

jointly. In order to uncover the possibilities of unobserved ecologically distributed health services, 

disease burden, environmental influences and demographic factors responsible for the observed inter 

age-gender mortality correlations in South Africa, a shared spatial-temporal model with common 

and specific components is employed. These hidden factors may be reflecting the prevailing and 

changing distributions of age and gender mortality burden associated with changing epidemiological 

and demographic transitions over space and time in South Africa. 

2. Statistical Models and Data Analyses 

To study spatial-temporal trends of age and gender specific all-cause mortality from 1997 to 2013 

in South Africa, a hierarchical Bayesian shared component spatial-temporal model [10] was 

undertaken using the municipality as the spatial unit for analysis. Here, 𝑌𝑖𝑗𝑘𝑡  is the number of all-cause 

deaths in municipality 𝑖 during year 𝑡 for gender 𝑗 and age group 𝑘 in South Africa, and 𝑛𝑖𝑗𝑘𝑡  is 

the corresponding exposed population count. Several studies including Ocaña-Riola and Mayoral-

Cortés [14], Schootman et al. [24], Richardson et al. [3], Tzala and Best [11] and Ocaña-Riola et al. [17] 

have used Bayesian hierarchical spatiotemporal methods to smooth observed small-area  

mortality rates. 

The observed death counts 𝑌𝑖𝑗𝑘𝑡  are commonly modelled as conditionally-independent Poisson 

random variables with means 𝜇𝑖𝑗𝑘𝑡  in a generalized linear model using a log link function. The 

means are modelled either as 𝜇𝑖𝑗𝑡 = 𝑛𝑖𝑗𝑡𝑆𝐷𝑅𝑖𝑗𝑡  or  𝜇𝑖𝑗𝑡 = (𝑛𝑖𝑗𝑡𝑅𝑗𝑡)𝑅𝑅𝑖𝑗𝑡 , where 𝑆𝐷𝑅𝑖𝑗𝑡  and 𝑅𝑅𝑖𝑗𝑡 are 

the age and gender specific mortality rate and mortality rate ratio at year 𝑡 for gender 𝑗 and age 

group 𝑘 in municipality 𝑖.  

log(𝜇𝑖𝑗𝑘𝑡) = log(𝐸𝑖𝑗𝑘𝑡) + log (𝑅𝑅𝑖𝑗𝑘𝑡) (1) 

where 𝐸𝑖𝑗𝑘𝑡 is the expected count calculated on the basis of the average age-gender-specific mortality 

rate over the entire observation period. The model (1) estimates the specific rate ratios of each 

municipality compared to the specific rate ratios of the whole country. In the modelling, we included 

main shared spatial, temporal, and space-time interaction, and gender-specific effects within the 

framework of the Besag, York, and Mollié [9] model. For this study, all spatially structured random 

effects were modelled using intrinsic conditionally autoregressive (ICAR) normal prior distribution 

to capture local dependence in space. For temporal trends, it has been observed that quadratic time 

effect captures most mortality trends [14,17]. However, to capture local dependence in time, the 

temporal terms were given first order random walk prior, which is simply a one-dimensional version 

of the ICAR normal prior distribution. The heterogeneity random effects terms were assumed to be 

distributed as multivariate normal prior distribution. In the modelling of spatial terms, there were 

considerations of the number of spatial fields to include, as these could fields be confounded and 

hence increase the uncertainty in the model [25].  

Following Richardson et al. [3] and Manda et al. [13], a Bayesian spatiotemporal  smoothing 

analysis is used where we use one shared “mortality and morbidity” spatial component common for 

males and females in each of the three age groups: a common space-time order 2 interaction for all 

the six age-gender groups. One female differential from the shared spatial pattern in each age group 
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was included as well as age-gender specific heterogeneous effects, capturing possible extra-Poisson 

variation that is unexplained by the included random terms. We may take the specific component for 

age groups 15–64 as a proxy for infectious etiology in communicable diseases and unnatural deaths 

while taking the component for age groups 65 years and over as a proxy for non-communicable 

diseases [22]. Temporal random components were similarly modelled using shared time trend and 

female differential from the shared time trend within each age group. 

Various parameters of the model were estimated using the WINBUGS Bayesian methods 

statistical software by running three parallel Gibbs sampler chains for 20,000 iterations from 

independent starting positions. Using a combination of trace plots and formal convergence diagnosis 

tools, 5000 iterations were deemed sufficient for convergence. The resulting combined sample of the 

remaining 45,000 iterations was used for posterior summaries. 

3. Data Sources and Variables 

In South Africa, death notification forms are medically certified and registered with the 

Department of Home Affairs (DHA). Statistics South Africa compiles and processes the death records 

forms into annual mortality reports [5,6,26] (Even though there are various sources of mortality data 

in South Africa [27], the vital death registration data are the best and most reliable source for mortality 

data in the country, and display very high levels of completeness [22]. We analyzed the mortality 

data for the period 1997 to 2013 and considered all-cause mortality using six age-gender age groups 

as follows: (0–14, 15–64, and 65 and over years) and gender (male and female). Age-gender 

population totals at the municipality administrative division from Statistics South Africa are only 

available for the national population and housing census years 1996, 2001, and 2011. For the non-

census years between 1997 and 2011, we used an exponential growth rate to interpolate the specific 

age-gender municipality population totals using the formula: 𝑃𝑡+𝑞 = 𝑃𝑡𝑒𝑟𝑞 where 𝑃𝑡+𝑞  is the ending 

population at 𝑞 years later; 𝑃𝑡 is the beginning population, usually measured at census year 𝑡 and 

𝑟 is the growth rate. However, for the years 2012 and 2013, extrapolation techniques were used to 

estimate the respective population totals based on the growth rate between 2001 and 2011. In line 

with the official publications, the number of death statistics used in this paper excludes stillbirths [5,28]. 

The specific rates of all causes of death in South Africa for each gender, age group, and year were 

then calculated. 

Given the differential determinants and profiles of mortality risks across age groups in the 

country, expected death counts were derived for males and females separately in each age group 

using  𝑅̂𝑗(𝑘) =
∑ 𝑌𝑖𝑗(𝑘)𝑡𝑖,𝑡

∑ 𝑛𝑖𝑗(𝑘)𝑡𝑖,𝑡
⁄  the average countrywide death rate for gender 𝑗(1 = 𝑚𝑎𝑙𝑒, 2 =

𝑓𝑒𝑚𝑎𝑙𝑒)  in age group 𝑘 (𝑘 = 1 (0– 14 𝑦𝑒𝑎𝑟𝑠), 2 (15– 64 𝑦𝑒𝑎𝑟𝑠), 3 (65 𝑦𝑒𝑎𝑟𝑠 𝑜𝑟 𝑜𝑣𝑒𝑟))  over the 

entire observation period 1997–2013. In the absence of covariate effects, 𝑛𝑖𝑗𝑘𝑡  𝑅̂𝑗(𝑘) is just the expected 

number of deaths in each gender 𝑗 at time  𝑡, as denoted by  𝐸𝑖𝑗𝑡 . The estimated baseline rate defined 

above is known as internal standardization, and the ratio of observed to expected deaths  
𝑌𝑖𝑗𝑘𝑡

𝐸𝑖𝑗𝑘𝑡
⁄  

is termed the standardized mortality ratio (SMR), which is just the estimate of 𝑅𝑅𝑖𝑗𝑘𝑡  under 

maximum likelihood methods. In this study, an age and gender specific SMR of one was taken to 

indicate that the observed respective death count is equal to that of the expected count. Rather than 

using the actual SMR, a probability that SMR was greater than one was computed and a probability 

value of 0.8 or above would mean high mortality risk. On the other hand, if this probability is below 

0.2 then the respective area is of low risk [13].  

Thus, the mortality data we considered here are recorded for 𝐽 = 2 genders (male and female) 

and 𝐾 = 3 age groups (0–14, 15–64, 65 and over years) for each of the 𝐼 = 234 municipalities over 

an observation period of 𝑇 = 17  years (1997–2013), yielding a total of 23,868 observations. This 

number of observation years is adequate to assess our interest in the temporal component to explore 

changes in rates over a relatively long period. Furthermore, epidemiological and demographic issues 

are of interest because of possible variations in disease and environmental exposures for various 

population subgroups. In addition, the nutritional, epidemiological, and demographic profile of the 

municipalities would most likely have evolved over the period of interest. 
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4. Results 

Observed Numbers and Rates 

Table 1 shows the distribution of all-cause deaths by gender and age groups across all 

municipalities in 1997, 2005 and 2013. The annual number of notified and registered deaths increased 

from just over 300,000 in 1997 to about 624,782 in 2006, then decreased down to just over 458,933 in 

2013. The annual number of deaths rose by a massive 93% between 1997 and 2006, and then decreased 

by 26.5% between 2006 and 2013. The increase may be due to population growth and better reporting 

coverage. The average observed number of deaths for males for the age group 0–14 was 154 (range 

of 0–3448) per municipality per year, while for the age groups 15–64 and 65+ years, the numbers were 

723 (3–15,470) and 249 (1–4964), respectively, per municipality per year. For females, the average 

numbers of observed deaths for the age groups 0–14, 15–64, and 65+ years were 133 (0–2860), 592  

(2–13,456), and 318 (1–5894 range), respectively, per municipality per year. This shows variations in 

deaths recorded across the municipalities in the country, which may be indicative of variation in the 

quality and completeness of death reporting [22]. The distribution of the number of deaths for each 

of the municipalities for each age-gender grouping in three selected years, 1997, 2005, and 2013, was 

investigated and the results showed high variability in all age and gender groups. 

Table 1. Distribution of deaths by gender and age groups per municipality in South Africa, 1997, 2005, 

and 2013. 

Male Mortality  

 0–14-Year-Old Age Group  15–64-Year-Old Age Group  ≥65-Year-Old Age Group  

Year Deaths Min Max Mean SD Deaths Min Max Mean SD Deaths Min Max Mean SD 

1997 23,492 1 2260 100.39 229.47 105,734 6 9196 451.85 1107.6 47,549 1 3532 203.2 450.89 

2005 45,153 1 3253 192.96 400.97 202,348 14 14,921 864.74 1782.4 58,628 3 4352 250.54 524.15 

2013 28,477 1 1883 121.7 231.07 147,272 13 9930 629.37 1262.87 60,769 3 4964 259.7 531.85 

Female Mortality 

 0–14-Year-Old Age Group 15–64-Year-Old Age Group ≥65-Year-Old Age Group 

Year Deaths Min Max Mean SD Deaths Min Max Mean SD Deaths Min Max Mean SD 

1997 20,304 0 2004 86.77 200.23 65,577 2 5477 280.24 638.29 53,883 3 4107 230.27 532.54 

2005 40,040 2 2791 171.11 353.57 184,237 8 13,279 787.34 1495.73 76,153 4 5528 325.44 689.74 

2013 24,388 0 1665 104.22 202.7 110,345 2 7274 471.56 903.68 80,182 3 5894 342.66 679.57 

Specific mortality rates were calculated as the number of deaths per 10,000 residents in South 

Africa for each year, gender, and age group. For males in the age group 0–14 years, the average 

mortality rate was 49.5 (range: 0–274.5) per municipality per year and for the 15–64 and 65+ years age 

groups, the mortality rates were 127.4 (4.8–942.3) and 518.1 (18.4–4528.1), respectively. For females, 

the average mortality rate per municipality per year for age groups, 0–14, 15–64, and 65+ were 40.1 

(0.0–242.5), 98.1 (4.2–927.6), and 592.3 (31.9–5699.0), respectively. Figure 1 displays the time trends of 

the SMRs by gender within each age group over the seventeen years studied. Overall SMRs are higher 

for all age-gender groups around 2002–2008 (with the highest SMRs around the 2005–2006 period) 

and decrease afterwards, indicating that the time trends are going in the same direction. 

Figure 2 displays the geographical patterns of the observed SMRs in 1997, 2005, and 2013. Overall 

higher SMR are observed for male mortality in the 0–14 and 15–64 years age groups (Figure 2a,b) in 2005 

around the eastern and south-eastern and north central regions, respectively, whereas the pattern for 

males aged 65 years and over is less clear. For the females, higher rates are also observed in the 0–14 

years age group (Figure 2d) in 2005 in the middle north-eastern region of South Africa, but for females 

in the 15–64 years age group (Figure 2e), higher SMRs in the year 2013 are observed mainly in the 

north-western and south-eastern regions, indicating a shift in time trends from the males in the same 

age group. As time progresses, females aged 65 years and over, have lower SMRs, indicating that this 

group’s time trends are going in the opposite direction to most age-gender groups studied here. It is 

evident that there is a large amount of noise in the displayed maps, which makes it difficult to discern 

a clear pattern, and modelling would be necessary to extract the steady geographies. 
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Figure 1. Overall time series plots of the raw and posterior median smoothed standardized mortality 

rate ratios (SMRs) for males and females within each of the three age bands. 
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Figure 2. (a) Maps of municipality all-cause raw standardized mortality ratios for men aged 0–14 years 

in 1997, 2005, and 2013, South Africa; (b) Maps of municipality all-cause raw standardized mortality ratios 

for men aged 15–64 years in 1997, 2005, and 2013, South Africa; (c) Maps of municipality all-cause raw 

standardized mortality ratios for men aged 65 years or over in 1997, 2005, and 2013, South Africa; (d) 

Maps of municipality all-cause raw standardized mortality ratios for female aged 0–14 years in 1997, 

2005, and 2013, South Africa; (e) Maps of municipality all-cause raw standardized mortality ratios for 

female aged 15–64 years in 1997, 2005, and 2013, South Africa; (f) Maps of municipality all-cause raw 

standardized mortality ratios for female aged 65 years or over in 1997, 2005, and 2013, South Africa. 
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Figure 3 shows geographical variations of the age-gender specific smoothed standardized 

mortality ratios in the municipalities of South Africa, in 1997, 2005 and 2013. The values plotted are 

the probability that the age-gender specific mortality rates in each municipality is greater than 1 using 

the respective countrywide mortality rate as the reference. The municipalities with probability 

greater than 0.8 and with probability less than 0.2 are taken to have experienced the age-gender 

specific all-cause mortality rate significantly greater and lower than the respective country-wide age-

gender specific mortality rate, respectively. During the period covering the decade of 2000, there was 

a group of municipalities with age-gender specific all-cause mortality rates significantly different 

from the respective age-gender specific all-cause national rates. The patterns are similar to those 

depicted in the maps of observed SMRs, but now they are more discernable, showingevidence of 

spatial heterogeneity with higher SMRs in the southern-eastern belts mainly for the 15–64 age groups 

in 2005. At the start and end of the study period, the relative risk (RR) maps show that most of the 

municipalities have lower mortality risk across most of the age-gender groups. The same patterns are 

observed from the time plots of the smoothed SMRs over the entire period (Figure 1). The gender 

shared components are presented in Figure 4 for each age group, where the pattern of higher SMRs 

around the eastern regions of SA is observed for both the 0–14 and 15–64 age groups, but less contrast 

in the SMRs for the 65 years and older age group. 

The analyses and results presented are using a municipality administrative division in order to 

provide evidence at the local government level of planning. We are aware that a different grouping 

unit could have resulted in different spatial patterns and interpretations. This is a problem of 

modifiable areal unit problem (MAUP) in spatial analyses where an analysis based on particular 

grouping unit may accidently misrepresent or overstate the actual mortality risk variations [29]. Even 

if the data are grouped at the same level for analysis, the way the grouping scheme is used for spatial 

analysis may accidentally lead to misinterpretation of the spatial patterns. Changing boundaries of 

municipalities to assess changes to the overall spatial patterns in the estimated age-gender all-cause 

mortality rates could have been a possible option, but this was beyond the scope of the paper. 

However, we performed additional analyses by choosing a coarser scale at the provincial 

administrative division. The general spatial patterns were slightly changed, but not to an extent that 

affected the general substantive conclusions. 

 
(a) 
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Figure 3. (a) Mapped posterior probability that the all-cause smoothed standardized mortality ratios 

for males aged 0–14 years exceed 1 in 1997, 2005, and 2013, South Africa; (b) Mapped posterior 

probability that the all-cause smoothed standardized mortality ratios for males aged 15–64 years 

exceed 1 in 1997, 2005, and 2013, South Africa; (c) Mapped posterior probability that the all-cause 

smoothed standardized mortality ratios for males aged 65 years or over exceed 1 in 1997, 2005, and 

2013, South Africa; (d) Mapped posterior probability that the all-cause smoothed standardized 

mortality ratios for females aged 0–14 years exceed 1 in 1997, 2005, and 2013, South Africa; (e) Mapped 

posterior probability that the all-cause smoothed standardized mortality ratios for females aged  

15–64 years exceed 1 in 1997, 2005, and 2013, South Africa; (f) Mapped posterior probability that the 

all-cause smoothed standardized mortality ratios for females aged 65 years or over exceed 1 in 1997, 

2005, and 2013, South Africa. 
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Figure 4. Maps of the posterior median female and male aged 0–14 years (Top left), female and male 

aged 15–64 years (Top right), and female and male aged 65 years and over (Bottom left) shared 

components. 

5. Conclusions 

This study has undertaken a novel approach using dynamic spatial-temporal distributions to 

provide a better understanding of the evolvement of mortality risks over time and space in South 

Africa. As commented in Ocaña-Riola and Mayoral-Cortés [14] and Ocaña-Riola et al. [17], such an 

analysis will contribute towards a reflection on the past, present, and future of mortality in South 

Africa. The adopted modelling approach has allowed for common and age-gender specific 

components of mortality effects to be identified [3,13]. We found differences in mortality rates from 

1997 to 2013, with high rates in the period around 2005, especially for the 15–64 years age group for 

both males and females. There were also differences in mortality rates between municipalities, which 

may in part reflect differences in health care quality and age distribution and the prevailing major 

burden of diseases.  

South Africa is undergoing demographic, epidemiological, and nutritional changes that have 

influenced lifestyle-related morbidity and mortality. Furthermore, the 15–64 years age group is very 

crucial in studying the effect of HIV/AIDS and TB related mortality in addition to mortality related 

to NCDs. Thus, the results presented in this study will provide policymakers with empirical evidence 

that will help them to map policies aimed at narrowing the disparity in health care services for 

municipalities. Some of these initiatives are already being attended to, as detailed within the National 

Department of Health Strategic Plan 2014/15–2018/19 [30]. These initiatives include reducing the 

burden of HIV/AIDS, TB, and non-communicable diseases, increased primary health access to 

families and communities, and achieving universal health care coverage. 

Possible limitations of our study include under-reporting and the completion of the mortality 

data, which may affect and confound the observed rates and their interpretation [22]. Furthermore, 

the quality of the data has been found to vary sub-nationally in South Africa [22]. The use of 

interpolated population totals using the three sets of census population data from 1996, 2001, and 

2011 could have resulted in inaccuracies of the mid-year population totals across the six age-gender 

groups for the entire 17 years. This may have affected the calculations of some of the mortality rates, 

especially for small and sparser municipalities. The analysis did not account for important risk factors 
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(for example, health service availability and disease burden), environmental influences, or 

demographic factors. These were unavailable because they are difficult to measure or obtain. 

However, a benefit of employing the multivariate spatial-temporal model is its ability to account for 

such unmeasured exposures that may be common among the diseases considered. Mortality was 

analyzed in very course age intervals; this may mask differentials in mortality levels. Using finer age 

intervals could ensure that age differences between municipalities are removed. Unlike in developed 

countries, the population data that was made available from Statistics South Africa, although 

considered reliable, only had detailed population data on the age-bands analyzed (0–14, 15–64, and 

65+), even so, only for census years 1996, 2001, and 2011. Most mid-year population estimates in South 

Africa are at the regional level, and not often given by age and gender. 

We are also aware that several multivariate mapping models have been proposed, and any could 

have been applied to our multiple mortality outcomes studied here. We are in the process of 

undertaking model validation to identify the best predictive model from a number of candidate 

multivariate spatial models. Furthermore, there are several mortality data sources in South Africa 

that could have been used for the analyses contained here [27]. Such a wealth of data may permit 

mortality data triangulation by, for example, combining different data sources for mortality to 

estimate sub-national relative risk profiles in adult mortality, as suggested by Dorrington and 

Timæus [31]. We are developing Bayesian multivariate models to perform data source triangulation 

using vital registration, census data, and in-hospital mortality records for the year 2011. Of note, the 

vital death statistics data have been found to be of high coverage, especially at the level needed for 

the mapping in this study. Another limitation would be the use of the 15–64 age group in the models. 

This could be split into two separate age groups, such as 15–44 and 45–64, to ensure that age 

differences between municipalities are removed. However, the unavailability of data at that age band 

disaggregation by gender would limit such make an undertaking. 

In conclusion, this study has shown the utility of using recently developed shared component 

spatiotemporal models to fit a dynamic geographical distribution of mortality for different gender 

and age groups simultaneously. This approach has allowed for the identification of similar and 

divergent patterns in geographical and temporal distributions of age and gender mortality risks in 

South Africa in a multivariate way. This may provide more convincing evidence of periods and areas 

at greatest risk for mortality and therefore will contribute towards a reflection on the past, present, 

and future trends in age-gender specific all-cause mortality in different areas in order to help enable 

better local policy planning. 
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