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Abstract: This paper presents the results obtained from the study of the sustainable state between
nature and human society on a global scale, focusing on the most critical interactions between the
natural and anthropogenic processes. Apart from the conventional global models, the basic tool
employed herein is the newly proposed complex model entitled “nature-society system (NSS) model”,
through which a reliable modeling of the processes taking place in the global climate-nature-society
system (CNSS) is achieved. This universal tool is mainly based on the information technology that
allows the adaptive conformance of the parametric and functional space of this model. The structure
of this model includes the global biogeochemical cycles, the hydrological cycle, the demographic
processes and a simple climate model. In this model, the survivability indicator is used as a criterion
for the survival of humanity, which defines a trend in the dynamics of the total biomass of the
biosphere, taking into account the trends of the biocomplexity dynamics of the land and hydrosphere
ecosystems. It should be stressed that there are no other complex global models comparable to those
of the CNSS model developed here. The potential of this global model is demonstrated through
specific examples in which the classification of the terrestrial ecosystem is accomplished by separating
30 soil-plant formations for geographic pixels 4◦ × 5◦. In addition, humanity is considered to be
represented by three groups of economic development status (high, transition, developing) and the
World Ocean is parameterized by three latitude zones (low, middle, high). The modelling results
obtained show the dynamics of the CNSS at the beginning of the 23rd century, according to which the
world population can reach the level of 14 billion without the occurrence of major negative impacts.
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1. Introduction

Nowadays, the environmental impacts of human activities have expanded to a large spatial scale
and have become more rapid [1,2]. Initially, these activities transformed places or areas, while today
they are transforming almost all of Earth [3]. Changes that have taken place in decades or centuries
are now happening in a few years. This is due to the fact that atmospheric and climatic processes obey
non-linear dynamics [4–8].

The problem of the sustainable development of human society has not been alleviated. On the
contrary, it has been strengthened in the 21st century. If human society had been actually on the brink of
nuclear war in the mid-20th century (when there was a crisis in the Caribbean), the climate-nature-society
system (CNSS) would now be in critical condition for a number of reasons, such as:
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• The premature increase in the world population compared to the increase in productivity of
agricultural and natural ecosystems would lead to a decrease in the volume of food per capita.
The food deficit is a fact in many areas. Food per person decreases over time and an increase in
hungry people is expected [9].

• The environmental response to anthropogenic intervention to natural cycles would be manifested
by the intensification of natural disasters, including the emergence of new incurable diseases [10,11].

• Global climate change due to the disturbance of cycles of greenhouse gases and water resources
leads to a modification of spatial distribution of water resources, including drinking water [12].

• The development of new powerful weapons would contribute additional uncertainties in the
problem of human population survivability [13].

• The intensification of both international and regional conflicts would be followed by dramatic
changes in the globalization and decentralization processes which would not encourage the
improvement of the living conditions of the population [14].

• There would be ecological consequences of mobile communication media including mobile
phones [15].

Under these circumstances, the strained global relations would have as result to put aside the
solution of the survivability problem. which is impossible on a regional scale. It is necessary to
develop an information technology that allows a comprehensive description of the global ecological,
demographic, social-economic and climatic processes that take place in the CNSS. This technique
would allow to search for constructive strategies for the CNSS survivability taking into account existing
assessments and forecasts of environmental resources. A cornerstone of the concept of sustainable
co-existence of nature and humans is the convention that all countries should seek appropriate
strategies for the evolution of the biosphere-population system, taking into account the reserves of
the biosphere. The global population in its tendency to the reduction of poverty must realise that
the reserves of biosphere are exhaustible. Therefore, the complex objectives of the global population
must be research and monitoring related to conservation and sustainability. As for this problem,
there are many investigations based on global models [16–23]. These and others studies of global
environmental processes are based on different models of the present view of the CNSS structure.
Many of them have a virtual character based on the philosophy-ideology of the world state. The
constructive approach to the global environmental modeling was proposed by Moisseev [24] who
formulated a well-defined conceptual model for the biosphere that differs greatly from the known
global models of the Club of Rome [25–29]. After many researches a credible mathematical approach
to the global environmental model was finally developed, and provided simulation experiments with
global environmental processes including assessments of the effects of anthropogenic impacts on
biosphere ecosystems [30–34].

The difference between the models of the Club of Rome and the other models lies mainly in the
following methodological principles [35]:

• The authors of the models of the Club of Rome focused their main attention both on global
economic processes which connect to separate environmental processes and secondly selecting
the demographic block as a key element of the global model.

• Moisseev’s [24] starting position was the research of the biosphere considering the human as
an element of the biosphere and that the demographic and economic processes are only taken
into account in the systematic analysis of the global ecological evolution.

The present socio-economic theories of sustainable development are far from Moisseev’s ideas
and certainly from Vernadsky’s noosphere theory [36]. Many indicators such as Happy Planet Index
(HPI), Human development Index (HDI), Food Production Index (FPI), Gross Domestic Product (GDP)
and others undoubtedly help to assess the development tendencies in a particular CNSS section but
have difficulties in the complex evaluation of the CNSS evolution. It is possible only by using a global
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model that allows to taking into account the maximum number of direct and indirect couplings present
in the CNSS.

The trend towards improving global models is characterized by efforts to improve their precision
and reduce the provision of information requirements. At the same time the complexity of organized
reality prevents this approach of improvement and brings a set of constraints associated with chaotic
environmental processes and the multidimensional problem [32,37–41]. Indeed, each global model
has an individual character and focuses on a limited set of environmental processes and elements.
Krapivin et al. [42,43] proposed a new approach to the development of a global model based on the use
of high-level tools for the utilization of separate operations associated with the description of processes
in the CNSS. In particular, the geoecological information-modeling system (GIMS) was developed
whose architecture is based on the combined use of GIS-technology and modeling tools.

This paper proposes the use of GIMS as a universal tool for the complex parameterization of the
most important global processes for the investigation of a sustainable state between nature and human
society, taking into account existing global models that describe different processes in the CNSS [43–45].
The GIMS/CNSS consists of many mechanisms, which operate autonomously to represent a part of
the desired functionality. Therefore, the architecture of the complex GIMS/CNSS Global Model was
developed in such a way to demonstrate an integrated pattern of direct and indirect relationships
between the traditional processes in the CNSS.

2. General Description of the GIMS/CNSS Model

Key aspect of the assessment of the humanity survivability is the ecological status of the natural
evolution of the Earth, which determines food production and other conditions already said. Certainly,
the level of self-organization and the structure of the CNSS depends on many factors of the co-evolution
of nature-population as elements of the biosphere. Consequently, the composition of the CNSS model
is only possible by a synergistic approach that dictates the form and structure of the GIMS/CNSS.
GIMS plays a management role by providing coordination between CNSS components and expanding
their operations.

Following this approach, the key components of the GIMS/CNSS are defined as the information
core for ecological, geophysical, hydrological, biocenotic and demographic processes taking place
across the globe. The Earth’s surface Ξ is divided into World Ocean ΞO and the land ΞL (Ξ = ΞL∪ΞO).
The land surface ΞL is covered by a geographical grid with discrete steps of ∆ϕi and ∆λj of latitude
and longitude, respectively, so that all processes within the pixel ΞLij = {(ϕ, λ): ϕi ≤ ϕ ≤ ϕi + ∆ϕi;
λj ≤ λ ≤ λj + ∆λj} are considered uniform and parameterized by the point models. Each pixel area
σij = χϕχλ∆ϕi∆λj is occupied by the soil-plant formation (r1th part), the agricultural vegetation (r2th
part), the hydrophysical objects (r3th part), and the anthropogenic objects ((1−r1−r2−r3)th part),
where χϕ(≈111 km) and χλ(=111.3 cos ϕ) are the number of kilometers to a degree of latitude and
longitude, respectively.

In the case of the World Ocean, three latitudinal zones are separated: the equatorial zone
ΞO1 = {(ϕ, λ): ϕ∈[0◦ N, 30◦ N]∪[0◦ S, 30◦ S]; 0◦ ≤ λ ≤ 360◦}, temperate latitudes ΞO2 = {(ϕ, λ):
ϕ∈[30◦ N, 60◦ N]∪[30◦S, 60◦S]; 0◦ ≤ λ ≤ 360◦} and Arctic and Antarctic zone ΞO3 = {(ϕ, λ): ϕ∈[60◦ N,
90◦ N]∪[60◦ S, 90◦ S]; 0◦ ≤ λ ≤ 360◦}. Pelagic ΞO1P and upwelling ΞO1U aquatories are selected in the
ΞO1 zone to differ in productivity and gas exchange rate on the air-water boundary [46,47].

Figure 1 and Table 1 show the GIMS/CNSS block structure that is synthesized by taking into
account the components and parameters of the global bio-geosystem, managed by geoinformatics
monitoring systems. The spatial structure of GIMS/CNSS is defined by the available database and
knowledge base. The simplest version of the point model is made when the World Ocean and land are
considered as unique element of the planet. The spatial heterogeneity is carried out by the various
forms of global space sampling. A basic form of spatial digitization is the choice of a uniform grid
∆ϕ × ∆λ. The GIMS allows the different spatial grids for each CNSS model item that supports the
integration of pixels ΞLij. This kind of spatial structure of the biosphere allows the model to be adapted
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to the heterogeneities of the databases and to perform simulation experiments with the realization of
the individual regions.

Depending on the peculiarities of the natural process under consideration, a regional structure
can be identified with the climatic and geographic zones, the continents, the natural bio-forms and the
socio-administrative structures. For example, Krapivin and Vilkova [48] divided the land’s biosphere
into the pixels of magnitude ∆ϕ = 4◦ and ∆λ = 5◦. In more details, the biogeocenotic processes are
studied in ∆ϕ = ∆λ = 0.5◦ [31]; the socio-economic processes are usually represented by three or
nine regions, according to the status of the country development [49]; the atmospheric processes
in biogeochemical cycles of long-living elements are approached with the point models [50,51]; the
functioning of the oceanic ecosystems are represented by the heterogeneous spatial structure including
pixels ΞOij of shelf zone and pelagic zones of four oceans [46]. Tarko [52] developed the Moscow
Global Biosphere Model, where the World Ocean is represented by the upper quasi-uniform and deep
layers separately for four latitudinal zones in the north and south aquatories. It is emphasized that
GIMS allows for the combined use of these parameterizations.
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Table 1. The GIMS/CNSS functional items.

Item Item Functions

DM Demographic model [53].
CM Climate model [42,54].

CMCM Coupled model of the carbon dioxide and methane cycles [47].
GSCM Global sulphur cycle model [22].
GCOO Coupled model of global cycles of oxygen and ozone [22].
GNCM Global nitrogen cycle model [55].
GPCM Global phosphorus cycle model [56].
RHCM Regional hydrological cycle model [57].
BMSPF Biocenotic model of the soil-plant formations [48,50].
PMTM Photosynthesis model for the tropical and moderate oceanic zones [58].
PMAA Photosynthesis model for the Arctic and Antarctic zones of the World Ocean [19,59,60].
APM Agriculture production model [61,62].
AIFI Evolutionary algorithm for the indicator calculation of the food industry [44,50].
UEM An upwelling ecosystem model [46].

MWEL Model of the typical water ecosystem on the land [57].
AHIS An algorithm for the human indicator survivability calculation.
DMEP Dynamic model of the environmental pollutants [56].
GSA The GIMS structure adaptation to the simulation experiment conditions [23,42].
DFM Database formation and management.

SS Synthesis of the scenarios for the interaction of population with the environment.
SEMC Simulation experiment management and control.
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3. Description of the GIMS/CNSS Items

The GIMS/CNSS items listed in Table 1 perform the calculations of the energy and matter flows
between the spatial digitization pixels of the biosphere taking into account its components. The
GIMS/CNSS stability is provided by the information channels linking the functional items so that the
change or modification of the item does not affect other items.

Item GSA provides the symbol-parametric identification for pixel components including the
soil-plant formations, pollutant sources, water ecosystems and population. As a result, the matrix
structures are formed as spatial identifiers of the CNSS elements. Item AHIS focuses on the task of the
assessment of the survivability level of population based on available indicators. One of these is the
survivability indicator:

J(t) =
1
σ

 ∑
(i,j)∈ΞL

σij

[
r1

R1
Φ(i, j, t)
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R2

Φ(i, j, t)
R2
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,
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}]θn
, Y3(P) = 1− exp

{
−γP
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}
,

Table 2 lists the model parameters determined by taking into account the data of separate models
from Table 1 and minimizing the disagreement between the pre-historic trends of CO2, the global
population size and the relevant model results during 2000–2015. A comparative analysis of the results
of the model and of the global temperature trend over the period 2000–2015 showed credibility of the
appropriate results at the level of 7–10%.

CA is the CO2 content in the atmosphere (ppmv), E is the solar radiation (W/m2), W is the
precipitation (mm/year), TN and Te are the global temperatures at the pole and equator, respectively
(◦C); Tg is the global average temperature (◦C); Tmin and Topt are the critical and optimal temperatures
for photosynthesis (◦C), respectively [63,64]; ϕT is the latitude at which T(i,t) = Tg; Emax is the
solar radiation corresponding to maximal photosynthesis; n is the content of the biogenic salts
(mg/m2); P is the phytoplankton biomass (mg/m2); t0(2015) is the starting time, when global average
production is assessed by R∗Φ (2015) = 48.7 PgC/year and R∗P (2015) = 56.2 PgC/year. Under this
R∗1P = 0.049 PgC/day in ΞO3, R∗2P = 0.033 PgC/day in ΞO1, and R∗3P = 0.072 PgC/day in ΞO3 [65–67].

Indicator J(t) is an integral feature of the CNSS complexity that reflects the individuality of its
structure and its evolution at the time t. According to the laws of natural evolution the decrease or
increase of J(t) will reflect the ability of C NSS to survive. Moreover, the reduction of J(t) corresponds
to the negative disturbance of the biogeochemical cycles that intensify resource-depletion processes
and shift the vector of energetic exchange between the basic functions of the CNSS. In particular, the
reduction in J(t) leads to a reduction in total food reserves which may be reflected by the food production
index (FDI) which is a function of climate, scientific-technical progress and economic factors [68].
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Table 2. List of the model parameters.

Parameter Symbol Parameter Evaluation

Photosynthesis compensation constant:
Γ, ppmvEquator 5

Pole 50

Coefficient reflecting the effect of the CO2 factor on plant production. aC 3.226

Constant of the photosynthetic responses to atmospheric CO2 changes. bC, ppmv 930.03

Coefficient reflecting the impact of solar radiation on plant production. aE 1.177

Parameter indicating the solar radiation in which the stability of plant production
is achieved. bE, W/m2 60.538

Coefficient reflecting the effect of precipitation on plant production. aW 4.742

Parameter indicating the precipitation in which the stability of plant production is achieved. bW mm/year 592.357

Parameter indicating the maximal rate of growth of plant biomass under
temperature change. aT 0.56

Indicator of declining plant production under temperature change. bT 0.42

Maximal rate of loss of plant biomass under temperature change. ρT 1.214

Parameter that controls early delay to achieve a maximal rate of loss of plant biomass due to
temperature change. dT, ◦C 5.714

Maximal rate of loss of plant biomass under change of soil moisture. da 0.0267

Parameter that controls early delay to achieve a maximal rate of loss of plant biomass to
precipitation change. db, mm/year 208.333

Ratio coefficient that characterizes phytoplankton rate dependence on temperature. θW 0.21

Ratio coefficient that characterizes phytoplankton rate dependence on solar energy. θE 0.25

Constant that determines the characteristics of phytoplankton species dependent on
biogenic salts. γN 0.1

Constant that determines phytoplankton production as a function of its biomass. γP 0.25

The area of the biosphere. σ, km2 510.1 × 106

Model start time. t0 2015

The item CM provides the calculation of the spatial distribution of the mean annual temperature
of the atmosphere based on the simple climate model developed by Mintzer [54] and modified by
Krapivin et al. [42] as:

∆Tg = ∆TCO2 + ∆TN2O + ∆TCH4 + ∆TO3 + ∆TCFC11 + ∆TCFC12, T(ϕ) = Tg + γ(sin2 ϕT − sin2 ϕ), (2)

where γ is the difference of atmospheric temperatures between the pole and equator, ϕT is the latitude,
where T(ϕ) = Tg,

∆TCO2 = −0.677 + 3.019ln[CA(t)/CA(t*)], ∆TN2O = 0.057[N2O(t)1/2 − N2O(t*)1/2],
∆TCH4 = 0.019[CH4(t)1/2 − CH4(t*)1/2], ∆TO3 = 0.7[O3(t) − O3(t*)]/15,
∆TCFC11 = 0.14[CFC11(t) − CFC11(t*)], ∆TCFC12 = 0.16[CFC12(t) − CFC12(t*)].

(3)

The value of t* is identified by the year 1980, when the GHG concentration were known (CO2

337.7 ppmv; N2O 270 ppb; CH4 722 ppb; CFC11 167.99 ppb; CFC12 307.75 ppb). Items CMCM, GNCM
and GCOO calculate concentrations of CA(t), N2O(t), CH4(t), O3(t) using the corresponding models
and CFC11(t), and CFC12(t) taking into account data provided by Butler and Montzka [69].

The item DM refers to the development of a model of population dynamics G(I,j,t) taking into
account the environmental factors:

dG(I,j,t)/dt = RG(I,j,t) −MG(I,j,t), (4)

where RG and MG are the indicators of birth rate and mortality, respectively. Birth rate and mortality
are mainly functions of the food supply and environmental characteristics. Detailed description of
these functions is given in [53].
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According to [53] the functions RG(I,j,t) and MG(I,j,t) in (4) are linked to each other with the
following equations:

RG(I,j,t) = µBG(I,j,t), (5)

Where µB and µd are the coefficients characterizing the birth rate and mortality, respectively;$ is
the index of the influence of the population density on mortality. These coefficients are functions of
environmental and anthropogenic characteristics, notably:

µB = ρmin{µ1(1 − HDI) + µ2HDI; µ1(1 − HPI) + µ2HPI; µ1exp[−ξ1FPI/FPI(t0)] + µ2[1 − exp{−ξ1FPI/FPI(t0)};
µ1exp[−ξ2GDP/GDP(t0)] + µ2[1 − exp{−ξ2GDP/GDP(t0)}; µ1exp[−ξ3VG] + µ2(1 − exp[−ξ3VG])}

(6)

µd = βmin{η1(1 − HDI) + η2HDI; η1(1 − HPI) + η2HPI; η1exp[−χ1FPI/FPI(t0)] + η2[1 − exp{−χ1FPI/FPI(t0)};
η1exp[−χ2GDP/GDP(t0)] + η2[1 − exp{−χ2GDP/GDP(t0)]}; η1exp[−χ3VG] + η2(1 − exp[−χ3VG])}

(7)

where µ1 and µ2 are coefficients of maximal and minimal birth rates, respectively; η1 and η2 are
maximal and minimal mortalities, respectively; ρ, β, χ1, χ2, χ3, ξ1, ξ2 and ξ3 are adaptation coefficients;
VG is the efficient food amount that is defined as weighed sum of the components of personal food
spectrum (calculated by the items UEM, PMAA, MWEL, and PMTM).

In the common case we have:

VG(t) =

{
∑

(i,j)∈ΞL

σij
[
r1d1R1

Φ(i, j, t) + r2d2R2
Φ(i, j, t) + +r3d3R3

Φ(i, j, t)
]
+ d4

3
∑

s=1
RP(s, t)

}
/ ∑
(i,j)∈ΞL

σijG(i, j, t)

where d1 (0.023), d2 (0.65), d3 (0.11)and d4 (0.013) are coefficients determining the contribution of
the production of the natural vegetation, agricultural plants, land water systems and oceans, to the
population food spectrum, respectively.

Each pixel Ξij is characterized by the biocomplexity level and participates in the food production
as an element of restricted area that can consolidate different biomes, ecosystems and anthropogenic
territories. In order to determine the typical description of the spatial structure of CNSS, the following
three socio-economic groups of countries are selected to be represented by respective areas of the
land ΞL:

- ΞLD the area occupied by countries with HDI ∈ [0.85,1]
- ΞLM the area occupied by the countries with transition economy (HDI ∈ (0.65,0.85)), and
- ΞLG correspond to the territory of the developing countries (HDI ∈ [0,0.65]).

Social costs, economic growth, food insecurity, and environmental disruption in each territory are
presented with different intensity. The food supply is made from the following available sources:

• Agricultural technologies are the main food producers that can promote food safety and nutrition
security. Global agriculture supplies 2940 kcal per person at present with a forecast of up to
3050 in 2030. Existing protein support per person is estimated at 60 g a day when the medical
standard is 70 g. The total protein deficit is estimated at 10 to 25 million tons. Nearly half of the
world’s population (7.5 billion) suffers from a lack of protein [70].

• The second major source of the food is fishing and cultivation of fish in natural lakes and reservoirs.
In 2016 each person consumed about 22 kg of fish production. At present, the ecosystems of
the World Ocean and the seas provide about 20% of the world’s needs for proteins of animal
origin. Mainly, oceanic biomass is estimated around 150 thousands of the animal species and
10 thousands of the water-plants with a total weight of about 35 billion tons which is sufficient to
survive 35 billion people [71].

• Natural plants and forest in the first series can be considered hypothetical sources of food
including wild animals and edible plants, hazelnuts, etc. Further development of the food
industry and corresponding science allows the expansion of primary use of natural biomass for
food production.
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As can be seen from Figures 2–4, the general trend of food production in various countries
is characterized by a steady increase in food production. Practically, in the early 21st century, the
majority of countries have achieved comparable levels of the food production. However the problem
of the food distribution by the individual has not been solved. This problem is quite complex and is
connected with socio-economic and culture-ideological area, the parts of which can be distinguished in
cardinals depending on the ideology and the traditional conception of the social justice, whose search
is carried out with different indicators [72]. According to the results of Figures 5 and 6, the CNSS space
indicator has many uncertainties that can be linked to existing causes of non-uniform distribution of
vital resources.
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Figure 6. An interdependence of the Food Production Index (FPI) and Human Development Index
(HDI) for the different countries.

Under the premise of peaceful coexistence, the problem of population survivability lies in
providing food to those who have to look after the dependencies of global distribution of food
and water supplies on the path of globalization.

4. Simulation Experiments

The GIMS/CNSS allows the emulation of different environmental situations using the information
and data that define specific characteristics of the land surface, distribution of the soil-plant formations
and hydrosphere. The land surface is covered by a discrete number of land cover types depicted in
Figure 7 and Table 3. Numerical values of the GIMS/CNSS parameters are given in Table 4. Certainly,
these parameters can change over time, but not significantly. Therefore, the parameters of the regions
can be interchanged with each other.
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Figure 7. Spatial distribution of the types of soil-plant formations presented in Table 3. Biome indicator
is explained in Table 3.

Table 3. Quantitative characteristics of the formation types of the land vegetation [60,63,73,74]. Notation:
σS is the biome area (mln km2), R∗1Φ is the annual increment of plants (kg/m2/year), Φ* is the phytomass
(kg/m2). Tmin and Topt are minimal and optimal temperatures for photosynthesis, respectively.

Indicator and Type of Soil-Plant Formation σS R∗1Φ Φ* Tmin (◦C) Topt (◦C)

A—Arctic deserts and tundra 2.55 0.17 0.4 −5 40
C—Tundra 2.93 0.36 1.9 −5 40

M—Mountain tundra 2.33 0.38 1.9 −3 35
L—Forest tundra 1.55 0.65 3.8 −5 40

F—North-taiga forests 5.45 0.54 10 −5 40
D—Mid-taiga forests 5.73 0.63 22.5 −5 40

6.6 0.65 23.5 −5 40
G—South-taiga forests 2.12 0.87 25 −1 43

7.21 1.25 45 −1 43
R—Broad-leaved coniferous forests 5.75 1.72 43 0 43

+—Broad-leaved forests 3.91 0.56 3.8 0 43
P—Sub-tropical broad-leaved and coniferous forests 3.72 0.74 1.9 2 43

U—Xerophytic open woodlands and shrubs 4.29 0.79 1.9 2 43
X—Forest-steppes (meadow steppes) 1.66 1.11 3.8 5 45

W—Moderately arid and arid (mountain including) steppes 2.66 0.38 0.8 5 45
E—Pampas and grass savannas 2.08 0.45 0.4 5 45

V—Dry steppes 2.69 0.25 0.2 5 50
#—Mangrove forests 1.99 0.35 0.8 5 30

S—Sub-boreal and saltwort deserts 7.16 0.12 0.1 5 45
&—Sub-tropical semi-deserts 1.15 0.47 0.8 −3 10

H—Sub-tropical deserts 3.54 0.76 1.9 −3 10
B—Alpine deserts 10.4 3.17 60 5 50

Q—Alpine and sub-alpine meadows 7.81 2.46 60 5 50
Z—Humid evergreen tropical forests 9.18 1.42 10 5 50

Y—Variably-humid deciduous tropical forests 17.1 1.35 0.1 5 45
N—Tropical xerophytic open woodlands 13.52 0.18 0.4 5 45

J—Tropical savannas 0.38 0.18 45 4 50
T—Tropical deserts 0.9 1.96 45 4 45

K—Saline lands 14.6 0 0 - -
I—Sub-tropical & tropical grass-tree thickets of the tugai type

*—Lack of vegetation
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Table 4. Coefficients of the GIMS/CNSS for the land surface.

Coefficient Region ΞLD Region ΞLM Region ΞLG

ρ, year−1 1.19 1.26 1.32
β, year−1 1.21 1.23 1.25

η1 0.01 0.011 0.014
η2 0.003 0.005 0.009
ξ1 0.031 0.027 0.025
ξ2 0.012 0.011 0.009
ξ3 0.006 0.005 0.004
χ1 0.035 0.032 0.031
χ2 0.014 0.012 0.011
χ3 0.003 0.002 0.001
µ1 0.02 0.03 0.04
µ2 0.005 0.009 0.012

γ, ◦C 34 34 34
$ 0.56 0.61 0.67

It is clear that the accuracy of a forecast can be estimated only after many years or decades.
Nevertheless, a complex set of ideas and assumptions in the GIMS/CNSS structure determine
a complete picture of the world and form the mechanisms for constructively describing the direct and
inverse relationships in which the CNSS survivability is defined by criterion (1).

The biocomplexity of the environment precisely determines the level of food supply for the
world population. As can be seen from Figure 8, a contribution of nature to this conservation has
a non-uniform spatial distribution. The corresponding modern spatial distribution is specific for
agriculture and fishery productions.

The GIMS/CNSS items that calculate average regional temperature (CM) and simulate regional
hydrological balance (RHCM) allow the estimation of surface vegetation production (item BMSPF)
depending on temperature and precipitation (a few estimates are given in Table 5).

It will be assumed that the survivability level J(t) is the most important for each region. The
GIMS/CNSS forms a comprehensive picture of the population dynamics in the pixel structure of the
world and taking into account the respective interactions between the biosphere and climatic system.
Undoubtedly, the implementation of GIMS/CNSS that is proposed here improves the structure of
existing global models and provides more accurately the calculation of the population dynamics.

The internal resources for each region are determined by the level of Gross Domestic Product
(GDP) and its distribution from the strategic goals. The curves in Figure 9 show the dependence of
the system survivability on investment distribution and indicate the level of life of the population
according to the distribution of GDP by the economic sectors that is correct over the closest limited
time period. Overall, the GIMS/CNSS allows evaluation of the population dynamics under certain
assumptions. Let’s look at some of them. Figure 10 represents such evaluations in the context of the
following assumptions (scenario SP—scientific progress):

• the problems arising from the limitation of energy sources will be overcome by 2050;
• the emissions of greenhouse gases will increase by 10% by 2050 compared to 2015 and then begin

to fall evenly to 2200 up to 5%;
• agricultural technologies to increase productivity by 100% by 2050 and by 200% by the end of the

22nd century will be production;
• the speed of replacement of forest ecosystems by avifauna will be reduced by 10 times in 2050

compared to 2015 and then the forested pixels will not be disturbed; and
• the contribution of World Ocean resources to food production will increase from 1% in 2015 to 5%

in 2050 and then increase steadily to 10% in 2200.
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Figure 8. A map-scheme of the productivity of soil-plant formations shown in Table 2 in digital scale
with spatial resolution 4◦ × 5◦.

Table 5. The dependence of the annual vegetation production RΦ(TΞ,WΞ) (kg/m2/year) on the average
annual temperature (TΞ) and full precipitation (WΞ).

Precipitation, WΞ

(mm/Year)

Atmospheric Temperature, TΞ (◦C)

−14 −10 −6 −2 2 6 10 14 18 22 26 30

3130 3.39 3.49 3.68 3.81 3.92 4.01
2880 3.27 3.36 3.47 3.63 3.73 3.82
2630 3.09 3.27 3.31 3.44 3.54 3.65
2380 2.85 2.93 3.09 3.12 3.22 3.33
2130 2.57 2.69 2.67 2.94 2.91 3.03
1880 1.63 2.38 2.38 2.43 2.55 2.62 2.74
1630 0.39 0.62 1.34 2.04 2.14 2.12 2.26 2.35 2.42
1380 0.18 0.31 0.41 0.73 1.16 1.75 1.91 1.95 2.13 2.18 2.09
1130 0.19 0.26 0.32 0.43 0.77 1.05 1.66 1.84 1.92 1.84 1.83 1.75
880 0.21 0.28 0.42 0.52 0.83 0.92 1.53 1.43 1.33 1.36 1.27 1.24
630 0.28 0.29 0.53 0.57 0.89 0.91 0.92 0.85 0.84 0.73 0.72 0.71
380 0.39 0.41 0.54 0.69 0.66 0.64 0.67 0.57 0.56 0.55 0.43 0.42
130 0.14 0.32 0.31 0.22 0.24 0.24 0.24 0.24 0.23 0.14 0.13 0.11Int. J. Environ. Res. Public Health 2017, 14, 885  13 of 20 
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As can be seen from the results of Figure 10, population size can reach 14.9 billion at the beginning
of 23rd century with a tendency for low growth. The percentage distribution of the population
from the regions will change in the direction of the 6.9% increase in the part of the developing
countries. Contributions of the regions ΞLD and ΞLM to population growth declined by 2.1% and 4.8%,
respectively. These changes are linked to the different rates of birth and mortality in Equations (6)
and (7) as functions of the community status and food supply, as well as climatic parameters. Figure 11
shows some of these characteristics in their dynamics by 2215. It seems that a-priori assumptions
about the dynamics of different anthropogenic environmental impacts play an important role in the
dynamics of all CNSS components. Unfortunately, these assumptions only occur as specific scenarios.
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Figure 11. The dynamics of the climatic factors (CO2 concentration and temperature are represented by
the solid and dashed lines, respectively). A comparison of the results obtained from the implementation
of the SP scenario with those from the RCP8.5 and RCP2.6 scenarios [75,76].

The implementation of the RCP8.5 scenario (of comparatively high GHS emissions [77]) results in
an increase in CO2 concentration to 800 ppm in the 23rd century, beginning with the achievement of
a maximal surface temperature increase of almost 3 ◦C. On the other hand, the fairly realistic scenario
RCP2.6 (exploring the possibility of maintaining global mean temperature rise below 2 ◦C [78]) leads
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to corresponding levels of 520 ppm for CO2 and 0.8 ◦C for temperature change in the middle of 22nd
century and after lowering these levels. Therefore, the most accurate forecast requires a detailed
analysis by the experts of the current trends in the socio-economic developments of the different
regions. However, even these hypothetical scenarios provide information to think about the possible
safe ways of population growth when survivability is maintained for a long time.

Figure 12 shows a dynamics of the key factors that are linked with evolution process of the
society development. The birth rate coefficients µB for the ΞLD, ΞLM and ΞLG regions are change from
0.0115, 0.0177 and 0.0267 in 2015 to 0.005, 0.0098 and 0.0191 in 2200, respectively. According to this,
the birth rate coefficients of the ΞLD and ΞLM regions will decrease evenly with time, and the birth
rate coefficient will reach the maximal value 0.034 in the ΞLG region in 2060 and then decrease. The
mortality coefficients µd are similarly modified in the ΞLD, ΞLM and ΞLG regions from 0.0107, 0.0138
and 0.0175 in 2015, to 0.0121, 0.0153 and 0.0211 in 2200, respectively.
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5. Conclusions

The proposed version of the global geo-ecological information-modeling system provides tools
for studying and evaluating the limiting anthropogenic impacts on the biosphere and allows for the
understanding of its responses and identification of the exclusion area for possible human activity.
In this context, the GIMS/CNSS provides the capability to detect regional ecological responses to the
effects identified in the limited number of spatial pixels. The GIMS/CNSS is based on combined use
of specific models of particular environmental processes listed in Table 1 and tested separately. The
parameters of the model such as ρ, β, χ1, χ2, χ3, ξ1, ξ2 and ξ3 are corrected, based on the minimal
discrepancy between modeling results and the prehistory of trends in the global population and
atmospheric CO2 during 2000–2015. The model verification is based on a comparison of the prehistory
trends of the real global temperature with those deduced by the model. In this case the average
deviation for the period 2000–2015 was no more 7%.

The GIMS/CNSS can be used to evaluate the consequences of the implementation of
anthropogenic scenarios, such as spatial reconstruction of soil-plant formations or changes in the
vegetation cover as a result of wildfires. The modelled changes are accomplished by replacing literal
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symbols in the map of the soil-plant formations (Figure 7). Preliminary calculations have shown
a strong dependence of the CO2 cycle [79,80] on changes in vegetation cover.

Undoubtedly, the GIMS/CNSS reflects the limited range of feedbacks in CNSS with emphasis on
ecological interactions. The GIMS/CNSS allows the modernization its structure through additional
items that shape the socio-economic and living feedbacks in the global climate system.

It should be noted that the GIMS/CNSS Global Model developed here is not comparable to
other available complex global models. The model of global environmental processes based on the
GIMS-technology differs largely from other global models from the ability to evolutionary adapt to
pre-history using informative indicators on the state of CNSS. Certainly, the adaptation process and
the selection of informative indicators are needed in the additional surveys.

The results of this study show that survivability problem will not be critical over the next two
centuries, depending on the population growth. Restrictions on the availability of food production
resources will occur at the end of 21st century when, as shown in Figure 12, the global nuclear power
plant (NPP) is slowly declining due to climate change and changes in regional hydrological balances.
In particular, the rise in temperature in tropical latitudes causes a decrease in water content in the soil
due to the evaporation which leads to the NPP decrease. In contrast, in northern pixels, the rise in
temperature leads to a 16–20 day extension in the 22nd century, starting with a 9–12% increase in the
NPP. These negative and positive feedbacks are not evenly distributed by the pixels. As a result, the
food production dynamics illustrated in Figure 12 shows that the export of excess of food stocks of
the region ΞLG to other regions is only possible until the end of 21st century, as the human population
expands the effectiveness of such strategies, such as expansion of the land area used for agriculture,
the expansion of fishing, and the increase in agricultural productivity. Current trends in increasing the
regional population suggest that satisfying food demands is unlikely to occur if human society does not
seek sustainable interactions with nature. Realized food production estimates are approximate and can
be more accurate when spatial digitization of land and oceans will be, for example, 0.5◦ × 0.5◦ or less.
It is known that changes in net primary production in the ocean vary from 1800 g/m2/year in estuaries
to 50 g/m2/year in the open ocean. Biomass variations and biomass production of the land vegetation
have a wide range as well. This circumstance is an additional reserve to make the results of the global
model more accurate. Certainly, the GIMS/CNSS model allows for a more detailed description of
the soil-plant formations depicted in Figure 7 taking into account the existing site variations and
productivity, as well as the specifications of agricultural ecosystems. Additional enlargement and
identification of global and regional environmental databases are required. Furthermore, the analysis
presented showed that all the given assumptions are closely related to the results of the presented
model. In addition, the potential use of the presented model at regional and global level is presented
in [22,23,46,47]. It would be of particular interest to apply this model to investigate the impact on
public health from modern environmental problems, such as the depletion of the ozone layer and the
induced increase in solar ultraviolet radiation reaching the ground [81–87].
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