
International  Journal  of

Environmental Research

and Public Health

Article

Fine-Scale Spatial Variability of Pedestrian-Level
Particulate Matters in Compact Urban Commercial
Districts in Hong Kong

Yuan Shi 1,* ID and Edward Ng 1,2,3

1 School of Architecture, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China;
edwardng@cuhk.edu.hk

2 Institute of Environment, Energy and Sustainability (IEES), The Chinese University of Hong Kong,
Shatin, NT, Hong Kong, China

3 Institute of Future Cities (IOFC), The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
* Correspondence: shiyuan@cuhk.edu.hk; Tel.: +852-3943-9428

Academic Editors: Gabriel Filippelli and Mark Patrick Taylor
Received: 19 July 2017; Accepted: 1 September 2017; Published: 3 September 2017

Abstract: Particulate matters (PM) at the pedestrian level significantly raises the health impacts in
the compact urban environment of Hong Kong. A detailed investigation of the fine-scale spatial
variation of pedestrian-level PM is necessary to assess the health risk to pedestrians in the outdoor
environment. However, the collection of PM data is difficult in the compact urban environment
of Hong Kong due to the limited amount of roadside monitoring stations and the complicated
urban context. In this study, we measured the fine-scale spatial variability of the PM in three of the
most representative commercial districts of Hong Kong using a backpack outdoor environmental
measuring unit. Based on the measurement data, 13 types of geospatial interpolation methods were
examined for the spatial mapping of PM2.5 and PM10 with a group of building geometrical covariates.
Geostatistical modelling was adopted as the basis of spatial interpolation of the PM. The results show
that the original cokriging with the exponential kernel function provides the best performance in
the PM mapping. Using the fine-scale building geometrical features as covariates slightly improves
the interpolation performance. The study results also imply that the fine-scale, localized pollution
emission sources heavily influence pedestrian exposure to PM.
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1. Introduction

Over the past few decades, the adverse impacts of urban air pollution on public health have been
increasingly identified as a global problem [1,2]. Pedestrians in the urban outdoor space are more and
more often exposed to harmful ambient environments with different air pollution sources (including
but not limited to the traffic-related pollution, household air pollution, and commercial cooking smoke
exhaust from roadside buildings) [3]. The human exposure to the particulate matters (PM), for example,
PM2.5 (particles with an aerodynamic diameter <2.5 µm) and PM10 (particles with an aerodynamic
diameter <10 µm), has also been associated with many negative health outcomes [4,5]. In a highly
urbanized area, the dense building clusters form street canyons with heavy motor-traffic flows. Under
such circumstance, the air movements are stagnant [6] and the pollutant dispersion is significantly
decelerated [7]. As a consequence, the health risks of pollution exposure in such pollutant-concentrated
street environment will be considerably increased [8].

Hong Kong, as one of the most densely populated cities around the world, has an extremely
compact urban environment [9]. Pedestrians are exposed to severe air pollution from the motor
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traffic [10–12]. PM exposure has been investigated and proved to be strongly associated with health
burdens [13,14]. The intensive urban development also makes the distribution of pollution emission
sources (both traffic and fixed point source emissions) more complicated and the relevant analysis has
to be performed at a much finer scale. Such context leads to a considerably high spatial variability
of the particulate matters at a fine scale (a microenvironmental scale). It has been emphasized that
monitoring the spatial changes of urban air quality is essential [15]. The above indicates the need for a
detailed investigation of the fine-scale spatial variation of air quality in the compact and diverse urban
environment of Hong Kong in the assessment of health risk to pedestrians in the outdoor environment.

However, the PM data monitored by the local air quality monitoring network managed by the
government authorities cannot provide microenvironmental scale information for individual-level
health risk assessments [16]. In Hong Kong, the hourly air quality condition is currently monitored by a
local air pollution monitoring network managed by the Environmental Protection Department of Hong
Kong (HKEPD). Among the 15 stations of this network, only three are placed on the roadside [17].
The real challenge in the investigation of the spatial variability of air quality is that Hong Kong
has an extremely heterogeneous built environment. This heterogeneity results in large variations
between different locations of the city. Even in a single district, conditions cannot be effectively
observed by the three fixed roadside air quality stations. There will be large uncertainties and errors
in using the PM data of a fixed station for the pedestrian health risk assessment [15]. Many efforts
have been made to investigate the pedestrian exposure to PM in urban sites of Hong Kong with
heavy traffic conditions [18–21], but they are all based on the data from a couple of fixed monitoring
locations. The neural network is also a useful method of forecasting the traffic-related pollutant
concentrations [22]. In Hong Kong, another attempt of forecasting the air quality in a dense commercial
district has been made by developing a neural network model [23]. However, it only provides temporal
forecast but not spatial estimation. The lack of the information of fine-scale spatial variability is still a
major limitation in the evaluation of individual exposure to the pedestrian-level air pollution [24,25].

To overcome the above limitations, this study aims to initially investigate the fine-scale spatial
variability of PM in the typical compact urban environment by conducting a pilot test of pedestrian level
PM measurement by walking through selected urban areas. The geostatistical technique will be used
to analyse the data and to map the microenvironmental PM spatial variation. The microenvironmental
scale mapping of pedestrian-level PM provides better spatial information for exposure assessment
and environmental management. The experience from this initial study and pilot test will provide
a valuable knowledge basis for further environmental mapping studies and individual exposure
assessments in Hong Kong.

2. Materials and Methods

In this study, a pilot test was designed and performed. First, we measured the fine-scale spatial
variability of the PM2.5 and PM10 in three of the most representative compact commercial districts of
Hong Kong using a self-assembled backpack outdoor environmental measuring unit (temperature,
humidity, PM concentration, and real-time geographical locations). Based on the spatial PM onsite
measurement data, geostatistical semivariogram modelling was then performed and used as the basis
of spatial interpolation of the PM data. A total of 13 types of geospatial interpolation methods were
examined for the spatial mapping of PM2.5 and PM10 with a group of building geometrical/urban
setting covariates. The optimal method was determined by comparing the interpolation performance.
Finally, geospatial mapping of PM2.5 and PM10 was conducted by using the optimal interpolation
method determined by the above step. Cross validation was performed to examine the prediction
performance of the resultant geospatial mapping.

2.1. Study Areas

Three study areas—Mong Kok, Tsim 56Sha Tsui and Causeway Bay—were selected for this pilot
study of microenvironmental PM mapping (Figure 1). Mong Kok and Causeway Bay are two generally
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concerned hotspot districts of pedestrian level air pollution where the HKEPD roadside stations are
placed [26]. Tsim Sha Tsui is also one of the best known commercial districts and tourist sightseeing
areas located in the compact downtown area of the Kowloon peninsula. However, it is not monitored
by any HKEPD roadside station despite being a dense urban core with heavy traffic. Therefore, it is
also selected as a study area.

With regards to the population density, all three districts are extremely densely populated. They all
have a population density over 30,000 people/km2 (the average population density of Hong Kong is
about 7000 people/km2). As the best known and representative compact commercial districts of Hong
Kong, these three districts are quite similar in terms of land use, urban functions (highly mixed high-rise
commercial mansions, shopping centers with some densely built residential buildings), and traffic
conditions (intensive traffic and pedestrians’ outdoor activities). The activities and behaviors of the
pedestrians in these three districts are also similar (leisure and entertainment, shopping). Moreover,
the types of the fine-scale emission sources in these three districts are also similar (as mentioned in
the paper, vehicular pollutants, the densely distributed bus stops [27], restaurants and commercial
cooking [28], etc.). The above similarities not only provide a representative context for investigating
fine-scale human exposure but also make the three an ideal study site group for observing the effect of
buildings on the fine-scale pollution dispersion.
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Figure 1. The location and the building morphology of the three study areas (the size of the red
rectangle is 500 × 500 m).

These three intraurban areas represent two distinct urban morphological characteristics. As one
of the most famous urban commercial districts and tourist attractions in Hong Kong, Mong Kok has
a road network and a zoning plan based on a classical orthogonal grid. This orthogonal grid layout
has been widely used in urban planning in intraurban areas with flat terrain (Many famous large
cities around the world have the similar orthogonal grid layout such as Manhattan in New York,
Vancouver and Barcelona [29]). Compared with Mong Kok, both Tsim Sha Tsui and Causeway Bay
have a more irregular urban road network due to the irregular terrain and the costal location. Mong



Int. J. Environ. Res. Public Health 2017, 14, 1008 4 of 16

Kok also has a relatively lower and more homogeneous building height distribution than Causeway
Bay. The building morphology of the Tsim Sha Tsui area is more similar to the Causeway Bay, but with
a more compact layout.

The urbanization process significantly changes the aerodynamic roughness in the urban area [30,31].
It consequently alters the near-surface wind field and weakens the dispersion of air pollution [32].
The compact urban morphology in Hong Kong, especially in the three study areas, shapes the very deep
street canyons (implying a slower dispersion) with large traffic volume (leading to a larger emission
intensity). Therefore, it would be helpful to incorporate the consideration of urban morphology into
the geospatial analysis of this study.

2.2. Field Measurement

A self-assembled backpack outdoor environmental measuring unit was prepared for the field
measurement (Figure 2). The PM2.5 and PM10 were continuously sampled using the TSI DUSTTRAK™
DRX Aerosol Monitor Model 8534 (the DUSTTRAK monitor) with a sampling interval of 1 s. The inlet
sampling tube was installed at the height of 2.00 m above the ground surface in order to reflect
the pedestrian-level condition without random influence by near temporary emission sources that
are out of the study scope (e.g., smokers). Before the field measurement, the advanced calibration
procedure of the DUSTTRAK monitor (recommended by the manufacturer) was conducted based
on the concentration data from the simultaneous gravimetric PM2.5 and PM10 sampling at a local air
quality monitoring station [33] (the Mong Kok roadside station). Air temperature (Ta, ◦C) and relative
humidity (RH, %) were simultaneously measured by an Onset™ HOBO U12-012 weather sensor
(HOBO). The HOBO-measured data were used for the RH calibration of the measured PM2.5 and
PM10 data. The DUSTTRAK-measured data were corrected using simultaneously measured relative
humidity (RH) and the following equation [34]:

Correction Factor = 1 + 0.25
RH2

(1− RH)
(1)

In Hong Kong, the pedestrian level wind speed is already very low [35] under a calm or light wind
condition. The backpack measurement unit is moving (similar to a typical pedestrian on the streets
of Hong Kong) which means that it is difficult to get a precise measurement of wind speed. Global
solar radiation is not measured as well, as the compact urban morphology is already a modifying
factor of the wind speed and solar flux (the building morphological factors were selected as the
covariates for the geointerpolation of this study). A GPS logger (GarminTM GPS 62 s model, with an
accuracy of location within 4.0 m) was used to record the corresponding geographical location of each
measurement data. All the instruments were synchronized to Coordinated Universal Time (UTC) to
make sure that the data logging timeline is synchronized.

Due to the seasonal variation of the regional weather system, the air pollution condition in
Hong Kong is dominated by the regional air pollution (with a higher PM concentration) during the
winter time [36]. This regional-dominant pollution mode affects Hong Kong one-third of the time in
a year [37]. In this study, the regional-dominant influence of the long-distance transportation of air
pollution from the Pearl River Delta (PRD) region of mainland China is out of the study scope. The air
quality is dominated by local emission sources during summer time [20,38]. In order to minimize the
influence of high background concentration [20], all measurement campaigns were performed under
the typical summer weather condition of Hong Kong (no rainfall; partially cloudy [39]; calm or light
wind condition [7,40]—a Beaufort wind scale <2 in this study; RH around 85% according to the Hong
Kong Observatory [41]). All the three sampling sessions for the three study areas were performed from
June to July 2015 (typical summer without extreme weather condition/events). The diurnal pattern of
the PM concentration level monitored at the Mong Kok roadside air quality monitoring station of local
authority (HKEPD) has been investigated. A considerable increase of PM concentration was observed
between 6:00 a.m. and 10:00 a.m. (caused by the surge in traffic of morning commuting). The roadside
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PM concentration level also has a rapid decline after the evening traffic-intensive hours (in Hong Kong
the evening rush hour usually lasts at least until 8:00 p.m. due to the overtime works). Considering
above diurnal pattern of roadside PM and also pedestrian activities, all measurement sessions were
performed within the time range of 2:00 p.m.–8:00 p.m. (during which the hour-to-hour changing
gradient of background PM concentration is smaller than other hours).

During the field measurement, a measurer keeps walking through the study area along a
designated route at a typical pedestrian walking speed of 3 km/h (0.8 m/s) [42] carrying the calibrated
instruments, so the spatial variation of PM concentration at pedestrian level can be well observed.
There are both a forward and a backward walkthrough along the route in each measurement session
to eliminate the bias of the different walking directions along the route. Even in an extremely crowded
street environment with fast-paced traffic flow, the measurement was still designed to gather spatial
information as comprehensive as possible. During the measurement campaigns, at those streets where
the pedestrian crossing is available, the person was also asked to walk through the both sides of the
street instead of only sampling the PM2.5 concentration level on a single side of the street. The data
measured while crossing the street were also kept to understand the PM2.5 concentration at the road
center. The maximum walking time is set to 2 h for each study area to make sure that the background
concentration level and weather conditions have no significant changes.
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Figure 2. The instrumentation of the backpack measuring unit, and the walking measurement
routes in the three selected study areas for measuring the pedestrian-level PM concentration.
(The walking measurement routes shown in this figure are labelled based on the forward direction of
the walkthrough).

2.3. Geospatial Interpolation Methods

Spatially continuous data of air pollution concentration play an important role in depicting urban
air quality, but acquiring such data is not an easy task [43,44]. Different approaches have been applied
to acquire spatially continuous air pollution concentration data, including remote sensing methods [45],
computational fluid dynamics (CFD) simulation [46], and geographical mapping [47]. Remote sensing
data have been used for mapping the spatial distribution of ground-level PM2.5 in Hong Kong but
only at a large scale with a coarse spatial resolution [48,49]. CFD methods become more popular in
modeling the microenvironment air pollution, but there are still uncertainties due to the limitation of
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either the turbulent models or the computational resources [50]. The geographical mapping methods
(based on real measured data, as a cost-effective way) have been used to map the microclimatic spatial
distribution in the high-density urban environment of Hong Kong [51]. The results show a reasonably
good mapping accuracy with high practicability when dealing with the complicated built environment
of Hong Kong. Therefore, the geographical mapping method was selected as the main method of this
study as well.

Spatial interpolation is the key of geographical mapping. In this study, 13 types of spatial
interpolation methods were tested and compared to map the microenvironmental spatial distribution
of PM2.5 and PM10 (Table 1). The effects of building geometrical features measured by the sky view
factor (SVF) and frontal area index (FAI) have been identified as determinant factors of the urban
scale spatial variability of PM in Hong Kong [16,52]. In these studies, the road area ratio (RDA) as an
indicator of the traffic capacity/volume of the spatially arranged road network was also proved to be
an important predictor of the spatial variability of PM, because it largely reflects the traffic volume
distribution under the extremely compact urban scenario of Hong Kong. In this present study, these
three factors were calculated within the range of a microenvironmental scale (defined as a buffer
range of 50 m) and considered as weight factors/covariates of the spatial interpolation to test whether
they are still the dominants of the air pollution spatial distribution at the microenvironment scale.
Implementation of different types of interpolation methods was based on previous studies and several
practical guides of geointerpolation [53,54]. The building geometry data were used as the barrier layer
in the KIB algorithm.

Table 1. List of the 13 types of spatial interpolation methods used in this study.

The 13 Types of Methods Basic Interpolation Algorithm 1 Weight Factors 2 Covariates 2

LPI LPI none n/a
LPISVF LPI 1 n/a
LPIFAI LPI 2 n/a
LPIRDA LPI 3 n/a

OK OK n/a none
OCKSVF OCK n/a 1
OCKFAI OCK n/a 2
OCKRDA OCK n/a 3
OCKALL OCK n/a 1, 2, 3

KIB KIB none n/a
KIBSVF KIB 1 n/a
KIBFAI KIB 2 n/a
KIBRDA KIB 3 n/a

1 The basic interpolation algorithm: Local polynomial interpolation (LPI), Original kriging (OK), Original cokriging
(OCK) and Kernel smoothing interpolation with barriers (KIB); 2 The weight factors and covariates: (1) Sky-view
factor within 50-m buffer (SVF50m), (2) Frontal-area index within 50-m buffer (FAI50m), and (3) Road-area ratio
within 50-m buffer (RDA50m).

A spatial interpolation is based on the assumption that the spatial variation in the study area can
be explained by a spatial correlation between data points which is a function of distance [55]. The LPI
method uses the polynomials to fit complex curves with the measured data points, and uses these
spatial curves to create continuous prediction surface of the spatial variation. The kriging method
(OK and OCK in this present study) develops the prediction surface by weighting the surrounding
measured data points (based on a semivariogram model) to estimate the value of unmeasured
locations [56]. Below formula demonstrates how a spatial interpolation works:

Ẑ(Sunmeasured) =
N

∑
i=1

λiZ(Si) (2)
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where Ẑ(Sunmeasured) is the interpolated (predicted) value at a unmeasured location. N is the total
amount of the measured locations. Z(Si) is the real measured value at the location Si in the study area.
λi is the weighting factor of the Z(Si) resulting from fitted curves/models.

There are two important elements that need to be examined in performing the above
interpolations—the kernel functions and the spatial correlation of the data. The polynomials used
in the LPI depends on a kernel function (the geointerpolation fits a prediction surface based on a
kernel function). In this study, six types of commonly used kernel functions were tested using the
concentration value of PM2.5 and PM10 of each study area to determine the optimal kernel function
for the purpose of achieving the minimum interpolation error, evaluated using the root mean square
error (RMSE). A k-fold cross validation was also adopted to avoid bias. See Section 2.4 of this article).
Kernel functions that produce the minimum RMSE should be used for the further mapping process.
Some interpolation methods are based on the kernel function (e.g., LPI, KIB) while many other
spatial interpolation methods are by the semivariogram modelling such as OK and OCK methods.
Geostatistical analysis was used to determine the optimal semivariogram model of PM2.5 and PM10 of
each study area for further spatial interpolation. The semivariogram is measured as follows:

γ
(
dij
)
=

1
2n
(
dij
) n(dij)

∑
si−sj=dij

[
Z(Si)− Z(Sj)

]2 (3)

where γ
(
dij
)

is the semivariogram. There are n
(
dij
)

pairs of spatial locations of measured data in the
study area. dij is the spatial distance between the location Si and Sj. Z(Si) and Z(Sj) are the measured
value at the location Si and Sj in the study area. A semivariogram γ

(
dij
)

model is a function of d, which
depicts the spatial correlation of the value of interest in a certain spatial range. This spatial correlation
could provide an estimation for those unmeasured locations between two measured locations. It is the
basis of spatial interpolation. It is also an important indicator of the spatial independence of the data.
Using the empirical semivariogram modeling method, we not only develop the semivariogram models
as the basis of the further interpolation but also test the major range of the spatial independence of
PM2.5 and PM10 [56]. The spatial independence enables the determination of the optimal spatial scale of
representing the spatial variability of the data separately for the three study areas. The ArcGIS software
(the embedded Geostatistical Analyst module) was used for the above geospatial analysis [56].

2.4. The Validation and Comparison of Interpolation Methods

In this study, both the leave-one-out cross validation (LOOCV) and the k-fold cross validation
were adopted to validate all resultant spatial interpolation results of PM and compare the prediction
performance of different interpolation methods. In a LOOCV a predicted dataset is firstly generated.
This dataset includes all predicted values from interpolation mapping for each corresponding location
of the measured points. Then, a simple linear regression (SLR) between the predicted value dataset
and measured value dataset is developed. The RMSE of the SLR (between predicted and measured
data) was calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(
PM′i − PMi

)2 (4)

where PMi is the measured value of the PM concentration at the at the point location i of the study
area. PM′i is the estimated PM concentration at the pixel i (the corresponding pixel of the location i) in
the resultant spatial interpolation mapping. To avoid estimation bias near the much localized fine-scale
pollution emission sources, a k-fold cross validation with k = 2 was also performed. In this 2-fold
cross validation, the measured PM data was divided into two sets. The first data set is used as the
model training dataset, while the other set was used as the evaluation dataset. The above process was
performed twice so that each set can be used as both the training dataset and the evaluation dataset.
The R 2

k− f old was calculated and used for the evaluation [57]. Both the RMSE and the R 2
k− f old were
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also used for the comparison of the kernel functions and the final prediction performance of the 13
types of interpolation methods mentioned above (in Table 1).

3. Results

As described in the methodology section, the optimal kernel function was identified first. Then,
the semivariogram models were developed for each study area to determine the optimal spatial scale of
representing the data variation. On top of that, a total of 13 types of methods were to map the fine-scale
spatial variability of PM2.5 and PM10 in the three study areas. During this process, three building
geometrical-related weight factors/covariates were examined. Finally, the prediction performance
was compared to determine the best interpolation method. Figure 3 shows the general statistics of
PM2.5 and PM10 concentration levels and the three covariates (SVF50m, FAI50m and RDA50m) in the
three study areas.
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Figure 3. The quantiles box plots (10%, 25%, 50%, 75% and 90%; Mean and Standard Deviation) of
PM2.5 and PM10 concentration levels and the three covariates (SVF50m, FAI50m and RDA50m) in the
three study areas.

3.1. The Optimal Kernel Functions

The results (Table 2) show the RMSE and the R 2
k− f old of using six types of kernel functions for

PM2.5 and PM10 of the three study areas. The comparison results show that the exponential kernel
function produces the minimum RMSE and the highest R 2

k− f old values of the estimation of the spatial
variation in both the PM2.5 and PM10 concentration in all three study areas. Therefore, the exponential
kernel function is used for further interpolation. The equation below shows an exponential kernel
function for geointerpolation (where r is the radius of a center point, h is the bandwidth) [56].

K
( r

h

)
= e−3( r

h ) (5)

Table 2. The kernel function comparison based on the RMSE/R 2
k− f old of the predicted PM

concentration value by the LPI method. The method produces the minimum RMSE and the highest
R 2

k− f old values of the PM2.5 and PM10 estimation of the three study areas were italicized.

Kernel Functions

Study Areas Tsim Sha Tsui Mong Kok Causeway Bay
PM2.5

(µg/m3)
PM10

(µg/m3)
PM2.5

(µg/m3)
PM10

(µg/m3)
PM2.5

(µg/m3)
PM10

(µg/m3)

Exponential 5.831/0.866 6.124/0.863 4.577/0.743 4.846/0.793 2.983/0.729 5.372/0.854
Polynomial5 6.313/0.840 6.645/0.839 4.816/0.711 5.099/0.769 3.166/0.696 5.645/0.844
Gaussian 6.073/0.854 6.387/0.853 4.767/0.719 5.045/0.775 3.169/0.691 5.668/0.837
Epanechnikov 6.825/0.775 7.216/0.771 5.347/0.657 5.643/0.724 3.612/0.560 6.406/0.766
Quartic 6.513/0.815 6.865/0.813 4.976/0.695 5.263/0.755 3.316/0.649 5.895/0.818
Constant 7.071/0.725 7.479/0.723 6.087/0.574 6.383/0.657 4.051/0.436 7.166/0.686
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3.2. The Semivariogram Modelling

Semivariogram modelling is an essential step for geointerpolation [58]. The bin size selection and
the model optimization were determined by taking the advantage of ArcGIS Geostatistical Analyst [59].
This module is able to fit an optimized semivariogram model automatically. Figure 4 shows the six
resultant semivariogram models developed for the mapping of the PM2.5 and PM10 spatial variability
in the three districts. They were used as the basis of further interpolation. The geostatistical analysis
of semivariogram modeling for the three study areas shows that the “Stable” type is the optimal
semivariogram model type of almost all resultant models (except the model of PM10 in Causeway Bay
which has a “Spherical” model type). The major range of the measured spatial PM2.5 and PM10 data is
range from 12 m (PM2.5 in Tsim Sha Tsui) to 58 m (PM10 in Causeway Bay). The average level of the
major range is approximately 25 m, which is much smaller than the findings in the previous vehicular
mobile monitoring study [60].
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study areas.

3.3. The Comparison of Prediction Performance of the Interpolation Methods

The RMSE and the R 2
k− f old of the 13 different types of interpolation methods were compared

(grouped by the interpolation algorithms and the weight factors/covariates). Table 3 shows the
comparison results of the averaged RMSE and the R 2

k− f old of predicted values among the four basic
interpolation algorithms. Except for the PM2.5 in the Causeway Bay area, the OK method produces the
minimum RMSE and also the highest R 2

k− f old values for almost all other predicted values of PM2.5

and PM10. Overall, the OK method shows the best estimation accuracy among all methods in almost
all study areas. LPI shows the lowest prediction performance. The performance of the OK, OCK and
KIB methods is similar.
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Table 3. The Comparison of the RMSE/R 2
k− f old of PM concentration levels by the different interpolation

algorithms. The method produces the minimum RMSE and the highest R 2
k− f old values of the PM2.5

and PM10 estimation of the three study areas were italicized.

Algorithms

Study Areas Tsim Sha Tsui Mong Kok Causeway Bay
PM2.5

(µg/m3)
PM10

(µg/m3)
PM2.5

(µg/m3)
PM10

(µg/m3)
PM2.5

(µg/m3)
PM10

(µg/m3)

LPI 5.820/0.869 6.202/0.861 4.581/0.736 4.850/0.794 3.051/0.732 5.508/0.848
OK 4.568/0.917 4.764/0.909 3.566/0.842 3.753/0.867 2.070/0.883 3.789/0.924
OCK 4.647/0.913 4.858/0.905 3.578/0.841 3.771/0.866 2.155/0.875 3.794/0.923
KIB 4.733/0.908 4.943/0.903 3.631/0.835 3.818/0.863 2.064/0.885 3.853/0.922

Table 4 shows the results and a comparison of the averaged RMSE and the average R 2
k− f old of

predicted values produced by considering the different weight factors/covariates. The findings by this
present study at the microenvironmental scale is different from the conclusion in our previous studies
about urban-scale air quality mapping [16,52]. Our previous studies found that the incorporation
of urban morphological factors in the geospatial modelling significantly improves the estimation
accuracy of the spatial variation of PM concentration at the urban scale. However, it can be observed
in this present study that only slight improvements in the interpolation performance were achieved
in all three study areas when the fine-scale building geometrical features were considered in the
interpolation model (either by using them as weight factors for LPI or as covariates for cokriging).
This finding also implies the multiscale properties of the urban outdoor PM exposure in Hong Kong.

Table 4. The comparison of the RMSE/R 2
k− f old of PM concentration levels by the consideration either

on different weight factors or different covariates. The method produces the minimum RMSE and the
highest R 2

k− f old values of the PM2.5 and PM10 estimation of the three study areas were italicized.

Covariates/
Weight Factors

Study Areas Tsim Sha Tsui Mong Kok Causeway Bay
PM2.5

(µg/m3)
PM10

(µg/m3)
PM2.5

(µg/m3)
PM10

(µg/m3)
PM2.5

(µg/m3)
PM10

(µg/m3)

None 5.043/0.898 5.361/0.890 3.987/0.803 4.205/0.840 2.434/0.828 4.436/0.895
SVF50m (1) 5.040/0.898 5.295/0.893 3.922/0.807 4.134/0.843 2.374/0.838 4.350/0.899
FAI50m (2) 5.061/0.897 5.287/0.894 3.907/0.810 4.122/0.844 2.447/0.826 4.394/0.897
RDA50m (3) 5.079/0.895 5.334/0.891 3.895/0.812 4.111/0.844 2.378/0.837 4.355/0.899

3.4. The Geospatial Mapping and the Validation

The fine-scale spatial variability of the PM2.5 and PM10 in the three study areas were mapped
using the optimal interpolation methods (with the best prediction performance and the minimum
RMSE and the highest R 2

k− f old values). The spatial resolution of the resultant prediction surface of
each study area was automatically determined by the algorithm embedded in the ArcGIS Geostatistical
Analyst based on the measured data. Therefore, the spatial resolution is slightly different for the three
study areas (and they are not the integer as well). The resultant spatial resolution of the prediction
surfaces range from 1.4 to 1.7 m. Figure 5 illustrates the geospatial interpolation mapping of the PM2.5

and PM10 concentration in the three study areas. The high PM concentration hotspots can be clearly
observed from the mapping results of each of the study areas. The validation results (Figure 6) show
that all interpolation mappings of the PM2.5 and PM10 in the three study areas achieved a satisfying
prediction performance.
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4. Discussion

Studying the microenvironmental scale of air pollution is essential in the assessment of
human exposure of Hong Kong residents to air pollution. This present study is a pilot test to
depict the fine-scale spatial variability of PM in an extremely compact built environment using
geospatial interpolation techniques. A previous local attempt has been made to understand the
microenvironmental scale human PM exposure in several districts in Hong Kong [26]. There are also
attempts at measuring the spatial variation of ground-level PM by conducting mobile monitoring
method [16,61]. However, a major limitation of these prior studies is that the fine-scale spatial variation
of pedestrian level PM is not fully depicted. The fixed monitoring and vehicular mobile monitoring
cannot effectively detect the PM hotspots caused by the localized emission sources in the study areas.
To overcome all the above limitations, we conducted a microenvironmental scale mapping of the
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spatial variability of PM2.5 and PM10 using geospatial interpolation mapping based on the measured
pedestrian level PM data. It could provide more detailed information in the representation of the
pedestrian PM exposure.

4.1. Spatial Variability within Districts—The Necessity of a Multiscale Understanding

According to the results, the average level of the spatial scale of the PM variability (measured as
the major range) is approximately 25 m—much smaller than the findings in the previous vehicular
mobile monitoring study [61]. This finding confirms that the fine-scale spatial variability of pedestrian
level PM can only be effectively monitored by a personal level exposure measuring unit. Typically,
the PM2.5 concentration at road center should be higher than at the roadside because of the dominance
of the on-road vehicular pollutant emission. However, the phenomenon that the PM2.5 concentration
was higher at the sidewalks but lower at the center of some streets were observed in the resultant
mappings of this present study. The PM2.5 concentration at is not necessarily lower than the center
of the streets. Many of fine-scale PM pollution sources are located on the roadside such as bus stops,
parking entrance, cargo areas, and ventilation discharge outlets of restaurants/commercial cooking.
They all have a considerably higher emission intensity of PM2.5. For example, it has been measured by
our previous work that a couple of buses parked at a roadside bus stop could lead to an abnormally
high PM2.5 concentration [16]. A majority of the large number of restaurants, most of them Chinese [62],
are located at the ground-level of a high-rise building podium on the roadside. They stand next to a
narrow pedestrian sidewalk, with ventilation discharge outlets along the roadside.

The above findings also imply that a set of multiscale measures must be taken to control the
urban outdoor PM exposure level in Hong Kong. To be more specific, urban environmental planning
strategies are necessary to enhance the dispersion of PM at the urban scale. Meanwhile, the fine-scale
emission sources in the urban downtown area (for example, the densely distributed bus stops [27],
restaurants and commercial cooking [28]) also have to be properly inventoried and regulated.

4.2. The Difference in Determinants of the Urban Air Pollution Spatial Variability

Continuing the above discussion, the spatial variation of urban air pollution is multiscale [63,64],
which means that the dominant factors and determinants of the spatial variability at different spatial
scales (i.e., at the street scale and urban scale) are also different. Our previous study confirms that the
urban morphological/building geometrical factors significantly determine the spatial distribution of
PM2.5 and PM10 concentration and also the spatial distribution of many other kinds of air pollutants
at the urban scale in the compact urban environment of Hong Kong [52]. It is due to the influence
of urban surface aerodynamic properties in the urban boundary layer climate and the atmospheric
pollutants dispersion. However, the dominant effect of building geometrical features does not appear
in the geospatial interpolation mapping of pedestrian level PM at the microenvironmental scale
(a much smaller spatial scale of than the urban scale). Only slight improvements in the interpolation
performance were achieved in all three study areas when the fine-scale building geometrical features
were considered in the interpolation model either by using them as weight factors/covariates. For each
study area, several high PM concentration hotspots can be clearly observed from the mapping results
(Figure 5). Currently, there is still no well-established inventory/database of fine-scale air pollution
emission sources in Hong Kong. In such case, conducting site survey could be a way of investigating
the causes of these hotspots. By comparatively analyzing the interpolation mapping results of the
PM in each study area and corresponding video records during the measurement campaigns and the
information gathered during the site survey, it has been found that the spatial distribution of high PM
concentration hotspot locations is highly consistent with the locations of local PM pollution sources
(mainly includes busy street/crossroads, bus stops, parking entrance, cargo areas, and those ventilation
discharge outlet of restaurants/commercial cooking). The above also supports the argument that the
fine-scale emission sources in the urban downtown area must be properly inventoried and regulated
to improve the pedestrian level air quality.
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4.3. Outlook for a Feasible Way of Mapping the Fine-Scale Spatial Variability in Air Pollution Exposure Using
Big Data

The geospatial interpolation was adopted to explore the pedestrian-level air pollution
concentration in three representative commercial districts of Hong Kong at the microenvironmental
scale with the PM data collected by the individual walking-based measurement campaigns. The good
mapping accuracy and reasonable validation results of this study (Figure 6) prove that the measured
data from the individual measurement unit are competent at providing information for the depiction
of fine-scale spatial variability of urban air pollution. Compared with the conventionally fixed
measurement at sparsely distributed monitoring locations, using the individual measurement is a
more cost-efficient way to provide more detailed spatial information. More importantly, by measuring
the spatial variability of air pollution using the individual walking-based measurement, this study
shows the high feasibility of creating big data of spatial information on urban air quality based on
individual air pollution exposure measurement by regular residents. With the rapid improvement
in air quality monitoring technology, air quality sensors are becoming much more portable. Mobile
communication devices such as smart phones and tablets with cellular/WIFI signals make it possible
to upload real-time air quality monitoring data from the portable air quality sensors for the building up
of big data. These big data could be extremely precious and useful for the human exposure assessment
and urban environmental management. With the big data on urban air quality with abundant spatial
information, the prediction accuracy of the Hong Kong Air Quality Health Index (AQHI) [65] could
possibly be promoted to a new level.

4.4. Limitations and Future Works

It should be noticed that the geointerpolation is still based on the assumption of a certain
function of distance, which largely relies on mathematics and algorithms. A numerical modelling
with comprehensive environmental considerations could lead to more robust estimates. However,
most of the street canyon studies are using idealized cases for parametric comparison study [46,66].
As discussed, it is challenging to use numerical modelling to depict a real site without a comprehensive
inventory of small-scale air pollution emission sources. In such case, although there are inherent
uncertainties of the geointerpolation, the personal exposure measurement and the geospatial
interpolation of this present study still provide valuable information about the fine-scale spatial
variability of the pedestrian level PM2.5 concentration. This initial study is a starting point for
a comprehensive investigation of small-scale spatial variability of air pollution and evaluation of
pedestrian level personal exposure. Further works should and will focus on refining the method,
evaluating its uncertainties where possible, understanding its sensitivities to the changes in technical
details of the measurement campaign and the input data. Further fine-tuning should be performed to
keep improving the robustness of the interpolation results.

5. Conclusions

This present study is an initial attempt to investigate the fine-scale spatial variability of the
pedestrian level PM in a compact built environment using geospatial analysis methods with real
measured individual PM exposure data. Using a self-assembled backpack outdoor environmental
measuring unit, we investigated the fine-scale spatial variability of PM in three of the most
representative commercial districts of Hong Kong. The geospatial interpolation was then used to
analyse the data and to map the microenvironmental PM spatial variation. The results show that
the original cokriging with the exponential kernel function provides the best performance in the
PM mapping. Using the fine-scale building geometrical features as covariates slightly improves
the interpolation performance. The study results also imply that the fine-scale, localized pollution
emission sources heavily influence pedestrian exposure to PM. The validation results confirm that
the microenvironmental scale mapping of pedestrian-level PM provides better spatial information for
exposure assessment and environmental management.
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